Skip to main content

Characterization of Mine Wastes for Prediction of Acid Mine Drainage

  • Chapter
Environmental Impacts of Mining Activities

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

One of the environmental challenges the mining and minerals industry is facing today is the increased levels of metals in the environment due to mining, milling, and refining activities. Liquid effluents, mine waters, tailings, waste rocks, and dusts may contribute to the generation of potentially deleterious waste and contaminated groundwater and soil deposits in, around, and outside mine environments. Tailings which are unwanted silicate, oxide and sulfide minerals discarded during ore processing operations, are usually discharged into impoundments as a slurry with particle sizes that are predominantly in the silt to fine sand size range (1 µm-1 mm). Waste rock is essentially wall rock material removed to access and mine ore. Waste rock material, composed of particles ranging in size from silt to boulder size fragments, are often disposed of in large piles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker JG, Bricker OP (1992) The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochim Cosmochim Acta 56:3073–3092

    Article  Google Scholar 

  • Anbeek C, Van Breemen N, Meijer EL, Van der Plas L (1994) The dissolution of naturally weathered feldspar and quartz. Geochim Cosmochim Acta 58:4601–4613

    Article  Google Scholar 

  • Berner RA (1995) Chemical weathering and its effect on atmospheric CO2 and climate. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Rev in Mineralogy 31: 565–583

    Google Scholar 

  • Blum AE, Stillings, LL (1995) Feldspar dissolution kinetics. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Rev in Mineralogy 31:291–351

    Google Scholar 

  • Brantley SL, Chen Y (1995) Chemical weathering rates of pyroxenes and amphiboles. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Rev in Mineralogy 31:119–172

    Google Scholar 

  • Busenberg E, Plummer LN (1982) The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5 to 65°C and 0 to 1 atm PCO2. American J Sci 282: 45–78

    Article  Google Scholar 

  • Coastec Research (1991) Acid rock drainage prediction manual. Energy Mines and Resources, Canada, CANMET,MEND report 1.16.1(b)

    Google Scholar 

  • Drewer, JI, Clow DW (1995) Weathering rates in catchments. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Soc of America, Rev in Mineralogy 31:463–483

    Google Scholar 

  • Eriksson N, Destouni G (1997) Combined effects of dissolution kinetics, secondary mineral precipitation, and preferential flow on copper leaching from mining waste rock. Water Resour Res 33:471–483

    Article  Google Scholar 

  • Feasby DG, Tremblay GA (1995) New technologies to reduce environmental liability from acid generating mine wastes. In: Hyne TP, Blanchette MC (eds), Proc of Sudbury’95 — Mining and the Environ. 28 May-1 June 1995, Sudbury, Ontario, Canada, Vol 2, pp 643–647

    Google Scholar 

  • Heaton JS, Engstrom RC (1994) In situ atomic force microscopy study of the differential dissolution of fayalite and magnetite. Environ Sci Techn 28:1747–1754

    Article  Google Scholar 

  • Hering JG, Stumm W (1990) Oxidative and reductive dissolution of minerals. In: Hochella MF Jr, White AF (eds) Mineral-water interface geochemistry. Mineralogical Soc of America, Rev in Mineralogy 23:427–465

    Google Scholar 

  • Hochella MF Jr, Banfield JF (1995) Chemical weathering of silicates in nature: a microscopic perspective with theoretical considerations. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Rev in Mineralogy 31:353–406

    Google Scholar 

  • Kwong YTJ (1995) Influence of galvanic sulfide oxidation on mine water chemistry. In: Hyne TP, Blanchette MC (eds), Proc of Sudbury’95 — Mining and the Environment. May 28-June 1, 1995, Sudbury, Ontario, Canada, 2, 477–483

    Google Scholar 

  • Lapakko K (1988) Prediction of acid mine drainage from Duluth Complex mining wastes in northeastern Minnesota. 1988 Mine Drainage and Surface Mine Reclamation conference. Bureau of Mines Information Circular 1988, 10-9183; pp 180–190

    Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water-rock interactions. Journal of Geophysical Research, 89-B6: 4009–4025

    Article  Google Scholar 

  • Lasaga AC, Soler, JM, Ganor J, Burch TE, Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles. Geochim Cosmochim Acta 58:2361–2386

    Article  Google Scholar 

  • Lawrence RW, Wang Y (1997) Determination of neutralization potential for acid rock drainage prediction. Natural Resources Canada, CANMET, MEND report 1.16.3

    Google Scholar 

  • Levenspiel O (1972) Chemical reaction engineering. John Wiley and Sons, p 578

    Google Scholar 

  • Martello DV, Vecchio KS, Diehl JR, Graham RA, Tamilia JP, Pollack SS (1994) Do dislocations and stacking faults increase the oxidation rate of pyrites? Geochim Cosmochim Acta 58:4657–4665

    Article  Google Scholar 

  • Morin KA, Hutt NM, McArthur R (1995) Statistical assessment of past water chemistry to predict future chemistry at Noranda Minerals’ Bell Mine. In: Hynes T, Blanchette MC (eds) Proceedings of Sudbury’95 — Mining and the Environment. May 28-June 1, 1995, Sudbury, Ontario, Canada, Vol 3, pp 925–935

    Google Scholar 

  • Morse JW (1983) The kinetics of calcium carbonate dissolution and precipitation. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Mineralogical Society of America, Rev in Mineralogy 11: 227–264

    Google Scholar 

  • Nagy KL (1995) Dissolution and precipitation kinetics of sheet silicates. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Rev in Mineralogy 31:173–225

    Google Scholar 

  • Nicholson RV (1994) Iron-sulfide oxidation mechanisms: laboratory studies. In: Blowes DW, Jambor JL (eds) The environmental geochemistry of sulfide mine-wastes. Mineralogical Association of Canada, Short Course Handbook Vol 22, pp 163–183

    Google Scholar 

  • Nicholson RV, Gillham, RW, Reardon EJ (1990) Pyrite oxidation in carbonate-buffered solution: rate control by oxide coatings. Geochim Cosmochim Acta 54:395–402

    Article  Google Scholar 

  • Nicholson RV, Scharer JM, Kwong, ECM, Janzen MP (1997) Laboratory and modeling studies of pyrrhotite oxidation. Final Report, CANMET Contract No. 23440-4-1198/01-SQ, p 292

    Google Scholar 

  • Norecol, Dames and Moore (1996) Guide for predicting water chemistry from waste rock piles. Natural Resources Canada, CANMET, MEND report 1.27.1a.

    Google Scholar 

  • Otwinowski M (1995) Scaling analysis of acid rock drainage. Natural Resources Canada, CANMET, MEND report 1.19.2.

    Google Scholar 

  • Otwinowski M (1997) Physical mechanisms in acid mine drainage waste rock piles: phase I. Physical and geostatistical aspects of acid rock drainage. Natural Resources Canada, CANMET, MEND report 1.28.1.

    Google Scholar 

  • Perkins EH, Nesbitt HW, Gunter WD, StArnaud LC, Mycroft JR (1995) Critical review of geochemical processes and geochemical models adaptable for prediction of acidic drainage from waste rock. Natural Resources Canada, CANMET, MEND report 1.42.1.

    Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water systems at 5 to 60°C and 0.0 to 1.0 atm CO2. American J Sci 278:179–216

    Article  Google Scholar 

  • Ritchie AIM (1994a) The waste-rock environment. In: Blowes DW, Jambor JL (eds) The environmental geochemistry of sulfide mine-wastes. Mineralogical Association of Canada, Short Course Handbook, Vol 22:133–161

    Google Scholar 

  • Ritchie AIM (1994b) Sulfide oxidation mechanisms: controls and rates of oxygen transport. In: Blowes DW, Jambor JL (eds) The environmental geochemistry of sulfide mine-wastes. Mineralogical Association of Canada, Short Course Handbook, Vol 22: 201–245

    Google Scholar 

  • Smith L, Lopez DL, Beckie R, Morin K, Dawson R, Price W (1995) Hydrogeology of waste rock dumps. Natural Resources Canada, CANMET, MEND Associate Project, July 1995.

    Google Scholar 

  • Stillings LL, Brantley SL (1995) Feldspar dissolution at 25 °C and pH 3: reaction stoichiometry and the effect of cations. Geochim Cosmochim Acta 59:1483–1496

    Article  Google Scholar 

  • Sverdrup H, Warfvinge P (1995) Estimating field weathering rates using laboratory kinetics. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Rev in Mineralogy 31: 485–541

    Google Scholar 

  • Sverjensky DA (1992) Linear free energy relations for predicting dissolution rates of solids. Nature 358: 310–313

    Article  Google Scholar 

  • Weatherell CJ, Feasby DG, Tremblay G (1997) The mine environment neutral drainage (MEND) program — a model of cooperative research for technology development. In: Proc of PMI 97, 28th Annual Seminars and Symp, 26 Sep-2 Oct 1997, Chicago.

    Google Scholar 

  • White AF (1995) Chemical weathering rates of silicate minerals in soils. In: White AF, Brantley (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Rev in Mineralogy 31: 407–461

    Google Scholar 

  • White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals. In: White AF and Brantley SL (eds) Chemical weathering rates of silicate minerals. Mineralogical Society of America, Rev in Mineralogy 31:1–22

    Google Scholar 

  • White AF, Peterson, ML (1990) Role of reactive-surface area characterization in geochemical kinetic models. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. American Chemical Soc Symp Series 416: 461–475

    Google Scholar 

  • White AF, Blum AE, Schulz MS, Bullen TD, Harden JW, Peterson ML (1996) Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates. Geochim Cosmochim Acta 60:2533–2550

    Article  Google Scholar 

  • White WW, Jeffers TH (1994) Chemical predictive modeling of acid mine drainage from metallic sulfide-bearing waste rock. In: Proc of American Chemical Society Symp Series 550:608–630

    Google Scholar 

  • Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454

    Article  Google Scholar 

  • Wogelius RA, Walther JV (1991) Olivine dissolution at 25°C: effects of pH,CO2 and organic acids. Geochim Cosmochim Acta 55:943–954

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paktunc, A.D. (1999). Characterization of Mine Wastes for Prediction of Acid Mine Drainage. In: Azcue, J.M. (eds) Environmental Impacts of Mining Activities. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59891-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59891-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64169-5

  • Online ISBN: 978-3-642-59891-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics