Skip to main content

Transgenic Triticale (Triticum durum x Secale cereale)

  • Chapter
Transgenic Crops I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 46))

Abstract

Selection breeding with promising hexaploid triticale was started in 1948 by O’Mara, who produced the hybrid from Secale cereale and Triticum durum. Twenty years later, CIMMYT, Mexico, produced the first acceptable cultivar, Armadillo, with almost complete fertility, better yield, early maturity, improved test weight, and one gene for dwarfness. Over the years, other traits like nutritional quality, disease resistance, and preharvest sprouting have also been improved. Today, over one million ha has been cultivated in Russia, Poland, the USA, Canada, West Germany, Argentina, Mexico, France, Portugal, Spain, and other countries. The most widely grown triticale in the world is the Polish cultivar Lasko. Triticale can now be considered a viable commercial crop with tremendous potential. It is adapted to and has excellent yield potential in all areas where wheat is grown. In addition, triticale appears to perform better than wheat in marginal production environments, such as in acid soils, at high elevations in the tropics, under semiarid conditions, and in sandy soils (Villareal et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babeli P, Karp A, Kaltsikes PJ (1988) Plant regeneration and somaclonal variation from cultured immature embryos of sister lines of rye and triticale differing in their content of heterochro-matin. I Morphogenetic response. Theor Appl Genet 75:929–936.

    Google Scholar 

  • Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: Haploids in crop improvement I. Biotechnology in agriculture and forestry, vol 12. Springer, Berlin Heidelberg New York, pp 3–44.

    Google Scholar 

  • Becker D, Brettschneider R, Lörz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant 5:299–307.

    Article  CAS  Google Scholar 

  • Bernard S (1977) Etude de quelques facteurs contribuant ä la réussite de l’androgénèse par culture d’anthères in vitro chezle triticale hexaploide. Ann Plant 27:639–635.

    Google Scholar 

  • Bernard S (1980) In vitro androgenesis in hexaploid Triticale: determination of physical conditions increasing embryoid formation and green plant production. Z Pflanzenzucht 85:308–321.

    Google Scholar 

  • BirchRG , Franks T (1991) Development and optimisation of microprojectile systems for plant genetic transformation. Aust J Plant Physiol 18:453–469

    Article  CAS  Google Scholar 

  • Chan MT, Chang HH, Ho SL, Tong WF, Yu SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/ß-glucuronidase gene. Plant Mol Biol 22:491–506.

    Article  PubMed  CAS  Google Scholar 

  • Charmet G, Bernard S (1984) Diallel analysis of androgenic plant production in hexaploid Triticale (x triticosecale, Wittmack). Theor Appl Genet 69:55–61.

    Article  Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonicavarieties via electrical discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962.

    Article  Google Scholar 

  • Czernilowsky AP, Hein R, Becker B, Wirzt U (1986) Studies of the structure and functional organization of foreign DNA integrated into the genome of Nicotiana tabacum. DNA 5:476–482.

    Google Scholar 

  • Deilaporta SL, Woodand J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 4:19–21.

    Article  Google Scholar 

  • Eapen S, Rao PS (1982) Callus induction and plant regeneration from immature embryos of rye and triticale. Plant Cell Tissue Organ Cult 1:221–227

    Article  CAS  Google Scholar 

  • Eapen S, Rao PS (1985) Plant regeneration from immature inflorescence callus cultures of wheat, rye and Triticale. Euphytica 34:153–159.

    Article  Google Scholar 

  • Fedak G (1987) Chromosome irregularities in wheat and Triticale plants regenerated from leaf base callus. Plant Breed 99:151–154.

    Article  Google Scholar 

  • Hobbs SLA, Warkentin TD, DeLong CMO (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26.

    Article  PubMed  CAS  Google Scholar 

  • Immonen AST (1995) Influence of media and growth regulators on somatic embryogenesis and plant regeneration for production of primary triticales. Plant Cell Tissue Organ Cult 44:45–52.

    Article  Google Scholar 

  • Jähne A, Lazzeri PA, Lörz H (1991) Regeneration of fertile plants from protoplasts derived from embryogenic cell suspensions of barley (Hordeum vulgare L.). Plant Cell Rep 10:1–6.

    Article  Google Scholar 

  • Kozdój J, Zimny J (1993) Microspore development stages in chilled and unchilled anthers of Triticale (x Triticosecale Wittmack). Bull Pol Acad Biol 41:108–116.

    Google Scholar 

  • Lazzeri PA, Brettschneider R, Lührs R, Lörz H (1991) Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. Theor Appl Genet 81:437–444.

    Article  Google Scholar 

  • Li L, Rongda Q, de Kochko A, Faquet C, Beachy RN (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep 12:250–255.

    Article  Google Scholar 

  • Lörz H, Baker B, Schell J (1985) Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet 199:178–182.

    Article  Google Scholar 

  • Lukaszewski A J, Curtis C (1992) Transfer of the Glu-Dld gene from chromosome ID of bread wheat to chromosome 1R in hexaploid Triticale. Plant Breed 109:203–210.

    Article  Google Scholar 

  • Lukaszewski AJ, Curtis C (1994) Transfer of the Glu-Dl gene from chromosome ID to chromosome 1A in hexaploid Triticale. Plant Breed 112:177–182.

    Article  CAS  Google Scholar 

  • McCabe DE, Swain WF, Martineil BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926.

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Nakamura C, Keller WA (1982) Callus proliferation and plant regeneration from immature embryos of hexaploid Triticale. Z Pflanzenzucht 91:137–160.

    Google Scholar 

  • Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissue following microprojectile bombardment with two distinct gene constructs. Plant J 5:285–297.

    Article  CAS  Google Scholar 

  • Pauk J, Manninen O, Mattila I, Salo Y, Pulli S (1991) Androgenesis in hexaploid spring wheat F2 populations and their parents using a multiple-step regeneration system. Plant Breed 107:18–27.

    Article  Google Scholar 

  • Pedersen C, Rasmussen SK, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridisation with the GAA-satellite sequence. Genome 39:93–104.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen C, Zimny J, Becker D, Gärtner A, Lörz H (1997) Localization of introduced genes on the chromosomes of transgenic barley, wheat and Triticale by fluorescence in situ hybridization. Theor Appl Genet 94:749–757.

    Article  CAS  Google Scholar 

  • Rafalski A, Zimny J (1994) In vitro culture and transformation study on Triticale. Congr Proc, 8th Int Congr of Plant tissue and cell culture. Firenze, p 114.

    Google Scholar 

  • Rathore KS, Chowdhury VK, Hodges TK (1993) Use of bar as a selectable marker gene and for the production of herbicide-resistant rice from protoplasts. Plant Mol Biol 21:871–884.

    Article  PubMed  CAS  Google Scholar 

  • Schumann G (1990) In vitro production of haploids in triticale. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Wheat. Springer, Berlin Heidelberg New York, pp 382–402.

    Google Scholar 

  • Sosinov A, Lukjanjuk S, Ignatova S (1981) Anther cultivation and induction of haploid plants in Triticale. Z Pflanzenzucht 86:272–285.

    Google Scholar 

  • Spencer TM, O’Brien JV, Start WG, Adams TR (1992) Segregation of transgenes in maize. Plant Mol Biol 18:201–210.

    Article  PubMed  CAS  Google Scholar 

  • Stolarz A (1990) Cell and protoplast culture, somatic embryogenesis and transformation studies in different forms of x Triticosecale Wittmack. In: Beier A (ed) Proc 2nd Int Triticale Symp Passo Fundo, Brazil, CIMMYT, Mexico, pp 286–289

    Google Scholar 

  • Stolarz A, Lörz H (1986a) Somatic embryogenesis, in vitro manipulation and plant regeneration from immature embryos of hexaploid Triticale (x Triticosecale Wittmack). Z Pflanzenzucht 353–362.

    Google Scholar 

  • Stolarz A, Lörz H (1986b) Somatic embryogenesis, cell and protoplast culture of Triticale (x Triti00ACcosecale Wittmack). In: Horn W, Jensen CJ, Odenbach W, Schieder O (eds), Genetic manipulation in plant breeding, de Gruyter, Berlin, pp 499–501.

    Google Scholar 

  • Stolarz A, Lörz H (1988) Protoplast culture and transformation studies of Triticale (x Triticose-cale Wittmack). Plant Cell Tissue Organ Cult 12:227–230

    Article  Google Scholar 

  • Tomes D, Weissinger A, Ross M, Higgins R, Drummond B, Schaaf S, Malone-Schoneberg J, Stabell M, Flynn P, Anderson J, Hovard J (1990) Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves. Plant Mol Biol 14:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Villareal RL, Varughese G, Abdalla OS (1990) Advances in spring triticale breeding. In: Wheat.

    Google Scholar 

  • Walters DW, Vetsch CS, Potts DE, Lundquist RC (1992) Transformation and inheritance of hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18:189–200

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants.Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Wang Y, Hu H (1993) Gamete composition and chromosome variation in pollen-derived plants from octoploid triticale x common wheat hybrids.Theor Appl Genet 85:681–687

    Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum).Plant Physiol 102:1077–1084

    PubMed  CAS  Google Scholar 

  • Ya-Ying W, Ching-San S, Ching-Chu W, Nan-Fen C (1973)The induction of pollen plantlets of Triticale and Capsicum annum from anther culture.Sei Sin 16:147–151

    Google Scholar 

  • Zimny J (1989) Genotypic dependence of the somatic embryogenesis of Triticale (x Triticosecale Wittmack). In: Robbelen G (ed) Science for plant breeding. XII Eucarpia Congr, Göttingen, Germany, Th Mann Publishers, Gelsenkirchen-Buer, pp 7–13.

    Google Scholar 

  • Zimny J (1992) Somatic embryogenesis of rye and Triticale. In: Griga M, Tejkova E (eds) Proc Symp, Regulation of plant somatic embryogenesis. Research Institute of Technical Crops and Legumes, Czechoslovakia, pp 4–9.

    Google Scholar 

  • Zimny J, Lörz H (1989) High frequency of somatic embryogenesis and plant regeneration of rye(Secale cereale L.). Z Pflanzenzucht 102:89–100.

    Google Scholar 

  • Zimny J, Rafalski A (1993) Transformation of Triticale protoplasts. Transformowanie protoplas-tów pszenzyta (x Triticosecale Wittmack). Biul Inst Hodowli Aklim Rosl 187:127–132

    Google Scholar 

  • Zimny J, Rybczynski JJ (1986) Somatic embryogenesis of Triticale.In: Horn W, Jensen CJ, Odenbach W, Schieder O (eds)Genetic manipulations in plant breeding, de Gruyter, Berlin, pp 503–505

    Google Scholar 

  • Zimny J, Becker D, Brettschneider R, Lörz H (1994) First transgenic Triticale (x Triticosecale Wittmack). 7th Int Congr of Plant tissue and cell culture, Firenze, 12–17 June, S7–48 (Abstr).

    Google Scholar 

  • Zimny J, Becker D, Brettschneider R, Lörz H (1995) Fertile transgenic Triticale (x Triticosecale Wittmack).Mol Breed 1:155–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimny, J., Lörz, H. (2000). Transgenic Triticale (Triticum durum x Secale cereale). In: Bajaj†, Y.P.S. (eds) Transgenic Crops I. Biotechnology in Agriculture and Forestry, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59612-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59612-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64051-3

  • Online ISBN: 978-3-642-59612-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics