Skip to main content

Ecophysiology of Vascular Plants on Inselbergs

  • Chapter
Inselbergs

Part of the book series: Ecological Studies ((ECOLSTUD,volume 146))

Abstract

As described in Chapter 4, this Volume (Porembski et al.) in more detail, inselbergs represent by no means uniform ecosystems but rather show clear fragmentation in subhabitats such as exposed rock surfaces, drainage channels, crevices between rocks, humus-filled depressions on top or the slopes of the rocks, or even wet flushes and seasonal rock pools (Barthlott et al. 1996). These habitat types differ largely in the constellation of edaphic and microclimatic factors (see Szarzynski, Chap. 3, this Vol.) and thus in the ecophysiological demands with which the plants colonizing such ecological units have to cope. As a consequence, inselbergs show a high floristic ß-diversity, i. e., they are covered by mosaics of plant communities consisting of species highly adapted to the environmental conditions of the given habitat type. For this reason, inselbergs provide promising models for comparative studies on mechanisms and effectivity of ecological adaptation in plants, but the ecophysiological investigation of inselberg vegetation is still at its beginning (for review see Lüttge 1997). The aim of this chapter is first to analyze some mechanisms of ecophysiological adaptation in vascular plants inhabiting inselbergs.In the second part we will apply these considerations to the vegetation of Mt. Angavokely, an inselberg of the central high plateau of Madagascar. Finally, possible consequences of adaptation for the diversity of life-forms in vascular inselberg plants will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barthlott W, Porembski S, Szarzynski J, Mund JP (1996) Phytogeography and vegetation in tropical inselbergs. In: Guillaumet J-L, Belin M, Puig H (eds) Actes du colloque international de Phytogéographie tropicale, ORSTOM, Paris, pp 251 – 261

    Google Scholar 

  • Barthlott W, Porembski S, Fischer E, Gemmel B (1998) First protozoa-trapping plant found. Nature 392: 447

    Article  CAS  Google Scholar 

  • Baskin JM, Baskin CC (1988) Endemism in rock outcrop plant communities of un- glaciated eastern United States: an evaluation of the roles of the edaphic, genetic and light factors. J Biogeogr 15: 829 – 840

    Article  Google Scholar 

  • Behzadipour M, Ratajczak R, Faist K, Pawlitschek P, Tremolieres A, Kluge M (1998) Phenotypic adaptation of tonoplast fluidity to growth temperature in the CAM plant Kalanchoe daigremontianaHam. et Per. is accompanied by changes in the phospholipid membrane and protein composition. J Membr Biol 166: 61 – 70

    Article  PubMed  CAS  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Berry JA, Raison JK (1981) Responses of macrophytes to temperature. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. New Series, vol I. Springer, Berlin Heidelberg New York, pp 277 – 338

    Google Scholar 

  • Bewley JD, Krochko JE (1982) Desiccation tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. Encyclopedia of plant physiology. New Series, vol 2. Springer, Berlin Heidelberg New York, pp 325 – 378

    Google Scholar 

  • Brulfert J, Güclü S, Kluge M (1991) Effects of abrupt or progressive drought on the photosynthetic mode of Crassula sieberianacultivated under different day length. J Plant Physiol 138: 685 – 690

    CAS  Google Scholar 

  • Brulfert J, Ravelomanana D, Güclü S, Kluge M (1996) Ecophysiological studies in Kalanchoe porphyrocalyx(Baker) and K. miniata(Hils et Bojer), two species performing highly flexible CAM. Photosynth Res 49: 29 – 36

    Article  CAS  Google Scholar 

  • Darwin C (1875) Insectivorous plants. John Murray, London

    Google Scholar 

  • Diaz M, Ball E, Liittge U (1990) Stress-induced accumulation of the xanthophyll rho- doxanthin in leaves of Aloe vera. Plant Physiol Biochem 28: 679 – 682

    CAS  Google Scholar 

  • Dörrstock S, Porembski S, Barthlott W (1996) Ephemeral flush vegetation on inselbergs in the Ivory Coast (West Africa). Candollea 51: 407 – 419

    Google Scholar 

  • Ehleringer JR, Osmond CB (1989) Stable isotopes. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology: field methods and instrumentation. Chapman & Hall, London, pp 281 – 290

    Google Scholar 

  • Ehleringer JR, Rundel PW (1989) Stable isotopes: History, units, instrumentation. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological studies 68. Springer, Berlin Heidelberg New York, pp 1 – 15

    Chapter  Google Scholar 

  • Eller BM, Ferrari S (1997) Water use efficiency of two succulents with contrasting C02 fixation pathways. Plant Cell Environ 20: 93 – 100

    Article  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33: 317 – 345

    Article  CAS  Google Scholar 

  • Feng W, Ning L, Daley LS, Moreno Y, Azarenko A, Cridlle RS (1994): Theoretical fitting of energetics of CAM path to calorimetric data. Plant Physiol Biochem 32: 591 – 598

    CAS  Google Scholar 

  • Fetene M, Lee HSJ, Lüttge U (1990) Photosynthetic acclimation in a terrestrial CAM bromeliad, Bromelia humilisJacq. New Phytol 114: 399 – 406

    Article  CAS  Google Scholar 

  • Franco AC, Ball E, Lüttge U (1992) Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia. Plant Cell Environ 15: 821 – 829

    Article  CAS  Google Scholar 

  • Gaff DF (1977) Desiccation-tolerant vascular plants of Southern Africa. Oecologia 31: 95 – 104

    Article  Google Scholar 

  • Gaff DF (1980) Protoplasmic tolerance of extreme water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. John Wiley, New York, pp 207 – 231

    Google Scholar 

  • Gehrig HH, Rösike H, Kluge M (1997) Detection of DNA polymorphisms in the genus Kalanchoeby RAPD-PCR fingerprint and its relationships to infrageneric taxonomic position and ecophysiological photosynthetic behaviour of the species. Plant Sci 125: 41 – 51

    Article  CAS  Google Scholar 

  • Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimi¬lation pathways in terrestrial CAM plants. Plant Cell Environ 15: 1051 – 1062

    Article  CAS  Google Scholar 

  • Haag-Kerwer A, Franco A, Lüttge U (1992) The effects of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor. J Exp Bot 43: 345 – 352

    Article  CAS  Google Scholar 

  • Hartung W, Schiller P, Dietz K-J (1998) Physiology of poikilohydric plants. Prog Bot 59: 299 – 327

    CAS  Google Scholar 

  • Hatch MD, Osmond CB (1976) Compartmentation and transport in C4 photosynthesis. In: Stocking CR, Heber U (eds) Encyclopedia of plant physiology. New Series, vol 3. Springer, Berlin Heidelberg New York, pp 134 – 187

    Google Scholar 

  • Hazel JR (1988) Homeoviscous adaptation in animal cell membranes. In: Aloia RC, Curtain CC, Gordon LM (eds) Advances in membrane fluidity, vol 3. AR Liss, New York, pp 149 – 189

    Google Scholar 

  • Heil H (1925) Chamaegigas intrepidus Dr., eine neue Auferstehungspflanze. Beih Bot Zentralbl 41:41–50

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377 – 403

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE (1982) Distribution of diurnal acid metabolism in the genus Isoetes. Am J Bot 69: 254 – 257

    Article  CAS  Google Scholar 

  • Keeley JE (1996): Aquatic CAM photosynthesis. In: Winter K, Smith, JAC (eds) Crassula- cean acid metabolism: biochemistry, ecophysiology and evolution. Ecological Studies 114. Springer, Berlin Heidelberg New York, pp 281 – 295

    Google Scholar 

  • Kliemchen A, Schomburg M, Galla H-J, Lüttge U, Kluge M (1993) Phenotypic changes in the fluidity of the tonoplast membrane of crassulacean acid metabolism plants in response to temperature and salinity stress. Planta 189: 403 – 409

    Article  CAS  Google Scholar 

  • Kluge M, Brulfert J (1996) Crassulacean acid metabolism in the genus Kalanchoe: ecological, physiological and biochemical aspects. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Ecological Studies 114. Springer, Berlin Heidelberg New York, pp 325 – 335

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecophysiological adaptation. Ecological Studies 30. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kluge M, Vinson B (1995) Der Crassulaceen-Säurestoffwechsel bei Orchideen Madagas- kars. Analyse einer ökologischen Anpassung der Photosynthese. Rundgespräche der Kommission für Ökologie. Vol 10 Tropenforschung. H Pfeil, München, pp 163 – 175

    Google Scholar 

  • Kluge M, Brulfert J, Ravelomanana D, Lipp J, Ziegler H (1991a) Crassulacean acid metabolism in Kalanchoespecies collected in various climatic zones of Madagascar: a survey by δ13 analysis. Oecologia 88: 407 – 414

    Article  Google Scholar 

  • Kluge M, Kliemchen A, Galla H-J (1991b) Temperature effects on crassulacean acid metabolism: EPR spectroscopic studies on the thermotropic phase behaviour of the tonoplast membranes of Kalanchoe daigremontiana. Bot Acta 104: 355 – 360

    CAS  Google Scholar 

  • Kluge M, Razanoelisoa B, Ravelomanana D, Brulfert J (1992) In situ studies of crassulacean acid metabolism in Kalanchoe beharensisDrake del Castillo, a plant of the semi- arid southern region of Madagascar. New Phytol 120: 323 – 334

    Article  CAS  Google Scholar 

  • Kluge M, Brulfert J, Lipp J, Ravelomanana D, Ziegler H (1993) A comparative study by δ 13C analysis of crassulacean acid metabolism (CAM) in Kalanchoe (Crassulaceae) species of Africa and Madagascar. Bot Acta 106: 320 – 324

    CAS  Google Scholar 

  • Kluge M, Brulfert J, Rauh W, Ravelomanana D, Ziegler H (1995) Ecophysiological studies on the vegetation of Madagascar; δ 13C and δD survey for incidence of crassulacean acid metabolism (CAM) among orchids from montane forests and succulents from the xerophytic thorn-bush. Isot Environ Health Stud 31: 191 – 210

    Article  CAS  Google Scholar 

  • Kluge M, Brulfert J, Vinson B (1996) Signification biogéographique des processus d’adaptation photosynthétique. II: I’exemple des orchidees malgaches. In: Lourenço WR (ed) Biogeographie de Madagascar. ORSTOM, Paris, pp 157 – 163

    Google Scholar 

  • Kluge M, Vinson B, Ziegler H (1998a) Ecophysiological studies on orchids of Madagascar: incidence and plasticity of crassulacean acid metabolism in species of the genus AngraecumBory. Plant Ecol 135: 43 – 57

    Article  Google Scholar 

  • Kluge M, Nguyen B, Behzadipour M, Fischer-Schliebs E (1999) Phenotypic adaptation of membrane fluidity in the tonoplast and plasmalemma of the C3 plant Hordeum vulgare var. Alexis. J Plant Physiol 154: 185 – 191

    CAS  Google Scholar 

  • Lange OL (1959) Untersuchungen über den Wärmehaushalt und Hitzeresistenz mauretanischer Wüsten-und Savannenpflanzen. Flora 147: 595 – 651

    Google Scholar 

  • Larcher W (1987): Streß bei Pflanzen. Naturwissenschaften 74: 158 – 167

    Article  CAS  Google Scholar 

  • Larcher W (1994) Ökophysiologie der Pflanzen. Ulmer, Stuttgart

    Google Scholar 

  • Levitt J (1980): Responses of plants to environmental stresses. Vol II, Water, radiation, salt and other stresses. Academic Press, New York

    Google Scholar 

  • Lüttge U (1983) Ecophysiology of carnivorous plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. New Series, vol 3. Springer, Berlin Heidelberg New York, pp 489 – 517

    Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593 – 629

    Article  Google Scholar 

  • Lüttge U (1988) Day-night changes of citric acid levels in crassulacean acid metabolism: phenomenon and ecophysiological significance. Plant Cell Environ 13: 977 – 982

    Article  Google Scholar 

  • Lüttge U (1989) Vascular epiphytes: Setting the scene. In: Lüttge U (ed) Vascular plants as epiphytes. Ecological Studies 76. Springer, Berlin Heidelberg New York, pp 1 – 12

    Google Scholar 

  • Lüttge U (1995) Ecophysiological basis of the diversity of tropical plants: the example of the genus Clusia. In: Heinen HD, San José JJ, Caballero-Arias H (eds) Nature and human ecology in the neotropics. Sci Guaianae 5: 23 – 26

    Google Scholar 

  • Lüttge U (1996) Clusia: plasticity and diversity in a genus of C3/CAM intermediate tropical trees. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Ecological Studies 114. Springer, Berlin Heidelberg New York, pp 296 – 311

    Google Scholar 

  • Lüttge U (1997) Physiological ecology of tropical plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Markovska Y, Kimenov T, Tsonev G (1997) Regulation of CAM and respiratory recycling by water supply in higher poikilohydric plants — Haberlea rhodopensisFriv. and Ramonda serbicaPane, at transition from biosis to anabiosis and vice versa. Bot Acta 110: 18 – 24

    Google Scholar 

  • Müller J, Sprenger N, Bortlik N, Boiler T, Wiemken A (1997) Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol Plant 100: 153 – 158

    Article  Google Scholar 

  • Mullet JE, Whitsitt MS (1996) Plant cellular responses to water stress. Plant Growth Regul 20: 119 – 124

    Article  CAS  Google Scholar 

  • Nobel PS (1988) Environmental biology of agaves and cacti. Cambridge University Press, Cambridge

    Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379 – 414

    Article  CAS  Google Scholar 

  • Porembski S, Barthlott W (1995) On the occurrence of a velamen radicum in Cyperaceae and Velloziaceae. Nord J Bot 15: 625 – 630

    Article  Google Scholar 

  • Porembski S, Barthlott W (1995) On the occurrence of a velamen radicum in Cyperaceae and Velloziaceae. Nord J Bot 15: 625 – 630

    Article  Google Scholar 

  • Porembski S, Brown G, Barthlott W (1996) A species-poor tropical sedge community: Afrotrilepis pilosa mats on inselbergs in West Africa. Nord J Bot 16: 239 – 245

    Article  Google Scholar 

  • Quinn PJ (1988) Regulation of membrane fluidity in plants. In: Aloia RC, Curtain CC, Gordon LM (eds) Physiological regulation of membrane fluidity. A R Liss, New York, pp 293 – 322

    Google Scholar 

  • Raison JK, Berry JA, Armond PA, Pike CS (1980) Membrane properties in relation to adaptation of plants to temperature stress: In: Turner N, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 261 – 276

    Google Scholar 

  • Rauh W (1973) Über die Zonierung und Differenzierung der Vegetation Madagaskars. Akademie der Wissenschaften und Literatur Mainz. Franz Steiner, Wiesbaden

    Google Scholar 

  • Rundel PW, Ehleringer JR, Nagy KA (eds) (1989) Stable isotopes in ecological research. Ecological Studies 68. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schomburg M, Kluge M (1994) Phenotypic adaptation to elevated temperatures of tonoplast fluidity in the CAM plant Kalanchoe daigremontiana is caused by membrane proteine. Bot Acta 107: 328 – 332

    CAS  Google Scholar 

  • Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54: 151 – 173

    CAS  Google Scholar 

  • Seine R, Porembski S, Barthlott W (1995) A neglected habitat of carnivorous plants: inselbergs. Feddes Repert 106: 555 – 562

    Article  Google Scholar 

  • Smith JAC, Winter K (1996) Taxonomic distribution of crassulacean acid metabolism. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Ecological Studies 114. Springer, Berlin Heidelberg New York, pp 427 – 434

    Google Scholar 

  • Solbrig OT (1993) Plant traits and adaptive strategies: their role in ecosystem function. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Ecological Studies 99. Springer, Berlin Heidelberg New York, pp 97 – 116

    Google Scholar 

  • Tuba Z, Lichtenthaler HK, Csintalan Z, Pócs T (1993a) Regreening of desiccated leaves of the poikilochlorophyllous Xerophyta scabridaupon rehydration. J Plant Physiol 142: 103 – 108

    CAS  Google Scholar 

  • Tuba Z, Lichtenthaler HK, Maroti I, Csintalan Z (1993b) Resynthesis of thylakoids and function of chloroplasts in the desiccated leaves of the poikilochlorophyllous plant Xerophyta scabridaupon rehydration. J Plant Physiol 142: 742 – 748

    CAS  Google Scholar 

  • Tuba Z, Lichtenthaler HK, Csintalan Z, Nagy Z, Szente U (1994) Reconstitution of chlorophylls and photosynthetic C02 assimilation upon rehydration of the desiccated poikilochlorophyllous plant Xerophyta scabrida(Pax) Th. Dur. et Schinz. Planta 192: 414 – 420

    Article  CAS  Google Scholar 

  • Tuba Z, Lichtenthaler HK, Csintalan Z, Szente K (1996) Loss of chlorophyll, cessation of photosynthetic C02 assimilation and respiration in the poikilochlorophyllous plant Xerophyta scabrida during desiccation. Physiol Plant 96: 383 – 388

    Article  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol 42: 579 – 620

    Article  CAS  Google Scholar 

  • Vieweg GH, Ziegler H (1969) Zur Physiologie von Myrothamnus flabellifolia. Ber Dtsch Bot Ges 82: 29 – 36

    Google Scholar 

  • von Willert DJ, Eller BM, Werger MJA, Brinkmann E, Ihlenfeldt HD (1992) Life strategies of succulents in deserts, with special reference to the Namib desert. Cambridge University Press, Cambridge

    Google Scholar 

  • Winter K (1985) Crassulacean acid metabolism. In: Barber J, Barber NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329 – 387

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129 – 141

    Article  Google Scholar 

  • Wolf J (1960) Der diurnale Saurerhythmus. In: Ruhland W (ed) Encyclopedia of plant physiology, vol 12. Springer, Berlin Heidelberg New York, pp 809 – 889

    Google Scholar 

  • Ziegler H, Vieweg GH (1970) Poikilohydre Pteridophyta (Farngewachse), Poikilohydre Spermatophyta (Samenpflanzen). In: Walter H, Kreeb K (eds) Die Hydratation und Hydratur des Protoplasmas der Pflanzen und ihre ökophysiologische Bedeutung. Protoplasmatologia, vol II. Springer, Wien New York, pp 88 – 108

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kluge, M., Brulfert, J. (2000). Ecophysiology of Vascular Plants on Inselbergs. In: Porembski, S., Barthlott, W. (eds) Inselbergs. Ecological Studies, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59773-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59773-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64120-6

  • Online ISBN: 978-3-642-59773-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics