Skip to main content

Platelet Phosphodiesterases

  • Chapter
Platelets and Their Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 126))

Abstract

Platelets play a central role in thrombosis and hemostasis. In human platelets, an increase in intracellular levels of cAMP and cGMP is associated with the inhibition of agonist-evoked platelet responses including change of cell shape, adhesion, aggregation, and release of granule content (for a review see Siess 1989). Cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of 3′–5′-cyclic nucleotides to the corresponding nucleoside 5′-monophosphates and thereby play a crucial part in the regulation of cyclic nucleotide concentrations (Beavo and Reifsnyder 1990; Beltman et al. 1993). Currently, seven different but homologous PDE families are recognized, and most of these families contain multiple isoforms (Beavo 1995). In human platelets three distinct forms of cyclic nucleotide PDEs exist that differ in their kinetic and physical characteristics, substrate selectivities (cAMP or cGMP) as well as their regulation by various natural and pharmacological agents. These three PDEs are cGMP-stimulated phosphodiesterase type II (cGS-PDE) with a Km of 35 µM for cGMP and 50 µM for cAMP (Grant et al. 1990), the cGMP-inhibited phosphodiesterase type III (cGI-PDE) with the lowest Km (0.02 μM) for cGMP and a Km of 0.2 µM for cAMP (Grant et al. 1992), and the cGMP-specific PDE type V. PDE V hydrolyzes cGMP (Km = 5 µM) at a rate approximately 100 times faster than the hydrolytic rate for cAMP (Hamet et al. 1984; Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez R, Banerjee GL, Bruno JJ, Jones GL, Littschwager K, Strosberg AM, Venuti MC (1986) A potent and selective inhibitor of cyclic AMP phosphodiesterase with potential cardiotonic and antithrombotic properties. Mol Pharmacol 29:554–560

    PubMed  CAS  Google Scholar 

  • Andersson TLG, Vinge E (1991) Interaction between isoprenaline, sodium nitroprusside, and isozyme selective phosphodiesterase inhibitors on ADP-induced aggregation and cyclic nucleotide levels in human platelets. J Cardiovasc Pharmacol 18:237–242

    Article  PubMed  CAS  Google Scholar 

  • Beavo JA (1995) Cyclic nucleotide phosphodiesterases: functional implicaions of multiple isoforms. Physiol Rev 75:725–748

    PubMed  CAS  Google Scholar 

  • Beavo JA, Reifsnyder DH (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 11:150–155

    Article  PubMed  CAS  Google Scholar 

  • Beltman J, Sonnenburg WK, Beavo JA (1993) The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases. Mol Cel Biochem 127/128:239–253

    Article  Google Scholar 

  • Beltman J, Becker DE, Butt E, Jensen GS, Rybalkin SD, Jastorff B, Beavo JA (1995) Characterization of cyclic nucleotide phosphodiesterases with cyclic GMP analogs: topology of the catalytic site. Mol Pharmacol 47:330–339

    PubMed  CAS  Google Scholar 

  • Bult H, Fret HRL, Jordaens FH, Herman AG (1991) Dipyridamole potentiates platelet inhibition by nitric oxide. Thromb Haemost 66:343–349

    PubMed  CAS  Google Scholar 

  • Burns F, Dodger IW, Pyne NJ (1992) The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung. Biochem J 283:487–491

    PubMed  CAS  Google Scholar 

  • Butt E, Beltman J, Becker DE, Jensen GS, Rybalkin SD, Jastorff B, Beavo JA (1995) Characterization of cyclic nucleotide phosphodiesterases with cyclic AMP analogs: topology of the catalytic site and comparison with other cyclic AMP-binding proteins. Mol Pharmacol 47:340–347

    PubMed  CAS  Google Scholar 

  • Colucci WS (1991) Cardiovascular effects of milrinone. Am Heart J 121:1945–1947

    Article  PubMed  CAS  Google Scholar 

  • De la Cruz JP, Ortega G, de la Cuesta FS (1994) Differential effects of the pyrimido-pyrimidine derivatives, dipyridamole and mopidamol, on platelet and vascular cyclooxygenase activity. Biochem Pharmacol 47:209–215

    Article  Google Scholar 

  • Degerman E, Moos M, Rascón A, Vasta V, Meacci E, Smith CJ, Lindgren S, Andersson KE, Beifrage P, Manganiello V (1994) Single-step affinity purification, partial structure and properties of human platelet cGMP inhibited cAMP phosphodiesterase. Biochem Biophys Acta 1205:189–198

    Article  PubMed  CAS  Google Scholar 

  • Eckly AE, Lugnier C (1994) Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway. Br J Pharmacol 113:445–450

    PubMed  CAS  Google Scholar 

  • Eigenthaler M, Nolte C, Haibrügge M, Walter U (1992) Concentrations and regulation of cyclic nucleotides, cyclic nucleotide-dependent protein kinases and one of their major substrates in human platelets. Eur J Biochem 205:471–481

    Article  PubMed  CAS  Google Scholar 

  • Erhardt PW (1992) Second-generation phosphodiesterase inhibitors: structure activity relationship and receptor models. In: Beavo JA, Housley MD (eds) Isozymes of cyclic nucleotide phosphodiesterases. Wiley, New York, p 317

    Google Scholar 

  • Falcon C, Pflieger G, Deckmyn H, Vermylen J (1988) The platelet insulin receptor: detection, partial characterization, and search for a function. Biochem Biophys Res Commun 157:1190–1196

    Article  PubMed  CAS  Google Scholar 

  • Francis SH, Thomas MK, Corbin JD (1992) Cyclic GMP-binding cyclic GMP-specific phosphodiesterase from lung. In: Beavo JA, Housley MD (eds) Isoenzymes of cyclic nucleotide phosphodiesterases. Wiley, New York, p 117

    Google Scholar 

  • Francis SH, Colbran JL, McAllister-Lucas LM, Corbin JD (1994) Zinc interactions and conserved motifs of the cGMP-binding cGMP-specific phosphodiesterase suggest that it is a zinc hydrolase. J Biol Chem 269:22477–22480

    PubMed  CAS  Google Scholar 

  • Gillespie E (1988) Anagrelide: a potent and selective inhibitor of platelet cyclic AMP phosphodiesterase enzyme activity. Biochem Pharmacol 37:2866–2868

    Article  PubMed  CAS  Google Scholar 

  • Gillespie E, Beavo JA (1989) Mol Pharmacol 36:773

    PubMed  CAS  Google Scholar 

  • Grant PG, Mannarino AF, Colman RW (1988) cAMP-mediated phosphorylation of the low-Km cAMP phosphodiesterase markedly stimulates its catalytic activity. Proc Natl Acad Sci USA 85:9071–9075

    Article  PubMed  CAS  Google Scholar 

  • Grant PG, Mannarino AF, Colman RW (1990) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from the cytosol of human platelets. Tromb Res 59:105–119

    Article  CAS  Google Scholar 

  • Grant PG, DeCamp DL, Baily JM, Colman RF, Colman RW (1992) Low-Km cyclic AMP phoshodiesterase from human platelets: stimulation of activity by phosphorylation of the enzyme and affinity labeling of the active site. Second Messengers Phosphoprotein Res 25:73–85

    CAS  Google Scholar 

  • Gresele P, Arnout J, Deckmyn H, Vermylen J (1986) Mechanism of the antiplatelet action of dipyridamole in whole blood: modulation of adenosine concentration and activity. Tromb Haemost 55:12–18

    CAS  Google Scholar 

  • Haibrügge M, Walter U (1993) The regulation of platelet function by protein kinases. In: Huang CK, Sha’afi RI (eds) Protein kinases in blood cell function. CRC, London, p 245

    Google Scholar 

  • Haibrügge M, Friedrich C, Eigenthaler M, Schanzenbächer P, Walter U (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP and cAMP-elevating vasodilators. J Biol Chem 265:3088–3093

    Google Scholar 

  • Hamet P, Coquil JF, Bousseau-Lafortune S, Franks DJ, Tremblay J (1994) Cyclic GMP binding and phosphodiesterase: implication for platelet function. Adv Cyclic Nucleotide Protein Phosphorylation Res 16:119–136

    Google Scholar 

  • Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, Beavo JA (1986) Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Pharmacol 29:506–514

    PubMed  CAS  Google Scholar 

  • Hidaka H, Endo T (1984) Selective inhibitors of three forms of cyclic nucleotide phosphodiesterase — basic and potential clinical applications. Adv Cyclic Nucleotide Protein Phosphorylation Res 16:245–259

    PubMed  CAS  Google Scholar 

  • Hidaka H, Hayashi H, Kohri H, Kimura Y, Hosokawa T, Igawa T, Saitoh Y (1979) Selective inhibitor of platelet cyclic adenosine monophosphate phosphodiesterase, cilostamide, inhibits platelet aggregation. J Pharmacol Exp Ther 211:26–30

    PubMed  CAS  Google Scholar 

  • Lanza F, Beretz A, Stierle A, Corre G, Cazenave JP (1987) Cyclic nucleotide phosphodiesterase inhibitors prevent aggregation of human platelets by raising cyclic AMP and reducing cytoplasmic free calcium mobilization. Thromb Res 45:477–484

    Article  PubMed  CAS  Google Scholar 

  • Levin RI, Weksler BB, Jaffe EA (1982) The interaction of sodium nitroprusside with human endothelial cells and platelets: nitroprusside and prostacyclin synergisti-cally inhibit platelet function. Circulation 66:1299–1307

    Article  PubMed  CAS  Google Scholar 

  • Lidbury PS, Antunes RM J, de Nucci G, Vane JR (1989) Interactions of iloprost and sodium nitroprusside on vascular smooth muscle and platelet aggregation. Br J Pharmacol 98:1275–1280

    PubMed  CAS  Google Scholar 

  • Lindgren SHS, Andersson TLG, Vinge E, Andersson KE (1990) Effect of isozyme-selective phosphodiesterase inhibitors on rat aorta and human platelets: smooth muscle tone, platelet aggregation and cAMP levels. Acta Physiol Scand 140:209–219

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Aparicio P, Rascón A, Manganiello VC, Andersson KE, Beifrage P, Degerman E (1992) Insulin-induced phosphorylation and activation of the cGMP-inhibited phosphodiesterase in human platelets. Biochem Biophys Res Commun 186:517–523

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Aparicio P, Belfrage P, Manganiello VC, Kono T, Degerman E (1993) Stimulation by insulin of a serine kinase in human platelets that phosphorylates and activates the cGMP-inhibited cAMP phosphodiesterase. Biochem Biophys Res Commun 193:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • MacDonald PS, Read MA, Dusting GJ (1988) Synergistic inhibition of platelet aggregation by endothelium-derived relaxing factor and prostacyclin. Thromb Res 49:437–449

    Article  PubMed  CAS  Google Scholar 

  • MacPhee CH, Harrison SA, Beavo JA (1986) Immunological identification of the major platelet low-Km cAMP phosphodiesterase: probable target for antithrombotic agents. Proc Natl Acad Sci USA 83:6660–6663

    Article  PubMed  CAS  Google Scholar 

  • MacPhee CH, Reifsnyder DH, Moore TA, Lerea KM, Beavo JA (1988) Phosphorylation results in activation of a cAMP phosphodiesterase in human platelets. J Biol Chem 263:10353–10358

    PubMed  CAS  Google Scholar 

  • Manganiello VC, Smith CJ, Degerman E, Belfrage P (1990) Cyclic GMP-inhibited cyclic nucleotide phosphodiesterase. In: Beavo JA, Housley MD (eds) Isoenzymes of cyclic nucleotide phosphodiesterases. Wiley, New York, p 87

    Google Scholar 

  • Maurice DH, Haslam RJ (1990) Molecular basis of the synergistic inhibition of platelet function by nitro vasodilators and activators of adenylate cyclase: inhibition of cAMP breakdown by cyclic GMP. Mol Pharmacol 37:671–681

    PubMed  CAS  Google Scholar 

  • McAllister-Lucas LM, Sonnenburg WK, Kadlecek A, Seger D, Trong HL, Colbran JL, Thomas MK, Walsh KA, Francis SH, Corbin JD, Beavo JA (1993) The structure of bovine lung cGMP-binding, cGMP-specific phosphodiesterase deduced from cDNA clone. J Biol Chem 268:22863–22873

    PubMed  CAS  Google Scholar 

  • McElroy FA, Philip RB (1975) Relative potencies of dipyridamole and related agents as inhibitors of cyclic nucleotide phosphodiesterase: possible explanation of mechanism of inhibition of platelet function. Life Sci 17:1479–1490

    Article  PubMed  CAS  Google Scholar 

  • Mery PF, Fischmeister R, Podzuweit T, Müller A (1993) Cyclic GMP-mediated inhibition of Ca current in frog ventricular myocytes is reversed by MEP 1, a selective inhibitor of the cGMP-stimulated phosphodiesterase. J Physiol (Lond) 459:421

    Google Scholar 

  • Mery PF, Pavoine C, Pecker F, Fischmeister R (1995) Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Mol Pharmacol 48:121

    PubMed  CAS  Google Scholar 

  • Murray KJ, England PJ, Hallam TJ, Maguire J, Moores K, Reeves ML, Simpson AWM, Rink TJ (1990) The effects of siguazodan, a selective phosphodiesterase inhibitor, on platelet function. Br J Pharmacol 99:612–616

    PubMed  CAS  Google Scholar 

  • Murray KJ, Eden RJ, Dolan JS, Grimsditch DC, Stutchbury CA, Patel B, Knowles A, Worby A, Lynham JA, Coates WJ (1992) The effect of SK&F 95654, a novel phosphodiesterase inhibitor, on cardiovascular, respiratory and platelet function. Br J Pharmacol 107:463–470

    PubMed  CAS  Google Scholar 

  • Nicholson CD, Challiss RA, Shahid M (1991) Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci 12:19–27

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa M, Komada F, Morita K, Deguchi K, Shirikawa S (1992) Inhibition of platelet aggregation by the cAMP phosphodiesterase inhibitor, cilostamide, may not be associated with activation of cAMP-dependent protein kinase. Cell Signal 4:453–463

    Article  PubMed  CAS  Google Scholar 

  • Nolte C, Eigenthaler M, Horstrup K, Hönig-Liedl P, Walter U (1994) Synergistic phosphorylation of the focal adhesion-associated vasodilator-stimulated phos-phoprotein in intact human platelets in response to cGMP- and cAMP-elevating platelet inhibitors. Biochem Pharmacol 48:1569–1575

    Article  PubMed  CAS  Google Scholar 

  • Podzuweit T, Mueller A, Opie LH (1993) Anti-arrhytmic effects of selective inhibition of myocardial phosphodiesterase II. Lancet 341:760

    Article  PubMed  CAS  Google Scholar 

  • Rascón A, Lindgren S, Stavenow L, Belfrage P, Andersson KE, Manganiello VC, Degerman E (1992) Purification and properties of the cGMP-inhibited cAMP phosphodiesterase from bovine aortic smooth muscle. Biochim Biophys Acta 1134:149–156

    Article  PubMed  Google Scholar 

  • Robichon A (1991) A new cGMP phosphodiesterase isolated from bovine platelets is substrate for cAMP and cGMP-dependent protein kinases: evidence for a key role in the process of platelet activation. J Cell Biochem 47:147–157

    Article  PubMed  CAS  Google Scholar 

  • Sheth SB, Colman RW (1995) Regulatory and catalytic domains of platelet cAMP phosphodiesterases: targets for drug design. Semin Hematol 32:110–119

    PubMed  CAS  Google Scholar 

  • Siess W (1989) Molecular mechanism of platelet activation. Physiol Rev 69:58–177

    PubMed  CAS  Google Scholar 

  • Stroop SD, Beavo JA (1991) Structure and function studies of the cGMP-stimulated phosphodiesterase. J Biol Chem 266:23802–23809

    PubMed  CAS  Google Scholar 

  • Tani T, Sakurai K, Kimura Y, Ishikawa T, Hidaka H (1990) Pharmacological manipulation of tissue cyclic AMP by inhibitors: effect of phosphodiesterase inhibitors on the function of platelets and vascular endothelial cells. Adv Second Messenger Phosphoprotein Res 25:215–227

    Google Scholar 

  • Thomas MK, Francis SH, Corbin JD (1990a) Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase. J Biol Chem 265:14964–14970

    PubMed  CAS  Google Scholar 

  • Thomas MK, Francis SH, Corbin JD (1990b) Substrate- and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP. J Biol Chem 265:14971–14978

    PubMed  CAS  Google Scholar 

  • Torphy TJ, Unden BJ (1991) Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax 46:512–523

    Article  PubMed  CAS  Google Scholar 

  • Trovati M, Massucco P, Mattiello L, Mularoni E, Cavalot F, Anfossi G (1994) Insulin increases guanosine-3′,5′-cychc monophosphate in human platelets. A mechanism involved in the insulin anti-aggregating effect. Diabetes 43:1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Manganiello VC, Osborne JC (1987) Analysis of the kinetics of cyclic AMP hydrolysis by the cyclic GMP-stimulated cyclic nucleotide phosphodiesterase. J Biol Chem 262:13938–13945

    PubMed  CAS  Google Scholar 

  • Weishaar RE, Burrows SD, Koylarz DC, Quade MM, Evans DB (1986) Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and platelets: characterization and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Biochem Pharmacol 35:786–800

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Butt, E., Walter, U. (1997). Platelet Phosphodiesterases. In: von Bruchhausen, F., Walter, U. (eds) Platelets and Their Factors. Handbook of Experimental Pharmacology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60639-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60639-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64488-7

  • Online ISBN: 978-3-642-60639-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics