Skip to main content

Regulation of Matrix Polymer in Biofilm Formation and Dispersion

  • Chapter
Microbial Extracellular Polymeric Substances

Abstract

Biofilms are biological films that develop and persist at interfaces in aqueous environments in natural and manmade ecosystems. These biological films are composed of microorganisms embedded in a gelatinous matrix composed of one or more organic polymers which are secreted by the resident microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarons SJ, Sutherland IW, Chakrabarty AM, Gallagher MP (1997) A novel gene, algK, from the alginate biosynthetic cluster of Pseudomonas aeruginosa. Microbiology 143: 641–652

    CAS  Google Scholar 

  • Abrahamson M, Lewandowski Z, Geesey GG, Skjâk-Bræk G, Strand W, Christensen BE (1996) Development of an artificial biofilm to study the effects of a single microcolony on mass transport. J Microbiol Methods 26: 161–169

    CAS  Google Scholar 

  • Allison DG, Sutherland IW (1984) A staining technique for attached bacteria and its correla-tion to extracellular carbohydrate production. J Microbiol Methods 2: 93–99

    CAS  Google Scholar 

  • Allison DG, Sutherland IW (1987) The role of exopolysaccharides in adhesion of freshwater bacteria. J Gen Microbiol 133: 1319–1327

    CAS  Google Scholar 

  • Anwar H, Strap JL, Chen K, Costerton JW (1992) Dynamic interactions of biofilms on mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Agents Chemother 36: 1208–1214

    CAS  Google Scholar 

  • Bainton NJ, Bycroft BW, Chhabra SR, Stead P, Gledhill L, Hill PJ, Rees CED, Winson MK, Salmond JPC, Stewart GSAB, Williams P (1992a) A general role for the lux autoinducer in bacterial cell signaling:control of antibiotic synthesis in Erwinia. Gene 116: 87–91

    CAS  Google Scholar 

  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GPC, Stewart GSAB, Williams P (1992b) N-(3-oxohexanoyl)-1-homoserine lactone regulates carbepenem antibiotic production in Erwinia carotovora. Biochem J 288: 997–1004

    CAS  Google Scholar 

  • Banerjee PC, Vanags RI, Chakrabarty AM, Maitra PK (1983) Alginic acid synthesis in Pseudomonas aeruginosa mutants defective in carbohydrate metabolism. J Bacteriol 155: 238–245

    CAS  Google Scholar 

  • Beck von BS, Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia carotovora. J Bacteriol 177: 5000–5008

    Google Scholar 

  • Belas R, Simon M, Silverman M (1986) Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J Bacteriol 167: 210–218

    CAS  Google Scholar 

  • Berry A, DeVault JD, Chakrabarty AM (1989) High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol 171: 2312–2317

    CAS  Google Scholar 

  • Boivin J, Costerton JW (1991) Biofilms and biodeterioration. In: Rossmore HW (ed)Biodeterioration and biodegradation 8. Elsevier Appl Sci, London, pp 53–62

    Google Scholar 

  • Boyd A, Chakrabarty AM (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60: 2355–2359

    CAS  Google Scholar 

  • Boyd A, Ghosh M, May TB, Shinabarger D, Keogh R, Chakrabarty AM (1993) Sequence of the algL gene of Pseudomonas aeruginosa and purification of its alginate lyase product. Gene 131: 1–8

    CAS  Google Scholar 

  • Brown MRW, Williams P (1985) The influence of the environment of envelope properties affecting survival of bacteria in infections. Annu Rev Microbiol 39: 527–556

    CAS  Google Scholar 

  • Chartrand SA, Marks MI (1983) Pulmonary infections in cystic fibrosis: pathogenesis and therapy. In: Pennington JE (ed) Respiratory infections: diagnosis and management. Raven Press, New York, pp 201–216

    Google Scholar 

  • Chitnis CE, Ohman DE (1990) Cloning of the Pseudomonas aeruginosa algG, which controls alginate structure. Mol Microbiol 8: 583–590

    Google Scholar 

  • Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 93–130

    Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Michel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435–464

    CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, DeBeer D, Caldwell DE, Korber DR, James GA (1994) Biofilms: the customized microniche. J Bacteriol 176: 2137–2142

    CAS  Google Scholar 

  • Coyne MJ Jr, Russel KS, Coyle CL, Goldberg JB (1994) The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol 176: 3500–3507

    CAS  Google Scholar 

  • Dagostino L, Goodman AE, Marshall KC (1991) Physiological responses induced in bacteria adhering to surfaces. Biofouling 4: 113–119

    Google Scholar 

  • Darzins A, Chakrabarty AM (1984) Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 159: 9–18

    CAS  Google Scholar 

  • Darzins A, Nixon LL, Vanags RI, Chakrabarty AM (1985 a) Cloning of Escherichia coli and Pseudomonas aeruginosa and phosphomannose isomerase genes and their expression in alginate-negative mutants of Pseudomonas aeruginosa. J Bacteriol 164: 249–257

    Google Scholar 

  • Darzins A, Wang SK, Vanags RI, Chakrabarty AM (1985b) Clustering of mutations affecting alginic acid biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol 164: 516–524

    CAS  Google Scholar 

  • Davies, DG, Geesey GG (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61: 860–867

    CAS  Google Scholar 

  • Davies, DG, Chakrabarty AM, Geesey GG (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59: 1181–1186

    CAS  Google Scholar 

  • Davies, DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298

    CAS  Google Scholar 

  • Dempsey MJ (1981) Marine bacterial fouling: a scanning electron microscope study. Mar Biol 61: 305–315

    Google Scholar 

  • Deretic V, Gill F, Chakrabarty AM (1987) Pseudomonas aeruginosa infection in cystic fibrosis:nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res 15: 4567–4581

    Google Scholar 

  • Deretic V, Dikshit Konyecsni WM, Chakrabarty AM (1989) The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 169: 351–358

    Google Scholar 

  • Deretic V, Martin W, Schurr MJ, Mudd MH, Hibler NS, Curcic R, Boucher JC (1993) Conversion to mucoidy in Pseudomonas aeruginosa. Bio/Technology 11: 1133–1136

    CAS  Google Scholar 

  • DeVault JD, Berry A, Misra TK, Chakrabarty AM (1989) Environmental sensory signals and microbial pathogenesis: Pseudomonas aeruginosa infection in cystic fibrosis. Bio/ Technology 7: 352–357

    CAS  Google Scholar 

  • DeVault JD, Kimbara K, Chakrabarty AM (1990) Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol Microbiol 4: 737–745

    CAS  Google Scholar 

  • DeVries CA, Ohman DE (1994) Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol 176: 6677–6687

    CAS  Google Scholar 

  • Doggett RG (1969) Incidence of mucoid Pseudomonas aeruginosa from clinical sources. Appl Microbiol 18: 936–937

    CAS  Google Scholar 

  • Doggett RG, Harrison GM, Stillwell RN, Wallis ES (1966) An atypical Pseudomonas aeruginosa associated with cystic fibrosis of the pancreas. J Pediatr 68: 215–221

    Google Scholar 

  • Doggett RG, Harrison GM, Carter RE (1977) Mucoid Pseudomonas aeruginosa in patients with chronic illnesses. Lancet I: 236–237

    Google Scholar 

  • Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109: 1101–1105

    CAS  Google Scholar 

  • Fialho AM, Zielinski NA, Fett WF, Chakrabarty AM, Berry A (1990) Distribution of alginate gene sequences in the Pseudomonas rRNA homology groupl-Azomonas-Azotobacter lineage of superfamily B procaryotes. Appl Environ Microbiol 56: 436–443

    CAS  Google Scholar 

  • Fletcher M (1980) Adherence of marine microorganisms to smooth surfaces. In: Beachey EH (ed) Bacterial adherence (receptors and recognition, series B, vol 6 ). Chapman & Hall, London, pp 347–371

    Google Scholar 

  • Floodgate GD (1972) The mechanism of bacterial attachment to detritus in aquatic systems. Memorie dell’Istituto italiano di idrobiologica Dott Carco di Marchi 29 [Suppl]: 309–323

    Google Scholar 

  • Franklin M, Ohman DE (1993) Identification of algF in the alginate biosynthetic gene-cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175: 5057–5065

    CAS  Google Scholar 

  • Franklin M, Ohman DE (1996) Identification of alg7 and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O-acetylation. J Bacteriol 178: 2186–2195

    CAS  Google Scholar 

  • Franklin M, Chitnis CE, Gacesa P, Sonesson A, White DC, Ohman DE (1994) Pseudomonas aeruginosa algG is a polymer level alginate C5-mannuronan epimerase. J Bacteriol 176: 1821–1830

    Google Scholar 

  • Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176: 2796–2806

    CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI fa-mily of cell density-responsive transcriptional regulators. J Bacteriol 176: 269–275

    CAS  Google Scholar 

  • Gacesa P (1987) Alginate-modifying-enzymes: a proposed unified mechanism of action for the lyases and epimerases. FEBS Lett 212: 199–202

    CAS  Google Scholar 

  • Gacesa P (1992) Enzymatic degradation of alginates. Int J Biochem 24: 545–552

    CAS  Google Scholar 

  • Gambello MJ, Kaye S, Iglewski BH (1993) LasR of Pseudomonas aeruginosa is a transcriptio-nal activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expres-sion. Infect Immun 61: 1180–1184

    CAS  Google Scholar 

  • Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from Alpine streams. Can J Microbiol 23: 1733–1736

    CAS  Google Scholar 

  • Geesey GG, Mutch R, Costerton JW, Green RB (1978) Sessile bacteria: an important microbial population in small mountain streams. Limnol Oceanogr 23: 1214–1222

    CAS  Google Scholar 

  • Gorin PAJ, Spencer JFT (1966) Exocellular alginic acid from Azotobacter vinelandii. Can J Chem 44: 993–998

    CAS  Google Scholar 

  • Govan JRW (1975) Mucoid strains of Pseudomonas aeruginosa: the influence of culture medium on the stability of mucus production. J Med Microbiol 8: 513–522

    CAS  Google Scholar 

  • Govan JRW (1990) Characteristics of mucoid Pseudomonas aeruginosa in vitro and in vivo. In: Gacesa P, Russell NJ (eds) Pseudomonas infection and alginates. Biochemistry, genetics and pathology. Chapman & Hall, London, pp 50–75

    Google Scholar 

  • Govan JRW, Fyfe JAM, McMillan C (1979) The instability of mucoid Pseudomonas aeruginosa-fluctuation test and improved stability of the mucoid form in shaker culture. J Gen Microbiol 110: 229–232

    CAS  Google Scholar 

  • Grobe S, Wingender J, Trüper HG (1995) Characterization of mucoid Pseudomonas aerugi-nosa strains isolated from technical water systems. J Appl Bacterial 79: 94–102

    CAS  Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationaryphase regulation in Escherichia coli. Cell 72: 165–168

    CAS  Google Scholar 

  • Hulton CSJ, Seirafi A, Hinton JCD, Sidebotham JM, Waddel L, Pavitt GD, Owen-Hughes T, Spassky A, Buc H, Higgins CF (1990) Histone-like protein H1 ( H-NS ), DNA supercoiling, and gene expression in bacteria. Cell 63: 631–642

    Google Scholar 

  • Jones HC, Roth IL, Sanders WM (1969) Electron microscopic study of a slime layer. J Bacteriol 99: 316–325

    CAS  Google Scholar 

  • Kato J, Chu L, Kitano K, DeVault JD, Kimbara K, Chakrabarty AM, Misra TK (1989) Nucleotide sequence of a regulatory region controlling alginate synthesis in Pseudomonas aeruginosa: characterization of the algR2 gene. Gene 84: 31–38

    CAS  Google Scholar 

  • Kato J, Misra TK, Chakrabarty AM (1990) A1gR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 87: 2887–2891

    CAS  Google Scholar 

  • Khoury AE, Lam K, Ellis BD, Costerton JW (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38: M174–178

    CAS  Google Scholar 

  • Knowles MR, Stutts MJ, Spock A, Fischer N, Gutzy JJ, Boucher RC (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221: 1067–1070

    CAS  Google Scholar 

  • Latifi A, Winson KM, Foglino M, Bycroft BS, Stewart GSAB, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17: 333–344

    CAS  Google Scholar 

  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and Rh1R ( VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21: 1137–1146

    Google Scholar 

  • Lightfoot J, Lam JS (1991) Molecular cloning of genes involved with expression of A-band lipopolysaccharide, an antigenically conserved form in Pseudomonas aeruginosa. J Bacteriol 173: 5624–5630

    CAS  Google Scholar 

  • Lin TY, Hassid WZ (1966a) Isolation of guanosine diphosphate uronic acids from a marine brown alga, Fucus gardneri Silva. J Biol Chem 241: 3283–3293

    CAS  Google Scholar 

  • Lin TY, Hassid WZ (1966b) Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri Silva. J Biol Chem 241: 5284–5297

    CAS  Google Scholar 

  • Linker A, Jones RS (1964) A polysaccharide resembling alginic acid from a Pseudomonas micro-organism. Nature 204: 187–188

    CAS  Google Scholar 

  • Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem 241: 3845–3851

    CAS  Google Scholar 

  • Maharaj R, May TB, Wang SK, Chakrabarty AM (1993) Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa. Gene 136: 267–269

    CAS  Google Scholar 

  • Martin DW, Holloway BW, Deretic V ( 1993 a) Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: A1gU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 175: 1153–1164

    Google Scholar 

  • Martin DW, Schurr MJ, Mudd MH, Deretic V (1993 b) Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol 9: 495–506

    Google Scholar 

  • Martin DW, Schurr MJ, Mudd MH, Govan JRW, Holloway BW, Deretic V (1993c) Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci USA 90: 8377–8381

    CAS  Google Scholar 

  • Martin DW, Schurr MJ, Yu H, Deretic V (1994) Analysis of promoters controlled by the putative sigma factor A1gU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to Q.E and stress response. J Bacteriol 176: 6688–6696

    CAS  Google Scholar 

  • May TB, Shinabarger D, Maharaj R, Kato J, Chu L, DeVault JD, Roychoudhury S, Zielinski NA, Berry A, Rothmel RK, Misra TK, Chakrabarty AM (1991) Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin Microbiol Rev 4: 191–206

    CAS  Google Scholar 

  • McLean RJ, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154: 259–263

    CAS  Google Scholar 

  • McPherson MA, Goodchild MC (1988) The biochemical defect in cystic fibrosis. Clin Sci 74: 337–345

    CAS  Google Scholar 

  • Mohr CD, Leveau JHJ, Krieg DP, Hibler NS, Deretic V (1992) AlgR-binding sites within the algD promoter make up a set of inverted repeats separated by a large intervening segment of DNA. J Bacteriol 174: 6624–6633

    CAS  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104: 313–322

    CAS  Google Scholar 

  • Nichols WW, Evans MJ, Slack MPE, Walmsley HL (1989) The penetration of antibiotics into aggregates of mucoid and nonmucoid Pseudomonas aeruginosa. J Gen Microbiol 135: 1291–1303

    CAS  Google Scholar 

  • Nickel J, Ruseska CK, Wright JB, Costerton JW (1985) Tobramycin resistance of cells of Pseudomonas aeruginosa growing as a bioflm on urinary catheter material. Antimicrob Agents Chemother 27: 619–624

    CAS  Google Scholar 

  • Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92: 6424–6428

    CAS  Google Scholar 

  • Padgett PJ, Phibbs PV Jr (1986) Phosphomannomutase activity in wild-type and alginate-producing strains of Pseudomonas aeruginosa. Curr Microbiol 14: 187–192

    CAS  Google Scholar 

  • Piggott NH, Sutherland IW, Jarman TR (1981) Enzymes involved in the biosynthesis of algi-nate by Pseudomonas aeruginosa. Eur J Appl Microbiol Biotechnol 13: 179–183

    CAS  Google Scholar 

  • Pindar DF, Bucke C (1975) The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem J 152: 617–622

    CAS  Google Scholar 

  • Preiss J, Ashwell G (1962 a) Alginic acid metabolism in bacteria I. Enzymatic formation of unsaturated oligosaccharides and 4-deoxy-l-erythro-5-hexoseulose uronic acid. J Biol Chem 237: 309–316

    Google Scholar 

  • Preiss J, Ashwell G (1962b) Alginic acid metabolism in bacteria II. The enzymatic reduction of 4-deoxy-1-erythro-5-hexoseulose uronic acid to 2-keto-3-deoxy-n-gluconic acid. J Biol Chem 237: 317–321

    CAS  Google Scholar 

  • Rehm BHA, Valla S (1997) Bacterial alginates:biosynthesis and applications. Appl Microbiol Biotechnol 48: 281–288

    CAS  Google Scholar 

  • Rehm BHA, Boheim G, Tommassen J, Winkler UK (1994) Overexpression of AlgE in Escherichia coli:subcellular localization, purification, and ion channel properties. J Bacteriol 176: 5639–5647

    CAS  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58: 1284–1291

    CAS  Google Scholar 

  • Roychoudhury S, May TB, Gill JF, Singh SK, Feingold DS, Chakrabarty AM (1989) Purification and characterization of guanosine diphospho-n-mannose dehydrogenase: a key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa. J Biol Chem 264: 9380–9385

    CAS  Google Scholar 

  • SA-Correia I, Darzins A, Wang SK, Berry A, Chakrabarty AM (1987) Alginate biosynthetic enzymes in mucoid and nonmucoid Pseudomonas aeruginosa: overproduction of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase by overexpression of the phosphomannose isomerase (pmi) gene. J Bacteriol 169: 3224–3231

    CAS  Google Scholar 

  • Schiller NL, MondaySR, Boyd CM, Keen NT, Ohman DE (1993) Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing and expression in Escherichia coli. J Bacteriol 175: 4780–4789

    CAS  Google Scholar 

  • Schripsema J, de Rudder KEE, van Vleit TG, Lankhorst PP, de Vroom E, Kijne JW, van Brussel AAN (1996) Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-l-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J Bacteriol 178: 366–371

    CAS  Google Scholar 

  • Shinabarger D, May TB, Boyd A, Ghosh M, Chakrabarty AM (1993) Nucleotide sequence and expression of the Pseudomonas aeruginosa algF gene controlling acetylation of alginate. Mol Microbiol 9: 1027–1035

    CAS  Google Scholar 

  • Srinivasan R, Stewart PS, Griebe T, Chen CI, Xu X (1995) Biofilm parameters influencing biocide efficacy. Biotech Bioeng 46: 553–560

    CAS  Google Scholar 

  • Stewart PS (1994) Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 38: 1052–1058

    CAS  Google Scholar 

  • Sutherland IW (1980) Polysaccharides in the adhesion of marine and freshwater bacteria. In: Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood, London, pp 329–338

    Google Scholar 

  • Swift S, Winson MK, Chan PF, Bainton NJ, Birstall M, Reeves PJ, Rees CEC, Chhabra SR, Hill PJ, Stewart GSAB (1993) A novel strategy for the isolation of lux/ homologues: evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Mol Microbiol 10: 511–520

    CAS  Google Scholar 

  • Tachiro H, Numakura T, Nishikawa S, Miyaji Y (1991) Penetration of biocides into biofilms. Wat Sci Technol 23: 1395–1403

    Google Scholar 

  • Throup J, Camara M, Briggs G, Winson MK, Chhabra SR, Bycroft BW, Williams P, Stewart GSAB (1995) Characterization of the yenl/yenR locus from Yersinia enterocolitica mediating the synthesis of the N-acylhomoserine lactone signal molecules. Mol Microbiol 17: 345–356

    CAS  Google Scholar 

  • Wallace WH, Fleming JT, White DC, Sayler GS (1994) An algD-bioluminescent reporter plasmid to monitor alginate production in biofilms. Microb Eco! 27: 225–239

    CAS  Google Scholar 

  • Wardell JN, Brown CM, Flannigan B (1983) In: Microbes and surfaces. Symposia of the Society for General Microbiology, 34: 351–378

    Google Scholar 

  • Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GPC, Bycroft BW, Lazdunski A, Stewart GSAB, Williams P (1995) Multiple Nacyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92: 9427–9431

    CAS  Google Scholar 

  • Ye RW, Zielinski NA, Chakrabarty AM (1994) Purification and characterization of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J Bacteriol 176: 4851–4857

    CAS  Google Scholar 

  • Zhang L, Murphy PJ, Max IT (1993) Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362: 446–448

    CAS  Google Scholar 

  • Zielinski NA, Chakrabarty AM, Berry A (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J Biol Chem 266: 9754–9763

    CAS  Google Scholar 

  • Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46: 39–56

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davies, D.G. (1999). Regulation of Matrix Polymer in Biofilm Formation and Dispersion. In: Wingender, J., Neu, T.R., Flemming, HC. (eds) Microbial Extracellular Polymeric Substances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60147-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60147-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64277-7

  • Online ISBN: 978-3-642-60147-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics