Skip to main content

Satellite Microwave Radar Observations of Antarctic Sea Ice

  • Chapter
Analysis of SAR Data of the Polar Oceans

Abstract

Historical data on Antarctic sea ice extent and concentration have traditionally been derived from visible and near-infrared images acquired by the polar-orbiting National Oceanic and Atmospheric Agency’s (NOAA) meteorological satellites, using the Advanced Very High Resolution Radiometer (AVHRR), and more recently by the Defense Meteorological Satellite Program’s Operational Linescan System (OLS) (Massom 1991). The limitation of these systems is that the majority of energy imparted to the Antarctic sea-ice system is transferred during frequent episodic storm bursts, caused by fast-moving low pressure systems (McPhee et al. 1996). Since the Southern Ocean sea-ice cover is completely bounded at its lower latitude limit by open ocean, these “polar lows” transport large amounts of moisture (contained in warm air masses) over the outer ice cover. The result is that most, if not all, noteworthy periods of wind- and temperature-driven dynamic changes in the ice cover are accompanied by periods where the region is blanketed by cloud, and when the atmosphere is inherently more electromagnetically opaque. During storms, the probability with which the area is cloud covered is extremely high, thereby ruling out use of visible or near-infrared images as a practical method of monitoring the associated changes in ice conditions. Instead, Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and DMSP Special Sensor Microwave/Imager (SSM/I) have been the primary workhorses to build up a microwave record of Antarctic sea-ice characteristics. Similar problems, however, occur in passive microwave retrievals of sea-ice concentration, and the algorithms are called into question during these periods of change. Oelke (1997) discovers that the influence of water vapor in the atmosphere alone can modify the ice concentration retrievals by fractions exceeding 10%, and that retrievals of ice concentration must compensate for the atmospheric water vapor and liquid water contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bally P, Fellah K (1995) Evaluation of the accuracy of the backscattering coefficient measurement in SAR data products. ESA/ESTEC Earth Sciences Division Tech Note, July

    Google Scholar 

  • Carsey FD, Holt B, Martin S, McNutt L, Rothrock DA, Squire VA, Weeks WF (1986) Weddell-Scotia Sea marginal ice zone observations from space, October 1984. J Geophys Res 91, no C3:3920–3924

    Article  Google Scholar 

  • Dierking W (1995) Laser profiling of the ice surface topography during the Winter Weddell Gyre Study 1992. J Geophys Res 100, no C3: 4807–4820

    Article  Google Scholar 

  • Drinkwater MR (1989) LIMEX ’87 Ice surface characteristics; implications for C-band SAR backscatter signatures. IEEE Trans Geosci Remote Sens 27, no 5:501–513

    Article  Google Scholar 

  • Drinkwater MR (1998) Active microwave radar observations of Weddell sea ice. In: Jeffries MO (ed) Antarctic sea ice processes, interactions and variability, Antarctic Research Series American Geophysical Union, in press

    Google Scholar 

  • Drinkwater MR (1995a) Airborne and satellite SAR investigations of sea-ice surface characteristics. In: Ikeda M, Dobson F (eds) Oceanographic applications of remote sensing, CRC Press, Boca Raton, Florida, pp 345–364

    Google Scholar 

  • Drinkwater MR (1995b) Applications Of SAR measurements in ocean-ice-atmosphere interaction studies. In: Ikeda M, Dobson F (eds) Oceanographic applications of remote sensing, CRC Press, Boca Raton, Florida, pp 391–406

    Google Scholar 

  • Drinkwater MR, Haas C (1994) Snow sea-ice and radar observations during ANT XI4: summary data report. Berichte aus dem Fachbereich Physik 53. Alfred-Wegener-Institut fur Polar- und Meeresforschung, Bremerhaven, Germany

    Google Scholar 

  • Drinkwater MR, Kottmeier C (1994) Satellite microwave radar- and buoy-tracked ice motion in the Weddell Sea during WWGS’92. Proc Int Geosci Remote Sens Symp IGARSS ’94, August 8-12, Pasadena, California, pp 153–155

    Google Scholar 

  • Drinkwater MR, Lytle VI (1997) ERS-i SAR and field-observed characteristics of austral fall freeze-up in the Weddell Sea, Antarctica. J. Geophys. Res., vol. 102, C1, pp 1101–1117.

    Google Scholar 

  • Drinkwater MR, Squire VA (1989) C-band SAR observations of marginal ice zone rheology in the Labrador Sea. IEEE Trans Geosci Remote Sens 27, no 5:522–534

    Article  Google Scholar 

  • Drinkwater MR, Long DG, Early DS (1993a) Enhanced resolution scatterometer imaging of Southern Ocean sea ice. ESA J17:307–322

    Google Scholar 

  • Drinkwater MR, Hosseinmostafa R, Dierking W (1993b) C-band microwave backscatter of sea ice in the Weddell Sea during the winter of 1992. Proc Int Geosci Remote Sens Symp IGARSS ’93, August 18-21, Tokyo, Japan, pp 446–448

    Google Scholar 

  • Drinkwater MR, Early DS, Long DG (1994) ERS-i investigations of Southern Ocean seaice geophysics using combined scatterometer and SAR images. Proc Int Geosci Remote Sens Symp IGARSS ’94, August 8-12, Pasadena, California, pp 165–168

    Google Scholar 

  • Drinkwater MR, Hosseinmostafa R, Gogineni SP (1995a) C-band backscatter measurements of winter sea ice in the Weddell Sea, Antarctica. Int J Remote Sensing 16, no 17: 3365–3389

    Article  Google Scholar 

  • Drinkwater MR, Fischer H, Kreyscher M, Harder M (1995b) Comparison of seasonal sea-ice model results with satellite microwave data in the Weddell Sea. Proc Int Geosci Remote Sens Symp IGARSS ’95, July 10-14, Florence, Italy, pp 357–359

    Google Scholar 

  • Early DS, Long DG (1997) Azimuth modulation of C-band scatterometer CJ° over Southern Ocean sea ice. IEEE Trans Geosci Remote Sens, vol. 35, no. 5, pp 1201-1209.

    Article  Google Scholar 

  • ESA Earthnet (1992) ERS-i System. ESA Special Publication SP-1146, ESA Publications Division, ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  • Fischer H (1995) Comparison of an optimized dynamic-thermodynamic sea-ice model with observations in the Weddell Sea. Rep Polar Res 166. Alfred-Wegener-Institut fur Polar- und Meeresforschung, Bremerhaven, Germany

    Google Scholar 

  • Gohin F (1995) Some active and passive microwave signatures of Antarctic sea ice from mid-winter to spring 1991. Int J Remote Sens 16, no 11: 2031–2054

    Article  Google Scholar 

  • Haas C, Viehoff T, Eicken H (1992) Sea ice conditions during the Winter Weddell Gyre Study 1992 ANT X/4 with R.V. Polarstern: shipboard observations and AVHRR imagery. AWI Berichte aus dem Fachbereich Physik 34. Alfred-Wegener-Institut fur Polar- und Meeresforschung, Bremerhaven, Germany

    Google Scholar 

  • Hosseinmostafa AR, Lytle V, Jezek KC, Gogineni SP, Ackley SF, Moore RK (1995) Comparison of radar backscatter from Antarctic and Arctic sea ice. Electromagn Wave Applic 9: 421–438

    Google Scholar 

  • Ice Station Weddell Group (1993) Weddell sea exploration from ice station. EOS 74, no 11:121,124-126

    Google Scholar 

  • Kottmeier C, Sellmann L (1996) Atmospheric and oceanic forcing of Weddell sea ice motion. J Geophys Res 101, no C9: 20809–20824

    Article  Google Scholar 

  • Kottmeier C, Olf J, Frieden W, Roth R (1992) Wind forcing and ice motion in the Weddell Sea region. J Geophys Res 97, no D18:20373–20383

    Google Scholar 

  • Kwok R, Curlander JC, McConnell R, Pang SS (1990) An ice-motion tracking system at the Alaska SAR Facility. IEEEJ Oceanic Eng 15, no 1:44–54

    Article  Google Scholar 

  • Laur H, Meadows PJ, Sanchez JI, Dwyer E (1993) ERS-i SAR radiometric calibration. Proc of the CEOS SAR Calibration Workshop, ESTEC Noordwijk, Netherlands, ESA Publication WPP-048, pp 257-281

    Google Scholar 

  • Lemke P (ed) (1994) The expedition ANTARKTIS X/4 of R.V. Polarstern in 1992. Rep Polar Res 140. Alfred-Wegener-Institut fur Polar- und Meeresforschung, Bremerhaven, Germany

    Google Scholar 

  • Livingstone CE, Drinkwater MR (1991) Springtime C-band SAR backscatter signatures of Labrador Sea marginal ice: measurements vs modelling predictions. IEEE Trans Geosci Remote Sens 29, no 1:29–41

    Article  Google Scholar 

  • Long DG, Hardin PJ, Whiting PT (1993) Resolution enhancement of spaceborne scatterometer data. IEEE Trans Geosci Remote Sens 31, no 3:700–715

    Article  Google Scholar 

  • Low D (1995) The validation of ERS-i summer SAR data for Antarctic summer sea ice. M.Sc. Thesis, University of Dundee, UK

    Google Scholar 

  • Lytle V, Ackley S (1996) Heat flux through sea ice in the western Weddell Sea: connective and conductive transfer processes. J Geophys Res 101, no C4: 8853–8868

    Article  Google Scholar 

  • Lytle VI, Jezek KC, Gogineni SP, Hosseinmostafa AR (1996) Field observations of microwave backscatter from Weddell sea ice. Int J Remote Sens 17, no 1:167–180

    Article  Google Scholar 

  • Martin S, Holt B, Cavalieri DJ, Squire V (1987) Shuttle imaging radar B (SIR-B) Weddell Sea ice observations: a comparison of SIR-B and scanning multichannel microwave radiometer sea ice concentrations. J Geophys Res 92, no C7: 7173–7179

    Article  Google Scholar 

  • Martinson DG, Wamser C (1990) Ice drift and momentum exchange in the winter Antarctic pack ice. J. Geophys. Res. 95:1741–1755

    Article  Google Scholar 

  • Massom RA (1991) Satellite remote sensing of polar regions. Lewis Publishers, Boca Raton, Florida

    Google Scholar 

  • Massom M, Drinkwater MR, Haas C (1997) Spatial and temporal distribution of winter snowcover properties on sea ice in the Weddell Sea. J Geophys Res 102, no C2:1101–1117

    Article  Google Scholar 

  • McPhee MG, Ackley SF, Guest P, Huber BA, Martinson DG, Morison JH, Muench RD, Padman L, Stanton TP (1996) The Antarctic zone flux experiment. Bull Am Meteorol Soc 77, no 6:1221–1232

    Article  Google Scholar 

  • Morris K, Jeffries MO (1998) Sea ice characteristics and seasonal variability of ERS-i SAR backscatter in the Bellingshausen Sea. In: Jeffries MO (ed) Antarctic sea ice processes, interactions and variability, Antarctic Research Series American Geophysical Union, vol. 74.

    Google Scholar 

  • Muench RD, Gordon AL (1995) Circulation and transport of water along the western Weddell Sea. J Geophys Res 100, no C9:18503–18515

    Article  Google Scholar 

  • Oelke C (1997) Atmospheric signatures in sea-ice concentration estimates from passive microwaves: modelled and observed. Int J Remote Sens 18, no 5:1113–1136

    Article  Google Scholar 

  • Ross H (in preparation) Ein massenerhaltendes hydrographisches Inversmodell mit verallgemeinerter Vertikalkoordinate angewandt auf den Atlantischen Sektor des Sudlichen Ozeans. PhD Thesis, Alfred-Wegener-Institut fur Polar- und Meeresforschung, Bremerhaven, Germany

    Google Scholar 

  • Stern HL, Rothrock DA, Kwok R (1995) Open water production in Arctic sea ice: satellite measurements and model parameterizations. J Geophys Res 100, no C10: 20601–20612

    Article  Google Scholar 

  • Stoffelan A, Anderson DLT (1993) ERS-i scatterometer data characteristics and wind retrieval skill space at the service of our environment. Proc 1st ERS-i Symp, November 4-6,1992, Cannes, France, pp 41–47

    Google Scholar 

  • Thomas JP, Turner J, Lachlan-Cope TA, Corcoran G (1995) High resolution observations of Weddell Sea surface currents using SAR sea-ice motion vectors. Int J Remote Sensing 16, no 17:3409–3425

    Article  Google Scholar 

  • Thorndike AS (1985) Kinematics of sea ice. In: Untersteiner N (ed) The geophysics of sea ice, Plenum, New York, pp 489–549

    Google Scholar 

  • Viehoff T, Li A (1995) Iceberg observations and estimation of submarine ridges in the western Weddell Sea. Int J Remote Sens 16, no 17:3391–3408

    Article  Google Scholar 

  • Vihma T, Launiainen J, Uotila J (1996) Weddell Sea ice drift: kinematics and wind forcing. J Geophys Res 101, no C8:18279–18296

    Article  Google Scholar 

  • White WB, Petersen RG (1996) An Antarctic circumpolar wave in surface pressure wind temperature and sea-ice extent. Nature 380: 699–702

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drinkwater, M.R. (1998). Satellite Microwave Radar Observations of Antarctic Sea Ice. In: Analysis of SAR Data of the Polar Oceans. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60282-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60282-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64334-7

  • Online ISBN: 978-3-642-60282-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics