Skip to main content

The Costs and Benefits of Oxygen for Photosynthesizing Plant Cells

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 60))

Abstract

Redox reactions of aerobic metabolism are directly or indirectly linked to atmospheric oxygen, a reactant which is essentially present in unlimited amounts nowadays. The accumulation of O2 was the consequence of the successful colonization by photoautotrophic organisms of the terrestrial and aqueous habitats during evolution. Concomitantly with the development of oxygenic photosynthesis, oxygen became available as oxidizing reactant in chemical reactions, for instance as terminal electron acceptor of the respiratory electron transport chain, of xanthin oxidase, of lipoxigenase and in photorespiratory oxygenation of ribulose- 1,5-bisphosphate. Although still subject to some controversial discussion, photorespiratory energy consumption in the chloroplasts and amino acid synthesis in the peroxisomes and mitochondria may constitute beneficial or even essential metabolic pathways of plants under certain growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad I, Larher F, Stewart GR (1979) Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol 82:671–678

    CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    PubMed  CAS  Google Scholar 

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464

    CAS  Google Scholar 

  • Anderson B, Satler A, Virgin I, Styring S (1992) Photodamage to photosystem II - primary and secondary events. J Photochem Photobiol B 15:15–31

    Google Scholar 

  • Anderson JW, Foyer CH, Walker DA (1983) Light-dependent reduction of dehydroascorbate and uptake of exogenous ascorbate by spinach chloroplasts. Planta 158:442–450

    CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–135

    CAS  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    PubMed  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen in photosynthetic tissue. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Baalmann E, Backhausen JE, Kitzmann C, Scheibe R (1995) Regulation of NADPdependent glyceraldehyde 3-phosphate dehydrogenase activity in spinach chloroplasts. Bot Acta 107:313–320

    Google Scholar 

  • Baba K, Itoh S, Hastings G, Hoshina S (1996) Photoinhibition of photosystem I electron transfer activity in isolated photosystem I preparations with different chlorophyll contents. Photosynth Res 47:121–130

    CAS  Google Scholar 

  • Badger M (1985) Photosynthetic oxygen exchange. Annu Rev Plant Physiol 36:27–53

    CAS  Google Scholar 

  • Baier M, Dietz K-J (1996a) Primary structure and expression of a plant homologue of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases. Plant Mol Biol 31:553–564

    PubMed  CAS  Google Scholar 

  • Baier M, Dietz K-J (1996b) Thioredoxin-dependent peroxide reductase: a new group of plant peroxidases. In: Obinger C, Burner U, Ebermann R et al. (eds) Plant peroxidases: biochemistry and physiology. IV. International Symposium 1996. University of Geneva, pp 204-209

    Google Scholar 

  • Baier M, Dietz K-J (1997) The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. Plant J 12:179–190

    PubMed  CAS  Google Scholar 

  • Baier M, Bilger W, Wolf R, Dietz K-J (1996) Photosynthesis in the basal growing zone of barley leaves. Photosynth Res 49:169–181

    CAS  Google Scholar 

  • Berg JM (1992) Spl and the subfamily of zinc finger proteins with guanine-rich binding sites. Proc Natl Acad Sci USA 89:11109–11110

    PubMed  CAS  Google Scholar 

  • Bergmann L, Rennenberg H (1993) Glutathione metabolism in plants. In: DeKok LJ, Stulen I, Rennenberg H et al. (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 109–123

    Google Scholar 

  • Bleé E, Joyard J (1996) Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110:445–454

    PubMed  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Bolotina VM, Najibi S, Placino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascuolar smooth muscle cells. Nature 368:850–853

    PubMed  CAS  Google Scholar 

  • Brandes HK, Larimer FW, Hartman FC (1996) The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f. J Biol Chem 271:3333–3335

    PubMed  CAS  Google Scholar 

  • Canvine DT (1990) Photorespiration and CO2-concentrating mechanisms. In: Dennis DT, Turpin DH (eds) Plant physiology, biochemistry and molecular biology. Longman, Harlow, pp 253–273

    Google Scholar 

  • Casano LM, Trippi VS (1992) The effect of oxygen radicals on proteolysis in isolated oat chloroplasts. Plant Cell Physiol 33:329–332

    CAS  Google Scholar 

  • Demming-Adams B, Adams WW III (1996) The role of xantophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Google Scholar 

  • Desimone M, Henke A, Wagner E (1996) Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol 111:789–796

    PubMed  CAS  Google Scholar 

  • Dietz K-J (1997) Functions and responses of the leaf apoplast under stress. Prog Bot 58:221–254

    Google Scholar 

  • Dietz K-J, Brune A, Pfanz H (1992) Trans-tonoplast transport of the sulfur-containing compounds sulfate, methonine, cysteine and glutathione. Phyton 32:37–40

    CAS  Google Scholar 

  • Duh J-L, Zhu H, Shertzer HG, Nebert DW, Puga A (1995) The Y-box motif mediates redox-dependent transcriptional activation in mouse cells. J Biol Chem 270:30499–30507

    PubMed  CAS  Google Scholar 

  • Elstner EF (1990) Der Sauerstoff: Biochemie, Biologie, Medizin. Wissenschaftsverlag, Mannheim

    Google Scholar 

  • Elstner EF, Frommeyer D (1979) Analysis of different mechanisms of photosynthetic oxygen reduction. Biochim Biophys Acta 325:182–188

    Google Scholar 

  • Escoubas J-M, Lomas M, laRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signalled by the redox state of the pastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241

    PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    PubMed  CAS  Google Scholar 

  • Faske M, Holtgrefe S, Ocheretina O, Meister M, Backhausen JE, Scheibe R (1995) Redox equilibria between the regulatory thiols of light/dark-modulated enzymes and dithiothreitol: fine-tuning by metabolites. Biochim Biophys Acta 1247:135–142

    PubMed  Google Scholar 

  • Flohé L, Giinzel WA (1984) Assays for glutathione peroxidase. Methods Enzymol 105:114–121

    PubMed  Google Scholar 

  • Foyer CH (1993) Ascorbic acid. In: Alscher RG, Hess JL (eds) Antioxidants in higher plants. CRC Press, Boca Raton, pp 31–58

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Google Scholar 

  • Foyer CH, Lelandais M, Jouanin L, Kunert KJ (1994a) Overexpression of enzymes of glutathione metabolism in poplar (Populus tremula x P. alba). Bull Soc Luxemb Biol Clin Special Issue: 119–240

    Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994b) Photooxidative stress in plants. Physiol Plant 92:696–717

    CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1996) Overexpression of glutathione reductase but not glutathione synthetase leads to increase in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Google Scholar 

  • Fucci L, Oliver CN, Coon MJ, Stadtman ER (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and aging. Proc Natl Acad Sci USA 80:1521–1525

    PubMed  CAS  Google Scholar 

  • Furbank RT, Badger MR (1983) Oxygen exchange associated with electron transport and photophosphorylation in spinach thylakoids. Biochim Biophys Acta 723:400–409

    CAS  Google Scholar 

  • Gilbert HF (1984) Redox control of enzyme activities by thiol/disulfide exchange. Methods Enzymol 107:330–351

    PubMed  CAS  Google Scholar 

  • Gilbert HF (1995) Thiol/disulfide exchange equilibria and disulfide bond stability. Methods Enzymol 251:8–28

    PubMed  CAS  Google Scholar 

  • Gille G, Sigler K (1995) Oxidative stress and living cells. Folia Microbiol (Praha) 40:131–152

    CAS  Google Scholar 

  • Gillham DJ, Dodge AD (1986) Hydrogen-scavenging systems within pea chloroplasts: a quantitative study. Planta 167:246–251

    CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenchin. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35:67–78

    CAS  Google Scholar 

  • Gómez LD, Casano LM, Trippi VS (1995) Effect of hydrogen peroxide on degradation of cell wall-associated proteins in growing bean hypocotyls. Plant Cell Physiol 36:1259– 1264

    Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1997) Three members of a novel small gene-familiy from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase activity”. Proc Natl Acad Sci USA 93:13377–13382

    Google Scholar 

  • Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin —» Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung. Planta 89:224–243

    CAS  Google Scholar 

  • Hahlbrock K, Scheel D, Logemann E, Nürnberger T, Parniske M, Reinold S, Sacks WR, Schmelzer E (1995) Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc Natl Acad Sci USA 92:4150–4157

    PubMed  CAS  Google Scholar 

  • Halliwell B (1994) How to characterize an antioxidant: an update. Biochem Soc Symp 61:73–101

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    PubMed  CAS  Google Scholar 

  • Heber U, Egneus H, Hanch U, Jensen M, Koster S (1978) Regulation of photosynthetic electron transport and photophosphorylation in intact chloroplasts and leaves of Spinachia oleracea L. Planta 143:41–53

    CAS  Google Scholar 

  • Hérouart D, Inzé D, VanMontagu M (1993) Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc Natl Acad Sci USA 90:3108–3112

    PubMed  Google Scholar 

  • Hidalgo E, Ding H, Demple B (1997) Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 22:207–210

    PubMed  CAS  Google Scholar 

  • Hodgson RA, Raison JK (1991) Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling-induced photoinhibition. Planta 183:222–228

    CAS  Google Scholar 

  • Holland D, Ben-Hayyim G, Faltin Z, Camoin L, Strosberg AD, Eshdat Y (1993) Molecular characterization of salt-stress associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidase. Plant Mol Biol 21:923–927

    PubMed  CAS  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    PubMed  CAS  Google Scholar 

  • Hölzel C, Spiteller G (1995) Zellschädigung als Ursache für die Bildung von hydroperoxiden ungesättigter Fettsauren. Naturwissenschaften 82:452–460

    PubMed  Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1997) The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule. Plant Physiol 114:1247–1253

    PubMed  CAS  Google Scholar 

  • Hormann H, Neubauer C, Asada K, Schreiber U (1993) Intact chloroplasts display pH 5 optimum of 02 reduction in the absence of methyl viologen: indirect evidence for a regulatory role of superoxide protonation. Photosynth Res 37:69–89

    CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sanchez-Díaz M (1992) Alfalfa leaf senescence induced by drought stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution. Physiol Plant 84:67–72

    CAS  Google Scholar 

  • Jespersen HM, Kjaersgård IVH, Østergaard L, Welinder G (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    PubMed  CAS  Google Scholar 

  • Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794

    Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  • Kim S-G, Kim Y, An G (1993) Identification of methyl jasmonate and salicylic acid response elements from the nopaline synthase (nos) promotor. Plant Physiol 103:97–103

    PubMed  CAS  Google Scholar 

  • Kubo A, Saji H, Tanaka K, Kondo N (1995) Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone and sulfur dioxide. Plant Mol Biol 29:479–489

    PubMed  CAS  Google Scholar 

  • Kullik I, Storz G (1994) Transcriptional regulators of oxidative stress response in prokaryotes and eukaryotes. Redox Rep 1:23–29

    CAS  Google Scholar 

  • Kunert KJ, Foyer C (1993) Thiol/disulfide exchange in plants. In: DeKok LJ et al. (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, pp 139–151

    Google Scholar 

  • Lander HM (1997) An essential role of free radicals and derived species in signal transduction. FASEB J 11:118–124

    PubMed  CAS  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    CAS  Google Scholar 

  • Lee MH, Park J-W (1995) Lipid peroxidation products mediate damage of superoxide dismutase. Biochem Mol Biol Int 35:1093–1102

    PubMed  CAS  Google Scholar 

  • Lee SW, Heinz R, Nazar RN (1994) Differential utilization of alternate initiation sites in a plant defense gene responding to environmental stimuli. Eur J Biochem 226:109–114

    PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    PubMed  CAS  Google Scholar 

  • Li X, Nield J, Hayman D, Langridge P (1996) A self-fertile mutant of Phalaris produces an S protein with reduced thioredoxin activity. Plant J 10:505–513

    PubMed  CAS  Google Scholar 

  • Lim YS, Cha MK, Kim HK, Uhm TB, Park JW, Kim K, Kim IH (1993) Removals of hydroben peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochem Biophys Res Commun 192:273–280

    PubMed  CAS  Google Scholar 

  • Lindahl M, Yang D-H, Andersson B (1995) Regulatory proteolysis of the major lightharvesting chlorophyll a/b protein of photosystem II by light-induced membraneassociated enzymic system. Europ J Biochem 231:503–509

    PubMed  CAS  Google Scholar 

  • Low PS, Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Plant 96:533–542

    CAS  Google Scholar 

  • Luwe M, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976

    PubMed  CAS  Google Scholar 

  • Malamy J, Carr JP, Klessing DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    PubMed  CAS  Google Scholar 

  • McKersie BD, Chen Y, DeBeus M, Bowley SR, Bowler C (1993) Superoxide dismutase enhances tolerance to freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163

    PubMed  CAS  Google Scholar 

  • Mehdy MC, Sharma YK, Sathasivan K, Bays NW (1996) The role of activated oxygen species in plant disease resistance. Physiol Plant 98:365–374

    CAS  Google Scholar 

  • Mehlhorn H, Lelandis M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378:203–206

    PubMed  CAS  Google Scholar 

  • Meyer M, Schreck R, Baeuerle PA (1993) H2O2 and antioxidants have opposite effects on activation of NF-KB and AP-1 in intact cells: AP-1 as secondary antioxidantresponsive factor. EMBO J 12:2005–2015

    PubMed  CAS  Google Scholar 

  • Mishra NP, Fatama T, Singhal GS (1995) Development of antioxidant defense system of wheat seedlings in response to high light. Physiol Plant 95:77–82

    CAS  Google Scholar 

  • Misra HP, Fridovich I (1971) The generation of superoxide radical during the autoxidation of ferredoxins. J Biol chem 246:6886–6890

    PubMed  CAS  Google Scholar 

  • Miyake D, Michihata F, Asada K (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during evolution of cyanobacteria. Plant Cell Physiol 32:33–43

    CAS  Google Scholar 

  • Mohanty N, Yamamoto HY (1995) Mechanism of non-photochemical chlorophyll fluorescence quenching. I. The role of de-epoxidized xanthophylls and sequenstered thylakoid membrane protons as probed by dibucaine. J Plant Physiol 22:231–238

    CAS  Google Scholar 

  • Morell S, Follmann H, Haberlein I (1995) Identification and localization of the first glutaredoxin in leaves of a higher plant. FEBS Lett 369:149–152

    PubMed  CAS  Google Scholar 

  • Morgan RW, Christman MF, Jacobson FS, Storz G, Ames BN (1986) Hydrogen peroxideinducible proteins in Salmonella thyphimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci USA 83:8059–8063

    PubMed  CAS  Google Scholar 

  • Morre DJ, Brightman AO, Wu LY, Barr R, Leak B, Crane FL (1988) Role of plasma membrane redox activities in elongation growth in plants. Physiol Plant 73:187–193

    CAS  Google Scholar 

  • Neubauer C, Yamamoto HY (1992) Ascorbate peroxidase mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol 99:1354–1361

    PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Valadier M-H, Roux Y, Foyer C (1997) The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress. Physiol Plant 100:255–263

    CAS  Google Scholar 

  • Örvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J 11:1297–1305

    Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparison of shade and sun plants. In: Baker NR, Boyer JR (eds) Photoinhibition: molecular mechanisms to the field. Bios, Oxford, pp 1–24

    Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362

    CAS  Google Scholar 

  • Perl-Treves R, Galun E (1991) The tomato Cu,Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol Biol 17:745–760

    PubMed  CAS  Google Scholar 

  • Pognonec P, Kato H, Roeder RG (1992) The helix-loop-helix repeat transcription factor USF can be functionally regulated in a redox-dependent manner. J Biol Chem 267:24563–24567

    PubMed  CAS  Google Scholar 

  • Polle A (1996) Mehler reaction. Friend or foe in photosynthesis? Bot Acta 109:84–89

    CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolett-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H202 production, oxidative stress, and H202-metabolizing enzymes. Plant Physiol 115:137–149

    PubMed  CAS  Google Scholar 

  • Raskin I (1992) Salicylate, a new plant hormone. Plant Physiol 99:799–803

    PubMed  CAS  Google Scholar 

  • Robinson JM, Gibbs M (1982) Hydrogen peroxide synthesis in isolated spinach chloroplasts lamellae. Plant Physiol 70:1249–1254

    PubMed  CAS  Google Scholar 

  • Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione Stransferase/ glutatjione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature [Biotechnol] 15:988–991

    CAS  Google Scholar 

  • Scheibe R (1996) Die Regulation der Photosynthese durch das Licht. Biol Unserer Zeit 26:27–34

    CAS  Google Scholar 

  • Scheibe R, Beck E (1994) The malate valve: flux control at the enzymatic level. In: Schulze ED (ed) Flux control in biological systems. Academic Press, London, pp 3–11

    Google Scholar 

  • Schoner S, Krause GH (1990) Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta 180:383–389

    Google Scholar 

  • Schraudner M, Langebartels C, Sandermann H (1997) Changes in the biochemical status of plant cells induced by the environmental pollutant ozone. Physiol Plant 100:274–280

    CAS  Google Scholar 

  • Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energetisation and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25:279–293

    CAS  Google Scholar 

  • Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H Jr (1997) An ozone-responsive region of grapevine resveratol synthase promotor differs from basal pathogen-responsive sequence. Plant Mol Biol 34:417–426

    PubMed  CAS  Google Scholar 

  • Schwarz P, Häberle K-H, Polle A (1996) Interactive effects of elevated CO2, ozone and drought stress on the activities of antioxidant enzymes in needles of norway spruce trees [Picea abies (L.) Karsten] grown with luxurious N-supply. J Plant Physiol 148:351–355

    Google Scholar 

  • Sen Gupta A, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103:1067–1073

    CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stres in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    PubMed  CAS  Google Scholar 

  • Stieger PA, Feller U (1997) Requirements for the light-stimulated degradation of stromal proteins in isolated pea (Pisum sativum L.) chloroplasts. J Exp Bot 48:1639–1645

    CAS  Google Scholar 

  • Storz G, Jacobson FS, Tartaglia LA, Morgan RW, Silveira LA, Ames BN (1989) An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J Bacteriol 171:2049– 2055

    PubMed  CAS  Google Scholar 

  • Storz G, Tartaglia LA, Farr SB, Ames BN (1990) Bacterial defences against oxidative stress. Trends Genet 6:363–368

    PubMed  CAS  Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase. Plant J 7:141–145

    CAS  Google Scholar 

  • Sun Y, Oberley LW (1996) Redox regulation of transcriptional activators. Free Radic Biol Med 21:335–348

    PubMed  CAS  Google Scholar 

  • Szögyi M, Cserháti T, Szingeti Z (1989) Action of paraquat and diquat on proteins and phospholipids. Pesticide Biochem Physiol 34:240–245

    Google Scholar 

  • Tenhaken R, Rübel C (1997) Salicylic acid is needed in hypersensitive cell death in soybean but does not act as a catalase inhibitor. Plant Physiol 115:291–298

    PubMed  CAS  Google Scholar 

  • Tepperman JM, Dunsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501–511

    PubMed  CAS  Google Scholar 

  • Tommasini R, Martinoia E, Grill E, Dietz K-J, Amrhein N (1993) Transport of oxidized glutathione into barley vacuoles: evidence for the involvement of the glutathione-Sconjugate ATPase. Z Naturforsch [C]48:867–871

    Google Scholar 

  • Trolinder NL, Allen RD (1994) Expression of chloroplast localized Mn SOD in transgenic cotton. J Cell Biochem 18A:97

    Google Scholar 

  • VanCamp W, Willekens H, Bowler C, VanMontague M, Inze D (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Biotechnology 12:165–168

    Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461

    PubMed  CAS  Google Scholar 

  • Willekens H, VanCamp W, VanMontagu MV, Inze D, Langebartels C, Sandermann H Jr (1994) Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L.. Plant Physiol 106:1007– 1014

    PubMed  CAS  Google Scholar 

  • Wingate VPM, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87:206–210

    PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Leegood RC (1997) Control of photosynthesis in barley plants with reduced activities of glycine decarboxylase. Planta 202:171–178

    CAS  Google Scholar 

  • Wingsle G, Karpinski S (1996) Differential redox regulation by glutathione of glutathione reductase and CuZn superoxide dismutase genes expression in Pinus sylvestris (L.) needles. Planta 198:151–157

    PubMed  CAS  Google Scholar 

  • Wise RR (1995) Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45:79–97

    CAS  Google Scholar 

  • Wolf AE, Dietz K-J, Schroder P (1996) Degradation of glutathione-S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Lett 384:31–34

    PubMed  CAS  Google Scholar 

  • Wu J, Neimanis S, Heber U (1991) Photorespiration is more effective than Mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot Acta 104:283–291

    CAS  Google Scholar 

  • Wu X, Bishopric NH, Discher DJ, Murphy BJ, Webster KA (1996) Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol Cell Biol 16:1035– 1046

    PubMed  CAS  Google Scholar 

  • Wydrzynski T, Angstrom J, Vanng&rd T (1989) H2O2 formation by photosystem II. Biochim Biophys Acta 973:23–28

    CAS  Google Scholar 

  • Yamamoto HY (1985) Xanthophyll cycles. Methods Enzymol 110:303–312

    CAS  Google Scholar 

  • Yruela I, Pueyo JJ, Alonso PJ, Picorel R (1996) Photoinhibition of photosystem II from higher plants: effect of copper inhibition. J Biol Chem 271:27408–27415

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baier, M., Dietz, KJ. (1999). The Costs and Benefits of Oxygen for Photosynthesizing Plant Cells. In: Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59940-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59940-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64189-3

  • Online ISBN: 978-3-642-59940-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics