Skip to main content

Cellular Actions of Antiepileptic Drugs

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 138))

Abstract

Antiepileptic drugs have been the mainstays of the treatment of patients with epilepsy. From 1978 to 1993 the primarily used antiepileptic drugs have been Phenytoin, carbamazepine, barbiturates and primidone, benzodiazepines, valproic acid and ethosuximide. Recently a number of new antiepileptic drugs have been developed which include gabapentin, lamotrigine, oxcarbazepine, vigabatrin, tiagabine, topiramate and felbamate. Unfortunately, early experience with felbamate was associated with an unacceptably high incidence of aplastic anaemia (Pennell et al. 1995) and chemical hepatitis, and in August of 1994 the manufacturer and the United States Federal Drug Administration recommended that, if clinically possible, patients be withdrawn from felbamate. Fortunately, the remaining newly developed antiepileptic drugs have been approved in many countries and are currently in use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baltzer V, Schmutz M (1978) Experimental anticonvulsive properties of GP 47 680 and of GP 47 779, its main human metabolite; compounds related to carbamazepine.In: Meinardi H, Rowan AJ (eds) Advances in Epileptology. Lisse: Swets and Zeitlinger, Amsterdam, pp. 295–299

    Google Scholar 

  • Bartoszyk GD (1983) Gabapentin and convulsions provoked by excitatory amino acids. Naunyn-Schmiedeberg’s Arch Pharmacol 324:R24

    Google Scholar 

  • Bartoszyk GD, Hamer M (1987) The genetic animal model of reflex epilepsy in the Mongolian gerbil: differential efficacy of new anticonvulsive drugs and prototype antiepileptics. Pharmacol Res Commun 19:429–440

    PubMed  CAS  Google Scholar 

  • Bartoszyk GD, Reimann W (1985) Preclinical characterization of the anticonvulsant gabapentin. 16th Epilepsy International Congress, Hamburg

    Google Scholar 

  • Bartoszyk GD, Meyerson N, Reimann W, Satzinger G, von Hodenberg A (1986) Gabapentin. In: Meldrum BS, Porter RJ (eds) Current problems in epilepsy: new anticonvulsant drugs. John Libbey & Company, London, pp. 147–164

    Google Scholar 

  • Bauer G, Bechinger D, Castell M (1989) Gabapentin in the treatment of drug-resistant epileptic patients. Adv Epileptol 17:219–221

    Google Scholar 

  • Ben-Menachem E (1989) Pharmacokinetic effects of vigabatrin on cerebrospinal fluid amino acids in humans. Epilepsia 30 [Suppl 3]:S12–S14

    PubMed  Google Scholar 

  • Borden LA, Dhar TGM, Smith KE, Weinshank RL, Branchek TA, Gluchowski C (1994) Tiagabine, SKF89976-A, CI-966 and NNC-711 are selective for the cloned GABA transporter GAT-1. Eur J Pharmacol 269:219–224

    PubMed  CAS  Google Scholar 

  • Braestrup C, Nielsen MJ (1981) [3H]-propyl-β-carboline-3–carboxylate as a selective radioligand for the BZI benzodiazepine receptor subclass. J Neurochem 37:333–341

    PubMed  CAS  Google Scholar 

  • Braestrup C, Nielsen EB, Sonnewald U et al. (1990) R(-)-N-[4,4-di(3-methyl-thien-2-yl)-but-3-en-l-yl] nipecotic acid binds with high affinity to the brain γ-aminobutyric acid uptake carrier. J Neurochem 54:639–648

    PubMed  CAS  Google Scholar 

  • Calabresi P, De Murtas M, Stefani A, Pisani A, Sancesario G, Mercuri NB, Bernardi G (1995) Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. I. Modulation of corticostriatal synaptic transmission. Epilepsia 36:990–996

    PubMed  CAS  Google Scholar 

  • Campbell KP, Leung AT, Sharp AH (1988) The biochemistry and molecular biology of the dihydropydrine-sensitive calcium channel. Trends Neurosci 11:425–430

    PubMed  CAS  Google Scholar 

  • Casanovas A, Ribera J, Hukkanen M, Riveros-Moreno V, Esquerda JE (1996) Prevention by lamotrigine, MK801 and N-omega-nitro-L-arginine methyl ester of motoneuron cell death after neuronal axotomy. Neuroscience 71:313–325

    PubMed  CAS  Google Scholar 

  • Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 242:50–61

    PubMed  CAS  Google Scholar 

  • Chapman AG, Riley K, Evans MC, Meldrum BS (1982) Acute effects of sodium valproate and γ-vinyl GABA on regional amino acid metabolism in the rat brain: incorporation of 2-[14C]glucose into amino acids. Neurochem Research 7:1089–1105

    CAS  Google Scholar 

  • Cheung H, Kamp D, Harris E (1992) An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res 13:107–112

    PubMed  CAS  Google Scholar 

  • Chronopoulos A, Stafstrom C, Thurber S, Hyde P, Mikati M, Holmes, GL (1993) Neuroprotective effect of felbamate after kainic acid-induced status epilepticus. Epilepsia 34:359–366

    PubMed  CAS  Google Scholar 

  • Coenen AML, Blezer EHM, van Luijtelaar ELJM (1995) Effects of the GABA-uptake inhibitor tiagabine on electroencephalogram, spike-wave discharges and behaviour of rats. Epilepsy Res 21:89–94

    PubMed  CAS  Google Scholar 

  • Coulter DA, Hugenard JR, Prince DA (1989a) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient low-threshold current. J Physiol 414:587–604

    PubMed  CAS  Google Scholar 

  • Coulter DA, Hugenard JR, Prince DA (1989b) Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neurosci Lett 98:74–78

    PubMed  CAS  Google Scholar 

  • Coulter DA, Hugenard JR, Prince DA (1989c) Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 25:582–593

    PubMed  CAS  Google Scholar 

  • Coulter DA, Hugenard JR, Prince DA (1990) Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: calcium current reduction. Br J Pharmacol 100:800–806

    PubMed  CAS  Google Scholar 

  • Dalby NS, Nielsen EB (1990) Tiagabine exerts an anti-epileptogenic effect in amygdala kindling epileptogenesis in the rat. Neurosci Lett 229:135–137

    Google Scholar 

  • Dam M, Jensen PK (1989) Potential antiepileptic drugs: oxcarbazepine. In: Levy RH, Driefuss FE, Mattson RH, Meldrum BS, Penry JK (eds) Antiepileptic drugs, 3rd edn. Raven Press, New York, pp. 913–924

    Google Scholar 

  • De Lorey TM, Olsen RW (1992) γ-Aminobutyric acida receptor structure and function. J Biol Chem 267:16747–16750

    Google Scholar 

  • Doble A, Martin IL (1992) Multiple benzodiazepine receptors — no reason for anxiety. Trends Pharmacol Sci 13:76–81

    PubMed  CAS  Google Scholar 

  • Dooley DJ, Bartoszyk GD, Rock DM, Satzinger G (1985) Preclinical characterization of the anticonvulsant gabapentin. 16th Epilepsy International Congress, Hamburg

    Google Scholar 

  • Edmonds HL, Jiang YD, Zhang PY, Shank RP (1996) Anticonvulsant activity of topiramate and phenytoin in a rat model of ischemia-induced epilepsy. Life Sci 59:127–131

    Google Scholar 

  • Eichinger A, Sieghart W (1986) Postnatal development of proteins associated with different benzodiazepine receptors. J Neurochem 46:173–180

    PubMed  CAS  Google Scholar 

  • Faught E, Wilder BJ, Ramsey RE, Reife RA, Kramer LD, Pledger GW, Karim RM, and the Topiramate YD Study Group (1996) Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages. Neurology 46:1684–1690

    PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Suzdak RD, Sweberg MD, Judge ME, Hansen L, Nielsen PG (1992) The GABA uptake inhibitor, tiagabine, increases extracellular brain levels of GABA in awake rats. Eur J Pharmacol 220:197–201

    PubMed  CAS  Google Scholar 

  • Fujita Y, Mynlieff M, Kirksen RT et al. (1993) Primary structure and functional expression of the ω-conotoxin-sensitive N-type calcium channel from rabbit brain. Neuron 10:585–598

    PubMed  CAS  Google Scholar 

  • Garret KM, Tabakoff B (1985) The development of type I and type II benzodiazepine receptors in the mouse cortex and cerebellum. Pharmacol Biochem Behav 22:985–992

    Google Scholar 

  • Gee NS, Brown JP, Dissanayake VUK, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the 2 subunit of a calcium channel. J Biol Chem 271:5768–5776

    PubMed  CAS  Google Scholar 

  • Giorgi O, Carboni G, Frau V, Orlandi M, Valentini V, Feldman A, Corda MG (1996) Anticonvulsant effect of felbamate in the pentylenetetrazol kindling model of epilepsy in the rat. Naunyn Schmiedebergs Arch Pharmacol 354:173–178

    PubMed  CAS  Google Scholar 

  • Goldlust A, Su T-Z, Welty DF, Taylor CP, Oxender DL (1995) Effects of anticonvulsant drug gabapentin on the enzymes in metabolic pathways of glutamate and GABA. Epilepsy Res 22:1–11

    PubMed  CAS  Google Scholar 

  • Gordon R, Gels M, Diamantis W, Sofia RD (1991) Interaction of felbamate and diazepam against maximal electroshock seizures and chemoconvulsants in mice. Pharmacol Biochem Behav 40:109–113

    PubMed  CAS  Google Scholar 

  • Grove J, Schechter PJ, Tell G et al. (1981) Increased gamma-aminobutyric acid (GABA), homocarnosine and β -alanine in cerebrospinal fluid of patients treated with gamma-vinyl GABA (4-amino-hex-5-enoic acid). Life Sci 28: 2431–2439

    PubMed  CAS  Google Scholar 

  • Halonen T, Nisssinen J, Jansen JA, Pitkänen A (1996) Tiagabine prevents seizures, neuronal damage and memory impairment in experimental status epilepticus. Eur J Pharmacol 299:69–81

    PubMed  CAS  Google Scholar 

  • Harmsworth WL, Wolf HH, Swinyard EA, White HS (1993) Felbamate modulates glycine receptor function. Epilepsia 34 [Suppl 2]:92–93

    Google Scholar 

  • Honmou O, Oyelese AA, Kocsis JD (1995a) The anticonvulsant gabapentin enhances promoted release of GABA in the hippocampus: a field potential analysis. Brain Res 692:273–277

    PubMed  CAS  Google Scholar 

  • Honmou O, Kocsis JD, Richerson GB (1995b) Gabapentin potentiates the conductance increase induced by nipecotic acid in CA1 pyramidal neurons in vitro. Epilepsy Res 20:193–202

    PubMed  CAS  Google Scholar 

  • Hui A, Ellinor PT, Krizanova O, Wang JJ, Diebold RJ, Schwartz A (1991) Molecular cloning of multiple subtypes of a novel rat brain isoform of the 1 subunit of the voltage-dependent calcium channel. Neuron 7:35–44

    PubMed  CAS  Google Scholar 

  • Inglefield JR, Perry JM, Schwartz RD (1995) Postischemic inhibition of GABA reuptake by tiagabine slows neuronal death in the gerbil hippocampus. Hippocampus 5:460–468

    PubMed  CAS  Google Scholar 

  • Jensen PK, Gram L, Schmutz M (1991) Oxcarbazepine. In: Pisani F, Perucca E, Avanzini G, Richens A (eds) New antiepileptic drugs (Epilepsy Res, Suppl 3). Elsevier, Amsterdam, pp. 135–140

    Google Scholar 

  • Jung MJ, Lippert B, Metcalf B, Bohler P, Schechter PJ (1977) γ-Vinyl GABA (4-amino-hex-5-enoic acid), a new irreversible inhibitor of GABA-T: effects on brain GABA metabolism in mice. J Neurochem 29:797–802

    PubMed  CAS  Google Scholar 

  • Kalichman MW, Burnham WM, Livingstone KE (1982) Pharmacological investigation of gamma-aminobutyric acid (GABA) and fully developed generalized seizures in the amygdala-kindled rat. Neuropharmacology 21:127–131

    PubMed  CAS  Google Scholar 

  • Kanda T, Kurokawa M, Tamura S et al. (1996) Topiramate reduces abnormally high extracellular levels of glutamate and aspartate in the hippocampus of spontaneously epileptic rats. Life Sci 59:1607–1616

    PubMed  CAS  Google Scholar 

  • Kanthasamy AG, Matsumoto RR, Gunasekar PG, Truong DD (1995) Excitoprotective effect of felbamate in cultured cortical neurons. Brain Res 705:97–104

    PubMed  CAS  Google Scholar 

  • Kawasaki H, Lopantsev V, Zona C, Avoli M (1996) Topiramate depresses intrinsic bursts in the rat subiculum in vitro. Epilepsia (Abstract) 37 [Suppl 5]:26

    Google Scholar 

  • Kelly KM, Gross RA, Macdonald RL (1990) Valproic acid selectively reduces the low-threshold (T) calcium in rat nodose neurons. Neurosci Lett 116:233–238

    PubMed  CAS  Google Scholar 

  • Klepner CA, Lippa AS, Benson DI, Sano MC, Beer B (1978) Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol Biochem Behav 11:457–462

    Google Scholar 

  • Kubova H, Mares P (1993) Anticonvulsant action of oxcarbazepine, hydroxycarbamazepine, and carbamazepine against metrazol-induced motor seizures in developing rats. Epilepsia 34:188–192

    PubMed  CAS  Google Scholar 

  • Kume A, Greenfield LJ Jr, Macdonald RL, Albin RL (1996) Felbamate inhibits [3H]t-butylbicycloorthobenzoate binding and enhances Cl- current at the γ-aminobutyric acidA receptor. J Pharmacol Exp Therap 277:1784–1792

    CAS  Google Scholar 

  • Kuo C-C, Bean BP (1994) Na+ channels must deactivate to recover from inactivation. Neuron 12:819–829

    PubMed  CAS  Google Scholar 

  • Lang DG, Wang CM (1991) Lamotrigine and phenytoin interactions on ionic currents present in N4TG1 and GH3 clonal cells. Soc Neurosci Abs 17:1256

    Google Scholar 

  • Larsson OM, Gram L, Schousboe I, Schousboe A (1986) Differential effect of gammavinyl GABA and valproate on GABA-transaminase from cultured neurones and astrocytes. Neuropharmacol 25:617–625

    CAS  Google Scholar 

  • Leach MJ, Marden CM, Miller AA (1986) Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 27:490–497

    PubMed  CAS  Google Scholar 

  • Lees G, Leach MJ (1993) Studies on the mechanism of action of the novel anticonvulsant lamotrigine (Lamictal) using primary neuroglial cultures from rat cortex. Brain Res 612:190–199

    PubMed  CAS  Google Scholar 

  • Libri V, Constanti A, Zibetti M, Nistico S (1996) Effects of felbamate on muscarinic and metabotropic glutamate agonist-mediated responses and magnesium-free or 4-aminopyridine-induced epileptiform activity in guinea pig olfactory cortex neurons in vitro. J Pharmacol Exp Therap 277:1759–1769

    CAS  Google Scholar 

  • Lipa AS, Beer B, Sano MC, Vogel RA, Myerson LR (1981) Differential ontogeny of type I and type II benzodiazepine receptors. Life Sci 28:2343–2347

    Google Scholar 

  • Lippert B, Metcalf BW, Jung MJ, Casara P (1977) 4-Amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric-acid aminotransferase in mammalian brain. Eur J Biochem 74:441–445

    PubMed  CAS  Google Scholar 

  • Lockard JS, Levy RH, Moore DF (1987) Drug alteration of seizure cyclicity. Adv Epileptol 16:725–732

    Google Scholar 

  • Loscher W, Czuczwar SJ, Jackel R, Schwarz M (1987) Effect of microinjections of gamma-vinyl GABA or isoniazid into substantia nigra on the development of amygdala kindling in rats. Exp Neurol 95:622–638

    PubMed  CAS  Google Scholar 

  • Loscher W, Honack D, Taylor CP (1991) Gabapentin increases aminooxyacetic acidinduced GABA accumulation in several regions of rat brain. Neurosci Lett 128:150–154

    PubMed  CAS  Google Scholar 

  • Macdonald RL (1989) Antiepileptic drug actions. Epilepsia 30:S19–S28

    PubMed  Google Scholar 

  • Macdonald RL, Greenfield LJ Jr (1997) Mechanisms of action of new antiepileptic drugs. Curr Opinion Neurol 10:121–128

    CAS  Google Scholar 

  • Macdonald RL, Kelly K (1994) New antiepileptic drug mechanisms of action. In: Trimble M (ed) An appraisal of some new anticonvulsants — a clinical perspective. John Wiley & Sons, New York, pp. 35–50

    Google Scholar 

  • Macdonald RL, Meldrum BS (1995) Principles of antiepileptic drug action. In: Levy RH, Mattson RH, Meldrum B (eds) Antiepileptic drugs, 4th edn., Raven Press, New York, pp. 61–77

    Google Scholar 

  • Macdonald RL, Olsen RW (1994) GABAA receptor channels. Ann Rev Neurosci 17:569–602

    PubMed  CAS  Google Scholar 

  • Macdonald RL, Rogers CJ, Twyman RE (1989a) Kinetic properties of the GABAA receptor main-conductance state of mouse spinal cord neurons in culture. J Physiol 410:479–499

    PubMed  CAS  Google Scholar 

  • Macdonald RL, Rogers CJ, Twyman RE (1989b) Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurones in culture. J Physiol 417:483–500

    PubMed  CAS  Google Scholar 

  • Maryanoff BE, Nortey SO, Gardocki JF, Shank RP, Dodgson SP (1987) Anticonvulsant O-alkyl sulfamates. 2,3:4,5-bis-0-(l-methylethylidine)- β -D-fructopyranose sulfa-mate and related compounds. J Med Chem 30:880–887

    PubMed  CAS  Google Scholar 

  • McCabe RT, Wasterlain CG, Kucharczyk N, Sofia RD, Vogel JR (1993) Evidence of anticonvulsant and neuroprotective action of felbamate mediated by strychnine-insensitive glycine receptors. J Pharmacol Exp Therap 264:248–252

    Google Scholar 

  • McLean MJ, Macdonald RL (1986a) Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 237:1001–1011

    PubMed  CAS  Google Scholar 

  • McLean MJ, Macdonald RL (1986b) Carbamazepine and 10, 11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 238:727–732

    PubMed  CAS  Google Scholar 

  • McLean MJ, Macdonald RL (1988) Benzodiazepines, but not beta carbolines, limit high frequency repetitive firing of action potentials of spinal cord neurons in cell culture. J Pharmacol Exp Ther 244:789–795

    PubMed  CAS  Google Scholar 

  • McLean MJ, Schmutz M, Wamil AW, Olpe H-R, Portet C, Feldmann KF (1994) Oxcar-bazepine: mechanisms of action. Epilepsia 35 [Suppl 3]:S5–S9

    PubMed  Google Scholar 

  • Meldrum BS, Horton R (1978) Blockade of epileptic responses in photosensitive baboon Papio papio by two irreversible inhibitors of GABA-transaminase, gamma-acetylenic GABA (4-amino-hex-5-ynoic acid) and gamma-vinyl GABA (4-amino-hex-5-enoic acid). Psychopharmacologia 59:47–50

    CAS  Google Scholar 

  • Meldrum BS, Murugaiah K (1983) Anticonvulsant action in mice with sound-induced seizures of the optical isomers of gamma vinyl GABA. Eur J Pharmacol 89:149–152

    PubMed  CAS  Google Scholar 

  • Miller AA, Wheatley P, Sawyer DA, Baxter MG, Roth B (1986) Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: I. Anticonvulsant profile in mice and rats. Epilepsia 27:483–489

    PubMed  CAS  Google Scholar 

  • Mintz IM, Adams ME, Bean BP (1992) P-Type calcium channels in rat central and peripheral neurons. Neuron 9:85–95

    PubMed  CAS  Google Scholar 

  • Mori Y, Friedrich T, Man-Suk K et al. (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350: 398–402

    PubMed  CAS  Google Scholar 

  • Morimoto K, Sato H, Tamamota Y, Watanabe T, Suwaki H (1997) Antiepileptic effects of tiagabine, a selective GABA uptake inhibitor, in the rat kindling model of temporal lobe epilepsy. Epilepsia 38:966–974

    PubMed  CAS  Google Scholar 

  • Moss SJ, Smart TA, Porter NM (1990) Cloned GABA receptors are maintained in a stable cell line: allosteric and channel properties. Eur J Pharmacol 189:77–88

    PubMed  CAS  Google Scholar 

  • Mutoh K, Dichter MA (1993) Lamotrigine blocks voltage-dependent Na currents in a voltage-dependent manner with a small use-dependent component. Epilepsia 34 [Suppl 6]:87

    Google Scholar 

  • Nakamura J, Tamura S, Kanda T et al. (1994) Inhibition by topiramate of seizures in spontaneously epileptic rates and DBA/2 mice. Eur J Pharmacol 254:83–89

    PubMed  CAS  Google Scholar 

  • Naritoku DK, Stryker MT, Mecozzi LB, Copley CA, Faingold CL (1988) Gabapentin reduces the severity of audiogenic seizures in the genetic epilepsy-prone rat. Epilepsia 29:693

    Google Scholar 

  • Nayeem N, Green TP, Martin IL, Barnard EA (1994) Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J Neurochem 62:815–818

    PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channels with different agonist sensitivity. Nature 316:440–443

    PubMed  CAS  Google Scholar 

  • Oles RJ, Singh L, Hughes J, Woodruff GN (1990) The anticonvulsant action of gabapentin involves the glycine/NMDA receptor. Soc Neurosci 16:783

    Google Scholar 

  • Olsen RW (1987) The y-aminobutyric acid/benzodiazepine/barbiturate receptor-chloride ion channel complex of mammalian brain. In: Edelman, Gall and Cowan (eds) Synaptic function. John Wiley & Sons, New York, pp. 257–271

    Google Scholar 

  • Olsen RW, Tobin AJ (1990) Molecular biology of GABAA receptors. FASEB J 4:1469–1480

    PubMed  CAS  Google Scholar 

  • Peeters BWMM, van Rijn CM, Vossen JMH, Coenen AML (1989) Effects of GABAergic agents in spontaneous non-convulsive epilepsy, EEG and behaviour, in the WAG/Rij inbred strain of rats. Life Sci 45:1171–1176

    PubMed  CAS  Google Scholar 

  • Pennell PB, Mohammed SO, Macdonald RL (1995) Aplastic anemia in a patient receiving felbamate for partial complex seizures. Neurology 45:456–460

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E, Schneider T (1994) Calcium channels: structure, function and classification. Drug Develop Res 33:295–318

    CAS  Google Scholar 

  • Petroff OAC, Rothman DL, Behar KL, Mattson RH (1993) Effect of vigabatrin on GABA levels in human brain measured in vivo with [1H] NMR spectroscopy. Epilepsia 34 [Suppl 6]:68

    Google Scholar 

  • Petroff OAC, Rothman DL, Behar KL, Lamoureux D, Mattson RH (1996) The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy. Ann Neurol 39:95–99

    PubMed  CAS  Google Scholar 

  • Pisani A, Stefani A, Siniscalchi A, Mercuri NB, Bernardi G, Calabresi P (1995) Electrophysiological actions of felbamate on rat striatal neurones. Br J Pharmacol 116:2053–2061

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Seeburg PH (1990) Gamma-aminobutyric acidA receptor 5-subunit creates novel type II benzodiazepine receptor pharmacology. J Neurochem 54:1802–1804

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Luddens H, Seeburg PH (1989a) Type I and Type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245:1389–1392

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD (1989b) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–584

    PubMed  CAS  Google Scholar 

  • Privatera M, Fincham R, Penry J, Reife R, Kramer L, Pledger G, Karim R, and the Topiramate YD Study Group (1996) Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 600-, 800-, and 1000-mg daily dosages. Neurology 46:1678–1683

    Google Scholar 

  • Pugliese AM, Corradetti R (1996) Effects of the antiepileptic drug felbamate on long term potentiation in the CA1 region of rat hippocampal slices. Neurosci Lett 215:21–24

    PubMed  CAS  Google Scholar 

  • Reife RA, Pledger GW (1997) Topiramate as adjunctive therapy in refractory partial epilepsy: pooled analysis of data from five double-blind, placebo-controlled trials. Epilpesia 38:S31–S33

    CAS  Google Scholar 

  • Reimann W (1983) Inhibition by GABA, baclofen and gabapentin of dopamine release from rat caudate nucleus: are there common or different sites of action? Eur J Pharmacol 94:341–344

    PubMed  CAS  Google Scholar 

  • Reynolds EH, Milner G, Matthews DM, Chanarin I (1966) Anticonvulsant therapy, megaloblastic haemopoiesis and folic acid metabolism. Quart J Med 35:521–537

    CAS  Google Scholar 

  • Rho JM, Donevan SD, Rogowski MA (1994) Mechanism of action of the anticonvulsant felbamate: opposing effects on N-methyl-D-aspartate and γ-aminobutyric acidA receptors. Ann Neurol 35:229–234

    PubMed  CAS  Google Scholar 

  • Riekkinen PJ, Pitkanen A, Ylinen A, Sivenius J, Halonen T (1989) Specificity of vigabatrin for the GABAergic system in human epilepsy. Epilepsia 30 [Suppl 3]:S18–S22

    PubMed  Google Scholar 

  • Rock DM, Kelly KM, Macdonald RL (1993) Gabapentin actions on ligand-and voltage-gated responses in cultured rodent neurons. Epilepsy Res 16:89–98

    PubMed  CAS  Google Scholar 

  • Roepstorff A, Lambert JDC (1992) Comparison of the effect of the GABA uptake blockers, tiagabine and nipecotic acid, on inhibitory synaptic efficacy in hippocampal CA1 neurones. Neurosci Lett 146:131–134

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42:223–286

    PubMed  CAS  Google Scholar 

  • Rogers CJ, Twyman RE, Macdonald RL (1994) Benzodiazepine and β -carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J Physiol 475:69–82

    PubMed  CAS  Google Scholar 

  • Rosenfeld WE, Sachdeo RC, Faught RE, Privitera M (1997) Long-term experience with topiramate as adjunctive therapy and as monotherapy in patients with partial onset seizures: retrospective survey of open-label treatment. Epilepsia 38:S34–S36

    PubMed  CAS  Google Scholar 

  • Rowen AJ, Schear MJ, Wiener JA, Luciano D (1989) Intensive monitoring and pharmacokinetic studies of gabapentin in patients with generalized spike-wave discharges. Epilepsia 30:30

    Google Scholar 

  • Sarhan S, Seiler N (1979) Metabolic inhibitors and subcellular distribution of GABA. J Neuroscience Res 4:399–421

    CAS  Google Scholar 

  • Schechter PJ, Tranier Y (1977) Effects of elevated brain GABA concentrations on the action of bicuculline and picrotoxin in mice. Psychopharmacology 54:145–148

    PubMed  CAS  Google Scholar 

  • Schechter PJ, Trainier Y, Jung M J, Bohlen P (1977) Audiogenic seizure protection by elevated brain GABA concentration in mice: effects of γ-acetylenic GABA and γ-vinyl GABA, two irreversible GABA-T inhibitors. Eur J Pharmacol 45:319–328

    PubMed  CAS  Google Scholar 

  • Schechter PJ, Hanke NFJ, Grove J, Huebert N, Sjoerdsma A (1984) Biochemical and clinical effects of gamma-vinyl GABA in patients with epilepsy. Neurology 34:182–186

    PubMed  CAS  Google Scholar 

  • Schlicker PJ, Reimann W, Gothert M (1985) Gabapentin decreases monoamine release without affecting acetylcholine release in the brain. Arzneim-Forsch/Drug Res 35:1347–1349

    CAS  Google Scholar 

  • Schmidt D (1989) Potential antiepileptic drugs: gabapentin. In: Levy RH, Driefuss FE, Mattson RH, Meldrum BS, Penry JK (eds) Antiepileptic drugs. Raven Press, New York, pp. 925–935

    Google Scholar 

  • Schmutz M, Ferret T, Heckendorn R, Jeker A, Portet Ch, Olpe HR (1993) GP 47779, the main human metabolite of oxcarbazepine (Trileptal), and both enantiomers have equal anticonvulsant activity. Epilepsia 34 [Suppl 2]:122

    Google Scholar 

  • Schofield PR, Darlison MG, Fujita N et al. (1987) Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature 328:221–227

    PubMed  CAS  Google Scholar 

  • Schousboe A, Larsson OM, Seiler N (1986) Stereoselective uptake of the GABA-transaminase inhibitors gamma-vinyl GABA and gamma-acetylenic GABA into neurons and astrocytes. Neurochem Res 11:1497–1505

    PubMed  CAS  Google Scholar 

  • Schwarz J, Grigat G (1989) Phenytoin and carbamazepine: Potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia 30:286–294

    PubMed  CAS  Google Scholar 

  • Shin C, Rigsbee LC, McNamara JO (1986) Anti-seizure and anti-epileptogenic effect of gamma-vinyl gamma-aminobutyric acid in amygdaloid kindling. Brain Res 398:370–374

    PubMed  CAS  Google Scholar 

  • Shuaib A, Mahmood RH, Wishart T, Kanthan R, Murabit MA, Ijaz S, Miyashita H, Howlett W (1995) Neuroprotective effects of lamotrigine in global ischemia in gerbils: a histological in vivo microdialysis and behavioral study. Brain Res 702:199–206

    PubMed  CAS  Google Scholar 

  • Shuaib A, Waqaar T, Ijaz MS, Kanthan R, Wishart T, Howlett W (1996) Neuroprotection with felbamate: a 7 and 28-day study in transient forebrain ischemia in gerbils. Brain Res 727:65–70

    PubMed  CAS  Google Scholar 

  • Sofia RD, Kramer L, Perhach JL, Rosenberg A (1991) Felbamate. In: Pisani F, Perucca E, Avanzini G, Richens A (eds) New antiepileptic drugs. Elsevier, Amsterdam, pp. 103–108

    Google Scholar 

  • Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260:1133–1136

    PubMed  CAS  Google Scholar 

  • Smith SE, Parvez NS, Chapman AG, Meldrum BS (1995) The γ-aminobutyric acid uptake inhibitor, tiagabine, is anticonvulsant in two animal models of reflex epilepsy. Eur J Pharmacol 273:259–265

    PubMed  CAS  Google Scholar 

  • Snutch TP, Tomlinson WJ, Leonard JP, Gilbert MM (1991) Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 7:45–57

    PubMed  CAS  Google Scholar 

  • Stables JP, Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Loiseau P, Perucca E (1995) Progress report on new antiepileptic drugs: a summary of the Second Eilat Conference. Epilepsy Res 22:235–246

    PubMed  CAS  Google Scholar 

  • Starr TVB, Prystay W, Snutch TP (1991) Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 88:5621–5625

    PubMed  CAS  Google Scholar 

  • Stefani A, Pisani A, De Murtas M, Mercuri NB, Marciani MG, Calabresi P (1995) Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. II. Modulation of high-voltage-activated calcium currents. Epilepsia 336:997–1002

    Google Scholar 

  • Stefani A, Calabresi P, Pisani A, Mercuri NB, Siniscalchi A, Bernardi G (1996a) Fel-bamate inhibits dihydropyridine-sensitive calcium channels in central neurons. J Pharmacol Exp Therap 277:121–127

    CAS  Google Scholar 

  • Stefani A, Spadoni F, Siniscalchi A, Bernardi G (1996b) Lamotrigine inhibits Ca2+ currents in cortical neurons: functional implications. Eur J Pharmacol 307:113–116

    PubMed  CAS  Google Scholar 

  • Subramaniam S, Rho JM, Peniz L, Donevan SD, Feilding RP, Rogawski MA (1995) Fel-bamate block of the N-methyl-D-aspartate receptor. J Pharmacol Exp Therap 273:878–886

    CAS  Google Scholar 

  • Suzdak PD, Jansen JA (1995) A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612–626

    PubMed  CAS  Google Scholar 

  • Swinyard EA, Sofia RD, Kupferberg HJ (1986) Comparative anticonvulsant activity and neurotoxicity of felbamate and four prototype antiepileptic drugs in mice and rats. Epilepsia 27:27–34

    PubMed  CAS  Google Scholar 

  • Taylor CP (1993) The anticonvulsant lamotrigine blocks sodium currents from cloned alpha-subunits of rat brain Na+ channels in a voltage-dependent manner but gabapentin does not. Soc Neurosci Abs 19:1631

    Google Scholar 

  • Taylor CP, Rock DM, Weinkauf RJ, Ganong AH (1988) In vitro and in vivo electro-physiology effects of the anticonvulsant gabapentin. Soc Neurosci Abs 14:866

    Google Scholar 

  • Taylor CP, Vartanian MG, Yuen PW, Bigge C (1993) Potent and stereospecific anticonvulsant activity of 3-isobutyl GABA relates to in vitro binding at a novel site labeled by tritiated gabapentin. Epilepsy Res 14:11–15

    PubMed  CAS  Google Scholar 

  • Thomsen C, Suzdak PD (1995) Effects of chronic tiagabine treatment on [3H]GABAA, [3H]GABAB and [3H]tiagabine binding to sections from mice brain. Epilepsy Res 21:79–88

    PubMed  CAS  Google Scholar 

  • Thurlow RJ, Hill DR, Woodruff GN (1996a) Comparison of the uptake of [3H]-gabapentin with the uptake of L-[3H]-leucine into rat brain synaptosomes. Br J Pharmacol 118:449–456

    PubMed  CAS  Google Scholar 

  • Thurlow RJ, Hill DR, Woodruff GN (1996b) Comparison of the autoradiographic binding distribution of [3H]-gabapentin with excitatory amino acid receptor and amino acid uptake site distributions in rat brain. Br J Pharmacol 118:457–465

    PubMed  CAS  Google Scholar 

  • Ticku MK, Kamatchi GL, Sofia RD (1991) Effect of anticonvulsant felbamate on GABAA receptor system. Epilepsia 32:389–91

    PubMed  CAS  Google Scholar 

  • Tomaselli G, Marban E, Yellen G (1989) Sodium channels from human brain RNA expressed in Xenopus oocytes basic electrophysiologic characteristics and their modifications by diphenylhydantoin. J Clin Invest 83:1724–1732

    PubMed  CAS  Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1989) Differential regulation of γ-aminobu-tyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 25:213–220

    PubMed  CAS  Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1990) Intraburst kinetic properties of the GABAA receptor main conductance state of mouse spinal cord neurones in culture. J Physiol 423:193–219

    PubMed  CAS  Google Scholar 

  • Vergnes M, Marescaux C, Micheletti G, Depaulis A, Rumbach L, Warter J-M (1984) Enhancement of spike and wave discharges by GABA mimetic drugs in rats with spontaneous petit mal-like epilepsy. Neurosci Lett 44:91–94

    PubMed  CAS  Google Scholar 

  • Vicini S, Mienville JM, Costa E (1987) Actions of benzodizapine and β -carboline derivatives on γ-aminobutyric acid-activated C1- channels recorded from membrane patches of neonatal rat cortical neurons in culture. J Pharm Exper Therap 243:1195–1201

    CAS  Google Scholar 

  • Wakamori M, Kaneda M, Oyama Y, Akaike N (1989) Effects of chlordiazepoxide, chlorpromazine, diazepam, diphenylhydantoin, Flunitrazepam and haloperidol on the voltage-dependent sodium current of isolated mammalian brain neurons. Brain Res 494:374–378

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Martin P, Stocklin K, Portet C, Schmutz M (1996) Effect of carbamazepine, oxcarbazepine and lamotrigine on the increase in extracellular glutamate elicited by veratridine in rat cortex and striatum. Naunyn Schmiedeberg’s Arch Pharmacol 354:164–172

    CAS  Google Scholar 

  • Wallis RA, Panizzon KL (1995) Felbamate neuroprotection against CA1 traumatic neuronal injury. Eur J Pharmacol 294:475–482

    PubMed  CAS  Google Scholar 

  • Walton NY, Gunawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19:237–244

    PubMed  CAS  Google Scholar 

  • Wamil AW, McLean MJ (1991) Limitation by gabapentin of high frequency action potential firing by mouse central neurons in cell culture. Epilepsy Res 17:1–12

    Google Scholar 

  • Wamil AW, McLean M J (1994) Limitation by gabapentin of high frequency action potential firing by mouse central neurons in cell culture. Epilepsy Res 17:1–10

    PubMed  CAS  Google Scholar 

  • Wamil AW, McLean MJ, Taylor CP (1991) Multiple cellular actions of gabapentin. Neurology 41 [Suppl 1]:140

    Google Scholar 

  • Wang CM, Lang DG, Cooper BR (1993) Lamotrigine effects on ion channels in cultured neuronal cells. Epilepsia 34 [Suppl 6]:117–118

    Google Scholar 

  • Wang SJ, Huang CC, Hsu KS, Tsai JJ, Gean PW (1996) Presynaptic inhibition of excitatory neurotransmission by lamotrigine in the rat amygdalar neurons. Synapse 24:248–255

    PubMed  CAS  Google Scholar 

  • Wasterlain CG, Adams LM, Wichmann JK, Sofia RD (1996) Felbamate protects CA1 neurons from apoptosis in a gerbil model of global ischemia. Stroke 27:1236–1240

    PubMed  CAS  Google Scholar 

  • Wauquier A, Zhou S (1996) Topiramate: a potent anticonvulsant in the amygdala-kindled rat. Epilepsy Res 24:73–77

    PubMed  CAS  Google Scholar 

  • Weiss DS, Magleby K (1989) Gating scheme for single GABA-activated Cl- channels determined from stability plots, dwell-time distributions, and adjacent-interval durations. J Neurosci 9:1314–1324

    PubMed  CAS  Google Scholar 

  • White HS, Wolf HH, Swinyard EA, Skeen GA, Sofia RD (1992) A neuropharmacologic evaluation of felbamate as a novel anticonvulsant. Epilepsia 33:564

    PubMed  CAS  Google Scholar 

  • White HS, Woodhead JS, Wolf HH (1996) Effect of topiramate (TMP) on pentylenetetrazol (PTZ) seizure threshold. Epilepsia (Abstract) 37 [Suppl 5]:26

    Google Scholar 

  • White HS, Brown D, Woodhead JH, Skeen GA, Wolf HH (1997) Topiramate enhances GABA-mediated chloride flux in murine brain neurons and increases seizure threshold. Epilepsy Res 28:167–179

    PubMed  CAS  Google Scholar 

  • Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM (1992) Structure and functional expression of α1 subunits of a novel human neuronal calcium channel subtype. Neuron 8:71–84

    PubMed  CAS  Google Scholar 

  • Wisden W, Herb A, Wieland H, Keinanen K, Luddens H, Seeburg PH (1991) Cloning, pharmacological characteristics and expression pattern of the rat GABAA receptor α4 subunit. FEBS Lett 289:227–230

    PubMed  CAS  Google Scholar 

  • Zhang JF, Randall AD, Ellinor PT, Horne WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW (1993) Distinctive pharmacology and kinetics of cloned neruonal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacol 32:1075–1088

    CAS  Google Scholar 

  • Zona C, Barbarosie M, Kawasaki H, Avoli M (1996) Effects induced by the anticonvulsant drug topiramate on voltage-gated sodium currents generated by cerebellar granule cells in tissue culture. Epilepsia (Abstract) 37 [Suppl 5]:24

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Macdonald, R.L. (1999). Cellular Actions of Antiepileptic Drugs. In: Eadie, M.J., Vajda, F.J.E. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60072-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60072-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64244-9

  • Online ISBN: 978-3-642-60072-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics