Skip to main content

Abstract

The presence of exopolysaccharides as essential components of biofilms can be demonstrated by chemical analysis or by direct examination of the biofilm using microscopy or electron microscopy. The development of specific staining methods has revealed both the attachment of cells and the presence of microcolonies surrounded by extensive amounts of exopolysaccharide (e.g. Allison and Sutherland 1984). In such laboratory experiments of biofilm elaboration on glass surfaces, there was good correlation between the physical appearance of exopolysaccharide and the amount of carbohydrate-containing material attached to the glass. Scanning electron microscopy (SEM) studies have also revealed material thought to be polysaccharide in nature (Fig. 1). An SEM examination of bacteria attached to sand grains has revealed strands of polysaccharide or glycoprotein-like material thought to attach the cells to the solid surface (Weise and Reinheimer 1978). The strands were of varying thickness and were associated with various types of cells. However, this material cannot be chemically analysed and may also be subject to artefacts from specimen preparation. On the other hand, use has been made of ruthenium red, a dye which interacts strongly with polysaccharides and can be visualised under the transmission electron microscope. Thus, natural biofilms revealed dense populations of bacterial cells enmeshed in fibrous structures (Geesey et al. 1977). Although other reports using this technique have also indicated the presence of fibrous material presumed to be polysaccharide, the actual appearance depended on the method used for sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison DG, Matthews MJ (1992) Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol 73:484–488

    Article  CAS  Google Scholar 

  • Allison DG, Sutherland IW (1984) A staining technique for attached bacteria and its correlation to extracellular carbohydrate production. J Microbiol Methods 2:93–99

    Article  CAS  Google Scholar 

  • Allison DG, Sutherland IW (1987) Role of exopolysaccharides in adhesion of freshwater bacteria. J Gen Microbiol 133:1319–1327

    CAS  Google Scholar 

  • Atkins EDT, Attwool PT, Miles MJ, Morris VJ, O’Neill MA, Sutherland IW (1987) Effect of acetylation on the molecular interactions and gelling propoerties of a bacterial polysaccharide. Int J Biol Macromol 9:115–117

    Article  CAS  Google Scholar 

  • Birkhed D, Rosell K, Granath K (1979) Structure of extracellular water-soluble polysaccharides synthesised from sucrose by oral strains of Streptococcus mutans, Streptococcus salivarius, Streptococcus sanguis and Actinomyces viscosus. Arch Oral Biol 24:53–61

    Article  CAS  Google Scholar 

  • Cesàro A, Tomasi G, Gamini A, Vidotto S, Navarini L (1992) Solution conformation and properties of the galactoglucan from Rhizobium meliloti strain YE2 (Sl). Carbohydr Res 231:117–135

    Article  Google Scholar 

  • Chandrasekaran R, Radha A (1995) Molecular architectures and functional-properties of gellan gum and related polysaccharides. Trends Food Sci Technol 6:143–148

    Article  CAS  Google Scholar 

  • Chandrasekaran R, Puigjaner LC, Joyce KL, Arnott S (1988) Cation interactions in gellan: an X-ray study of the potassium salt. Carbohydr Res 181:23–40

    Article  CAS  Google Scholar 

  • Chandrasekaran R, Radha A, Lee EJ, Zhang M (1994) Molecular architecture of araban, galactoglucan and welan. Carbohydr Polymers 25:235–244

    Article  CAS  Google Scholar 

  • Conti E, Flaibani A, O’Regan M, Sutherland IW (1994) Alginate from Pseudomonas fluorescens and Pseudomonas putida: production and properties. Microbiol 140:1128–1132

    Google Scholar 

  • Corzo J, Leon-Barrios M, Hernando-Rico V, Gutierrez-Navarro AM (1994) Precipitation of metallic cations by the acidic exopolysaccharides from Bradyrhizobium japonicum. Appl Environ Microbiol 60:531–4536

    Google Scholar 

  • Costerton JW, Irvin RT, Cheng K (1981) Bacterial biofilms in nature and disease. Ann Rev Microbiol 35:399–424

    Article  Google Scholar 

  • Draget KI, SkjÃ¥k-Bræk G, Smidsrød O (1994) Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr Polymers 25:31–38

    Article  CAS  Google Scholar 

  • Draget KI, SkjÃ¥k-Bræk G, Christensen BE, Gaserød O, Smidsrød O (1996) Swelling and partial solubilization of alginic acid gel beads in acidic buffer. Carbohydr Polymers 29:209–215

    Article  CAS  Google Scholar 

  • Dworkin M, Kaiser D (1993) Myxobacteria II. American Society for Microbiology, Washington

    Google Scholar 

  • Geddie JL, Sutherland IW (1994) The effect of acetylation on cation binding by algal and bacterial alginates. Biotech Appl Biochem 20:117–129

    CAS  Google Scholar 

  • Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23:1733–1736

    Article  CAS  Google Scholar 

  • Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56:661–672

    Article  CAS  Google Scholar 

  • Gloaguen V, Wieruszeski J-M, Strecker G, Hoffmann L, Morvan H (1995) Identification by NMR spectroscopy of oligosaccharides obtained by acidolysis of the capsular polysaccharides of a thermal biomass. Int J Biol Macromol 17:387–393

    Article  CAS  Google Scholar 

  • Glucksman MA, Reuber TL, Walker GC (1993) Genes needed for the modification, polymerization, export and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol 175:7045–7055

    Google Scholar 

  • Grant WD, Sutherland IW, Wilkinson JF (1969) Exopolysaccharide colanic acid and its occurrence in the Enterobacteriaceae. J Bacteriol 100:1187–1193

    CAS  Google Scholar 

  • Grimont F, Grimont PAD (1992) The genus Enterobacter. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn, vol III, chap 148. Springer, Berlin Heidelberg New York, pp 2797–2815

    Google Scholar 

  • Hughes KA (1997) Bacterial biofilms and their exopolysaccharides. PhD thesis, Edinburgh University

    Google Scholar 

  • Hughes KA, Sutherland IW, Clark J, Jones MV (1998a) Bacteriophage and associated polysaccharide depolymerases-novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590

    Article  CAS  Google Scholar 

  • Hughes KA, Sutherland IW, Jones MV (1998b) The function of biofilm exopolysaccharides: increased exopolysaccharide production following exposure to antimicrobial agents and enhanced desiccation resistance. Microbiol 144:3039–3047

    Article  CAS  Google Scholar 

  • Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters GA (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524

    CAS  Google Scholar 

  • Iwashita S, Kanegasaki S (1976) Deacetylation reaction catalyzed by Salmonella phage. J Biol Chem 251:5361–5365

    CAS  Google Scholar 

  • Kanzawa Y, Harada A, Koreeda A, Harada T, Okuyama K (1989) Difference of molecular association in two types of curdlan gel. Carbohydr Polymers 10:299–313

    Article  CAS  Google Scholar 

  • Kevekordes K (1996) Using light scattering measurements to study the effects of monovalent and divalent cations on alginate aggregates. J Exp Bot 47:677–682

    Article  CAS  Google Scholar 

  • Kolenbrander PE (1991) In: Dworkin M (ed) Microbial cell:cell interactions, chap 10. American Society for Microbiology, Washington, USA, pp 303–329

    Google Scholar 

  • Kondoh K, Hashiba M, Baba S (1996) Inhibitory activity of clarithromycin on biofilm synthesis with Pseudomonas aeruginosa. Acta Oto-laryngologica S525:56–60

    Google Scholar 

  • Koval SF, Bayer ME (1997) Bacterial capsules - no barrier against Bdellovibrio. Microbiol 143:749–753

    Article  CAS  Google Scholar 

  • Kuhn SP, Pfister RM (1989) Adsorption of mixed metals and cadmium by calcium alginate immobilised Zoogloea ramigera. Appl Microbiol 31:613X-618

    Google Scholar 

  • Kumon H, Tomochika K-I, Matunga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharide. Microbiol Immunol 38:615–619

    CAS  Google Scholar 

  • Kwiatkowski B, Beilharz H, Stirm S (1975) Disruption of Vi bacteriophage III and localization of its deacetylase activity. J Gen Virol 29:267–280

    Article  CAS  Google Scholar 

  • Larwood, VL, Howlin BJ, Webb GA (1996) Solvation effects on the conformational behaviour of gellan and calcium ion binding to gellan double helices. J Mol Modeling 2:175–182

    Article  CAS  Google Scholar 

  • Lawson CJ, McCleary CW, Nakada HI, Rees DA, Sutherland IW, Wilkinson JF (1969) Structural studies of colanic acid from Escherichia coli by using methylation and base-catalysed fragmentation. Biochem J 115:947–958

    CAS  Google Scholar 

  • Lee EJ, Chandrasekaran R (1991) X-ray and computer modelling studies on gellan related po- lymers: molecular structures of welan, S657 and rhamsan. Carbohydr Res 214:11–24

    Article  CAS  Google Scholar 

  • Loaëc M, Olier R, Guezennec JG (1997) Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Wat Res 31:1171–1179

    Article  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear 13–1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    CAS  Google Scholar 

  • Mai GT, McCormack JG, Seow WK, Pier GB, Jackson LA, Thong YH (1993) Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase. Infect Immun 61:4338–4343

    CAS  Google Scholar 

  • Marqués AM, Bonet R, Simon-Pujol MD, Fuste MC, Congegado F (1990) Removal of uranium by an exopolysaccharide from Pseudomonas sp. Appl Microbiol Biotechnol 34:429–431

    Article  Google Scholar 

  • Morris VJ, Brownsey GJ, Harris JE, Gunning AP, Stevens BJH, Johnston AWB (1989) Cation-dependent gelation of the acidic extracellular polysaccharides of Rhizobium leguminosarum: a non-specific mechanism for the attachment of bacteria to plant roots. Carbohydr Res 191:315–320

    Article  CAS  Google Scholar 

  • Nakamura T, Koo SJ, Pradipasena P, Rha C, Sinskey AJ (1987) Solution properties of polysaccharide flocculant produced by Zoogloea ramigera 115. Biotech Sep 399–413

    Google Scholar 

  • Nisbet BA, Sutherland IW, Bradshaw IJ, Kerr M, Morris ER, Shepperson WA (1984) XM6 a new gel-forming bacterial polysaccharide. Carbohydr Polymers 4:377–394

    Article  CAS  Google Scholar 

  • Norberg AB, Persson H (1984) Accumulation of heavy metals by Zoogloea ramigera. Biotechnol Bioeng 26:239–246

    Article  CAS  Google Scholar 

  • Ogawa K, Yui T, Nakata K, Kakuta M, Misaki A (1997) X-ray study of beijeran sodium salts, a new galacturonic acid-containing exopolysaccharide. Carbohydr Res 300:41–45

    Article  CAS  Google Scholar 

  • Prince A (1996) Pseudomonas aeruginosa: versatile attachment mechanisms. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley, New York, pp 183–199

    Google Scholar 

  • Rosenberg E (1988) Microbial surfactants. Crit Rev Biotechnol 3:109–132

    Article  Google Scholar 

  • Rosenberg E, Ron EZ (1997) Bioemulsans-microbial polymeric emulsifiers. Current Opinion in Biotechnol 8:313–316

    Article  CAS  Google Scholar 

  • Ross-Murphy SB, Shatwell KP (1993) Polysaccharide strong and weak gels. Biorheol 30:217–227

    CAS  Google Scholar 

  • Samrakandi MM, Roques C, Michel G (1997) Influence of trophic conditions on exopolysaccharide production-bacterial biofilm susceptibility to chlorine and monochloramine. Can J Microbiol 43:751–758

    Article  CAS  Google Scholar 

  • Shatwell KP (1989) The influence of acetyl and pyruvate groups on the solution and interaction properties of xanthan. PhD thesis, Edinburgh University

    Google Scholar 

  • Shevchik WE, Hugouvieux-Cotte-Pattat N (1997) Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937. Mol Microbiol 24:1285–1301

    Article  CAS  Google Scholar 

  • Skillman LC, Sutherland IW, Jones MV (1997) Cooperative biofilm formation between two species of Enterobacteriaceae. In: Wimpenny JWT, Handley P, Gilbert P, Lappin-Scott HM, Jones MV (eds) Biofilms: community interactions and control. Bioline Publications, Cardiff, pp 119–128

    Google Scholar 

  • SkjÃ¥k-Bræk G, Grasdalen H, Draget K, Smidsrod O (1989) Inhomogeneous calcium alginate beads. In: Crescenzi V, Dea ICM, Paoletti S, Sutherland IW (eds) Biomedical and biotechnological advances in industrial polysaccharides. Gordon and Breach, New York, pp 345–362

    Google Scholar 

  • Sutherland IW (1979) Polysaccharides produced by Cystobacter, Archangium, Sorangium and Stigmatella species. J Gen Microbiol 111:211–216

    CAS  Google Scholar 

  • Sutherland IW (1983) Microbial exopolysaccharides - their role in microbial adhesion in aqueous systems. Crit Rev Microbiol 10:173–201

    Article  CAS  Google Scholar 

  • Sutherland, IW (1990) Biotechnology of microbial exopolysaccarides. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sutherland, IW (1995) Biofilm specific polysaccharides-do they exist? In: Wimpenny JWT, Handley P, Gilbert P, Lappin-Scott HM (eds) The life and death of biofilm. Bioline Publications, Cardiff, pp 103–106

    Google Scholar 

  • Sutherland IW (1996) A natural terrestrial biofilm. J Ind Microbiol 17:281–283

    Article  CAS  Google Scholar 

  • Sutherland IW (1997) Microbial biofilm exopolysaccharides - superglues or Velcro? In: Wimpenny JWT, Handley P, Gilbert P, Lappin-Scott HM, Jones MV (eds) Biofilms: community interactions and control. Bioline Publications, Cardiff, pp 33–39

    Google Scholar 

  • Sutherland IW, Kennedy L (1996) Polysaccharide lyases from gellan-producing Sphingomonas spp. Microbiol 142: 867–872

    Article  CAS  Google Scholar 

  • Sutherland IW, Thomson S (1975) Comparison of polysaccharides produced by Myxococcus strains. J Gen Microbiol 89:124–132

    CAS  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  • Thu B, SkjÃ¥k-Bræk G, Micali F, Vittur F, Rizzo R (1997) The spatial distribution of calcium in alginate gel beads analysed by synchrotron-radiation induced X-ray emission (SRIXE). Carbohydr Res 297:101–105

    Article  CAS  Google Scholar 

  • Troyano E, Lee SP, Rha CK, Sinskey AJ (1996) Presence of acetate and succinate in the exopolysaccharide produced by Zoogloea ramigera 115SLR. Carbohydr Polymers 31:35–40

    Article  CAS  Google Scholar 

  • Weise W, Reinheimer G (1978) Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microb Ecol 4:175–188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sutherland, I.W. (1999). Biofilm Exopolysaccharides. In: Wingender, J., Neu, T.R., Flemming, HC. (eds) Microbial Extracellular Polymeric Substances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60147-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60147-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64277-7

  • Online ISBN: 978-3-642-60147-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics