Skip to main content

Abstract

The occurrence of precipitation in the form of snow as opposed to rain typically causes a change in how a drainage basin responds to the input of water. The reason for the modified hydrological response is that snow is held in cold storage on a basin for an extended period of time before it enters the runoff process. There is such a vast difference in the physical properties of snow and other natural surfaces that the occurrence of snow on a drainage basin can cause significant changes in the energy and water budgets. As an example, the relatively high albedo of snow reflects a much higher percentage of incoming solar shortwave radiation than snow-free surfaces (80% for relatively new snow as opposed to roughly 15% for snow-free vegetation). Snow may cover up to 53% of the land surface in the northern hemisphere (Foster and Rango, 1982) and up to 44% of the world’s land areas at any one time. On a drainage basin basis, the snow cover can vary significantly by elevation, time of year, or from year to year. The Rio Grande basin at Del Norte, Colorado is 3419 km2 in area and ranges from 2432 m a.s.l. at the streamgage up to 4215 m a.s.l. at the highest point in the basin. Figure 11.1 compares the snow cover depletion curves obtained from Landsat data in 1977 and 1979 in elevation zones A (780 km2; 2432-2926 m), B (1284 km2; 2926-3353 m), and C (1355 km2; 3353-4215 m) in the Rio Grande basin. In a period of two years from April 10, 1977 to April 10, 1979, a great difference in seasonal snow cover extent was experienced. Landsat data show that 49.5% or 1693 km2 were covered by snow on April 10, 1977. Only two years later in 1979, 100% or 3419 km2 were snow covered on April 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, S., Pietroniro, A. and Brugman, M.M.: Glacier snowline mapping using ERS-1 SAR imageiy. Remote Sensing of Environment, 61, 46–54 (1997).

    Article  Google Scholar 

  • Andersen, T.: SNOWSAT-Operational snow mapping in Norway. Proc. First Moderate Resolution Imaging Spectroradiometer (MODIS) Snow and Ice Workshop, NASA Conf. Publ. CP-3318, NASA/Goddard Space Flight Center, Greenbelt, MD 1995, pp. 101–102.

    Google Scholar 

  • Andersen, T.: AVHRR data for snow mapping in Norway. Proc. 5th AVHRR Data Users Meeting, Tromsoe, Norway 1991.

    Google Scholar 

  • Armstrong, R.L. and Brodzik, M.J.: An earth-gridded SSM/I data set for cryospheric studies and global change monitoring. Advances in Space Research, 16(10), 155–163 (1995).

    Article  Google Scholar 

  • Armstrong, R. L., Chang, A., Rango, A., and Josberger, E.: Snow depths and grain-size relationships with relevance for passive microwave studies. Annals of Glaciology, 17, 171–176 (1993).

    Google Scholar 

  • Baumgartner, M. F. and Rango, A.: A microcomputer-based alpine snowcover and analysis system (ASCAS). Photogrammetric Engineering & Remote Sensing, 61 (12), 1475–1486 (1995).

    Google Scholar 

  • Baumgartner, M. F., Seidel, K., and Martinec, J.: Toward snowmelt runoff forecast based on multisensor remote-sensing information, IEEE Trans. Geosci. Remote Sens. 25, 746–750 (1987).

    Article  Google Scholar 

  • Baumgartner, M.F., Seidel, K., Haefner, H., Itten, K.I., and Martinec, J.: Snow cover mapping for runoff simulations based on Landsat-MSS data in an alpine basin. Proc. Hydrological Applications of Space Technology, Cocoa Beach Workshop, IAHS Publ. No. 160, 1986, pp. 191–199.

    Google Scholar 

  • Borodulin, V. V. and Prokacheva, V. G.: Studying lake ice regimes by remote sensing methods. In: Hydrological Applications of Remote Sensing and Remote Data Transmission. Proc. Hamburg Symp., IAHS Publ. No. 145, 1985, pp. 445–450.

    Google Scholar 

  • Bowley, C. J., Barnes, J. C., and Rango, A.: Satellite snow mapping and runoff prediction handbook, NASA Technical Paper 1829, National Aeronautics and Space Administration, Washington, D. C. 1981,87 pp.

    Google Scholar 

  • Braslau, D. and Bussom, D. E.: Landsat sensing of glaciers with application to mass-balance and runoff. In: Proc. Modeling Snow Cover Runoff, S. C. Colbeck and M. Ray (eds.), Hanover, New Hampshire: U.S. Army Cold Regions Res. and Eng. Lab 1979, pp. 77–82.

    Google Scholar 

  • Brubaker, K., Rango, A., and Kustas, W.: Incorporating radiation inputs into the Snowmelt Runoff Model. Hydrological Processes, 10, 1329–1343 (1996).

    Article  Google Scholar 

  • Carroll, T. R.: Remote sensing of snow in the cold regions. In: Proc. First Moderate Resolution ImagingSpectroradiometer (MODIS) Snow and Ice Workshop, Nasa Conf. Publ. CP-3318, NASA/Goddard Space Flight Center, Greenbelt, MD 1995, pp. 3–14.

    Google Scholar 

  • Carroll, T.R.: Airborne and satellite data used to map snow cover operationally in the U.S. and Canada. Proc. International Symposium on Remote Sensing and Water Resources, Enschede, The Netherlands, 1990, pp. 147–155.

    Google Scholar 

  • Carroll, T.R., Glynn, J.E. and Goodison, B.E.: A comparison of U.S. and Canadian airborne gamma radiation snow water equivalent measurements. Proc. 51st Annual Western Snow Conference, Vancouver, Washington, 1983, pp. 27–37.

    Google Scholar 

  • Carroll, T.R.: Cost-benefit analysis of airborne gamma radiation snow water equivalent data used in snowmelt flood forecasting. Proc. 54th Annual Meeting of the Western Snow Conference, Phoenix, Arizona, 1986, pp. 1–11.

    Google Scholar 

  • Chang, A.T.C., Foster, J.L., Hall, D.K., Goodison, B.E., Walker, A.E., Metcalfe, J.R. and Harby, A.: Snow parameters derived from microwave measurements during the BOREAS winter field campaign. Journal of Geophysical Research 102(D24), 29, 663–29, 671 (1997).

    Article  Google Scholar 

  • Chang, A.T.C., Foster, J.L. and Hall, D.K.: Nimbus-7 SMMR derived global snow cover parameters. Annals of Glaciology, 9, 39–44 (1987).

    Google Scholar 

  • Choudhury, B.J., Kerr, Y.H., Njoku, E.G. and Pampaloni, P. (eds.): Working group Al: Snow. In: Passive Microwave Remote Sensing of Land-Atmosphere Interactions, VSP, Utrecht, The Netherlands, 1995, pp. 651–656.

    Google Scholar 

  • De Seve, D., Bernier, M., Fortin, J.-P. and Walker, A.: Preliminary analysis of snow microwave radiometry using the SSM/I passive-microwave data: the case of La Grande River watershed (Quebec). Annals of Glaciology, 25, 353–361 (1997).

    Google Scholar 

  • Dey, B., Moore, H. And Gregory, AF.: The use of satellite imagery for monitoring ice break-up along the Mackenzie River, NWT. Arctic 30(4), 234–242 (1977).

    Google Scholar 

  • Dozier, J. and Marks, D.: Snow mapping and classification from Landsat Thematic Mapper data. Annals of Glaciolology 9, 1–7(1987).

    Google Scholar 

  • Dozier, J.: Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 28, 9–22(1989).

    Article  Google Scholar 

  • Duguay, C. R., and Lewkowicz, A. G.: Assessment of SPOT panchromatic imagery in the detection and identification of permafrost features, Fosheim Peninsula, Ellesmere Island, N.W.T. Proceedings of the 17th Canadian Symposium on Remote Sensing, Saskatoon, Saskatchewan, 1995, pp. 8–14.

    Google Scholar 

  • England, A. W.: Radiobrightness of diurnally heated, freezing soil. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 464–476 (1990).

    Article  Google Scholar 

  • Erhler, C., Seidel, K., and Martinec, J.: Advanced analysis of snow cover based on satellite remote sensing for the assessment of water resources. In: Remote Sensing and Geographic Information systems for Design and Operation of Water Resources Systems, IAHS Publication No. 242, 1997, pp. 93–101.

    Google Scholar 

  • Foster, J. L. and Rango, A.: Snow cover conditions in the northern hemisphere during the winter of 1981, Jour. Clim. 20, 171–183 (1982).

    Article  Google Scholar 

  • Foster, J., Chang, A. and Hall, D.: Improved passive microwave algorithms for North America and Eurasia. Proc. of the Third International Workshop on Applications of Remote Sensing in Hydrology, Greenbelt, Maryland, U.S.A., 1996, pp. 63–70.

    Google Scholar 

  • Fritzsche, A.E.: The National Weather Service Gamma Snow System Physics and Calibration. Publication No. NWS-8201, EG&G, Inc., Las Vegas, Nevada (1982).

    Google Scholar 

  • Gomez-Landesa, E.: Evaluacion de Recursos de Agua en Forma de Nieve mediante Teledeteccion usando satelites de la sine NOAA (Evaluation of water resources in the form of snow by remote sensing using NOAA satellites). Universidad Politenica de Madrid, Madrid, Spain, Ph.D. Thesis 1997.

    Google Scholar 

  • Gomez-Landesa, E. and Rango, A.: Snow cover remote sensing and snowmelt runoff forecasts in the Spanish Pyrenees using the SRM model. Proceedings of the Fourth International Workshop on Applications of Remote Sensing in Hydrology, NHRI Symposium Report, Santa Fe, NM, 1998, 12pp.

    Google Scholar 

  • Goodell, B. C.: Snowpack management for optimum water benefits. ASCE Water Resources Engi-neering Conference, Denver, Colorado: Conference Preprint 379, 1966.

    Google Scholar 

  • Goodison, B.E.: Determination of areal snow water equivalent on the Canadian prairies using passive microwave satellite data. Proc. 1989 International Geoscience and Remote Sensing Symposium (IGARSS ’89), Vancouver, Canada, 1989, pp. 1243–1246.

    Google Scholar 

  • Goodison, B.E. and Walker, AE.: Canadian development and use of snow cover information from passive microwave satellite data. In: Passive Microwave Remote Sensing of Land-Atmosphere Interactions (Choudhury, B.J., Kerr, Y.H., Njoku, E.G. and Pampaloni, P., eds.), VSP, Utrecht, The Netherlands, 1995, pp. 245–262.

    Google Scholar 

  • Goodison, B.E., Rubinstein, I., Thirkettle, F.W. and Langham, EJ.: Determination of snow water equivalent on the Canadian prairies using microwave radiometry. In: Modelling Snowmelt Induced Processes, IAHS Publication No. 155, 1986, pp. 163–173.

    Google Scholar 

  • Goodison, B.E., Ferguson, H.L. and McKay, G.A.: Measurement and Data Analysis. In, Handbook of Snow (ed. D.M. Gray and Male, D. H.), Pergamon Press Canada Ltd., 1981, pp. 191–274.

    Google Scholar 

  • Grody, N.C. and Basist, A.N.: Global identification of snowcover using SSM/I measurements. IEEE Transactions on Geoscience and Remote Sensing, 34 (1), 237–249 (1996).

    Article  Google Scholar 

  • Haefher, H. and Piesberger, J.: High alpine snow cover monitoring using ERS-1 SAR and Landsat TM data. In: Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources Systems (Proc. Rabat Symp.), IAHS Publication No. 242, 1997, pp. 113–118.

    Google Scholar 

  • Hall, D. K., Fagre, D. B., Klasner, F., Linebaugh, G., and Liston, G.: Analysis of ERS-1 synthetic aperture radar data of frozen lakes in northern Montana and implications for climate studies. Journal of Geophysical Research, 99(C11), 22, 473–22, 482 (1994).

    Article  Google Scholar 

  • Hall, D.K. and Martinec, J.: Remote sensing of ice and snow. New York: Chapman and Hall, 189 pp, 1985.

    Google Scholar 

  • Hall, D. K: Influence of depth hoar on microwave emission from snow in northern Alaska. Cold Regions Science and Technology, 13, 225–231 (1987).

    Article  Google Scholar 

  • Hall, D. K: Active and passive microwave remote sensing of frozen lakes for regional climate studies. In, Snow Watch ?92 - Detection Strategies for Snow and Ice (eds. R. G. Barry, B. E. Goodison, and E.F. LeDrew), Glaciological Data Report GD-25, World Data Center A for Glaciology (Snow and Ice), Boulder, Colorado, 1993, pp. 80–85.

    Google Scholar 

  • Hallikainen, M. and Jolma, P.: Development of algorithms to retrieve the water equivalent of snow cover from satellite microwave radiometer data. In: Proc. 1986 International Geoscience and Remote Sensing Symposium (IGARSS ’86), Zurich, Switzerland, 1986, pp. 611–616.

    Google Scholar 

  • Hallikainen, M. Microwave radiometry of snow. Advances in Space Research, 9(1), (l)267–(1)275 (1989).

    Article  Google Scholar 

  • Jeffries, M. O., Morris, K, Weeks, W.F., and Wakabayashi, H.: Structural and stratigraphic features and ERS 1 synthetic aperture data backscatter characteristics of ice growing on shallow lakes in NW Alaska, winter, 1991–1992, Journal of Geophysical Research, 99(C11):22,459–22,471 (1994).

    Article  Google Scholar 

  • Kuittinen, R.: Determination of snow water equivalents by using NOAA-satellite images, gamma ray spectrometry and field measurements. In: Remote Sensing and Large-Scale Global Processes, IAHS Publication No. 186, 1989, pp. 151–159.

    Google Scholar 

  • Kumar, V. S., Haefner, H. and Seidel, K.: Satellite snow cover mapping and snowmelt-runoff modelling in Beas Basin. In: Snow Hydrology and Forests in High Alpine Areas. Proc. Vienna Symp. IAHS Publ. No. 205, 1991, pp. 101–109.

    Google Scholar 

  • Kunzi, K.F., Patil, S., and Rott, H.: Snow cover parameters retrieved from Nimbus-7 Scanning Mutlichannel Microwave Radiometers (SMMR) data, IEEE Transactions on Geoscience and Remote Sensing, GE-20(4), 452–467 (1982).

    Google Scholar 

  • Kurvonen, L. and Hallikainen, M.: Influence of land-cover category on brightness temperature of snow. IEEE Transactions on Geoscience and Remote Sensing, 35 (2), 367–377 (1997).

    Article  Google Scholar 

  • Leconte, R. and Klassen, P.D.: Lake and river ice investigations in northern Manitoba using airborne SAR imagery. Arctic, 44 (Supp. 1), 153–163 (1991).

    Google Scholar 

  • Leshkevich, G., Piche, W. And Clemente-Colon, P.: Great Lakes ice research applications demonstration. In: Proc. Second ERS-1 Symposium: Space at the Service of our Environment, Hamburg, Germany, ESA SP-361, 1994, pp. 675–679.

    Google Scholar 

  • Leverington, D. W., and Duguay, C. R.: A neural network method to determine the presence or absence of permafrost near May, Yukon Territory, Canada. Permafrost and Periglacial Processes, 8, 205–215 (1997).

    Article  Google Scholar 

  • Li, Z. and Shi, J.: Snow mapping with SIR-C multipolarization SAR in Tienshen Mountain. In: Proc. 1996 International Geoscience and Remote Sensing Symposium (IGARSS ’96), Lincoln, Nebraska, U.S.A., 1996, pp. 136–138.

    Google Scholar 

  • Lichtenegger, J., Seidel, K., Keller, M., and Haefner H.: Snow surface measurements from digital Landsat MSS data. Nordic Hydrol. 12, 275–288 (1981).

    Google Scholar 

  • Martinec, J., Rango, A., and Roberts, R.: Snowmelt Runoff Model (SRM) user’s manual. Geographica Bernensia P35, Department of Geography, University of Berne, 1998, 84pp.

    Google Scholar 

  • Massom, R.: Satellite remote sensing of polar regions: Applications, limitations, and data availability. London, Belhaven Press, 1991.

    Google Scholar 

  • Matzler, C.: Passive microwave signatures of landscapes in winter. Meteorol. Atmos. Phys., 54, 241–260(1994).

    Article  Google Scholar 

  • Matzler, C., Strozzi, T., Weise, T., Floricioiu D.-M. and Rott, H.: Microwave snowpack studies made in the Austrian Alps during the SIR-C/X-S AR experiment. International Journal of Remote Sensing, 18(12), 2505–2530(1997).

    Article  Google Scholar 

  • McGinnis, D. F. And Schneider, S. R.: Monitoring river ice break-up from space. Photogrammetic Engineering & Remote Sensing, 44 (1), 57–68 (1978).

    Google Scholar 

  • Nagler, T. and Rott, H.: The application of ERS-1 SAR for snowmelt runoff modeling. In: Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources Systems (Proc. Rabat Symp.), IAHS Publication No. 242, 1997, pp. 119–126.

    Google Scholar 

  • Peck, E. L., Johnson, E.R., Keefer, T.N., and Rango, A.: Combining measurements of hydrological variables of various sampling geometries and measurement accuracies. In: Hydrological Applications of Remote Sensing and Remote Data Transmission (Proc. Hamburg Symp.), IAHS Publ. No. 145, 1985, pp. 591–599.

    Google Scholar 

  • Ramamoorthi, A. S.: Snow cover area (SCA) is the main factor in forecasting snowmelt runoff from major basins. In: Large Scale Effects of Seasonal Snow Cover. Proc. Vancouver Symp. IAHS Publ. No. 166, 1987, pp. 279–286.

    Google Scholar 

  • Ramamoorthi, A. S.: Snow-melt run-off studies using remote sensing data. In: Proc. Indian Acad. Sci. 6(3), 279–286(1983).

    Google Scholar 

  • Rango, A., Martinec, J., Chang, A.T.C., Foster, J., and van Katwijk, V.: Average areal water equivalent of snow in a mountain basin using microwave and visible satellite data. IEEE Transactions on Geoscience and Remote Sensing GE-27(6), 740–745 (1989).

    Google Scholar 

  • Rango, A.: The snowmelt-runoff model. Proc. ARS Natural Res. Modeling symp. Pingree Park, CO, USDA-ARS-30, 1985, pp. 321–325.

    Google Scholar 

  • Rango, A., Martinec, J., Foster, J., and Marks, D.: Resolution in operational remote sensing of snow cover. In: Hydrological Applications of Remote Sensing and Remote Data Transmission. (Proc. Hamburg Symp.), IAHS Publ. No. 145, 1985, pp. 371–382.

    Google Scholar 

  • Rango, A., Chang, A. T. C. and Foster, J. L.: The utilization of spaceborne microwave radiometers for monitoring snowpack properties. Nordic Hydrol. 10, 25–40 (1979).

    Google Scholar 

  • Rango, A. and Martinec, J.: Water storage in mountain basins from satellite snow cover monitoring, In: Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources Systems (Proc. Rabat Symp.), IAHS Publication No. 242, 1997, pp. 83–91.

    Google Scholar 

  • Rott, H. and Matzler, C.: Possibilities and limits of synthetic aperture radar for snow and glacier surveying. Annals of Glaciology, 9, 195–199 (1987).

    Google Scholar 

  • Rott, H.: Capabilities of microwave sensors for monitoring areal extent and physical properties of the snowpack. In: Proc. NATO Advanced Res. Workshop on Global Environmental Change and Land Surface Processes in Hydrology, Tucson, U.S., 1993.

    Google Scholar 

  • Rott., H. and Nagler, T.: Snow and glacier investigations by ERS-1 SAR - First results. Proceedings, First ERS-1 Symposium: Space at the Service of Our Environment, Cannes, France, 1993, pp. 577–582.

    Google Scholar 

  • Shi, J. and Dozier, J.: Estimation of snow water equivalence using SIR-C/X-SAR. In: Proc. 1996 International Geoscience and Remote Sensing Symposium (IGARSS ’96), Lincoln, Nebraska, U.S.A., 1996, pp. 2002–2004.

    Google Scholar 

  • Shi, J. and Dozier, J.: Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 33 (4), 905–914 (1995).

    Article  Google Scholar 

  • Shi, J. and Dozier, J.: On estimation of snow water equivalence. In: Proc. Of the Fourth International Workshop on Applications of Remote Sensing in Hydrology, National Water Research Institute, Saskatoon, Saskatchewan, 1998 (In Press), 10 pp.

    Google Scholar 

  • Solberg, R., Hiltbrunner, D., Koskinen, J., Guneriussen, T., Rautiainen, K. and Hallikainen, M.: SNOWTOOLS: Research and development of methods supporting new snow products. In: Proc. XX Nordic Hydrology Conference, Helsinki, Finland, 1998.

    Google Scholar 

  • Steppuhn, H.: Snow and Agriculture. In: Gray, D. M. and Male, D. N. (eds.) Handbook of Snow: Principles, Processes, Management and Use. Toronto: Pergamon Press 1981, pp. 60–125.

    Google Scholar 

  • Storr, D.: Precipitation variations in a small forested watershed. Proc. 35th Annual Western Snow Conference. 1967, pp. 11–16.

    Google Scholar 

  • Sturm, M., Holmgren, J. A., and Yankielun, N. E.: Using FM-CW radar to make extensive measurements of arctic snow depth: problems, promises, and successes. EOS Trans., AGU 77 (46) F196 (1996).

    Google Scholar 

  • Sun, C., Neale, C.M.U., McDonnell, J.J. and Cheng, H.-D.: Monitoring land-surface snow conditions from SSM/I data using an artificial neural network classifier. IEEE Transactions on Geoscience and Remote Sensing, 35 (4), 801–809 (1997).

    Article  Google Scholar 

  • Thirkettle, F., Walker, A., Goodison, B. and Graham, D.: Canadian prairie snow cover maps from near real-time passive microwave data: from satellite data to user information. In: Proc. 14th Canadian Symposium on Remote Sensing, Calgary, Canada, 1991, pp. 172–177.

    Google Scholar 

  • Walker, A.E. and Goodison, B.E.: Discrimination of a wet snow cover using passive microwave satellite data. Annals of Glaciology, 17, 307–311(1993).

    Google Scholar 

  • Walker, A., Goodison, B., Davey, M., and Olson, D.: Atlas of Southern Canadian Prairies Winter Snow Cover from Satellite Passive Microwave Data: November 1978 to March 1986. Atmospheric Environment Service, Environment Canada. 1995.

    Google Scholar 

  • Warkentin, AA.: The Red River flood of 1997: An overview of the causes, predictions, characteristics and effects of the flood of the century. CMOS Bulletin, 25 (5), (1997).

    Google Scholar 

  • Woo, M.K., Walker, A., Yang, D. and Goodison, B.: Pixel-scale ground snow survey for passive microwave study of the Arctic snow cover. In: Proc. of the 52nd Annual Meeting of the Eastern Snow Conference, Toronto, Ontario, Canada, 1995, pp. 51–57.

    Google Scholar 

  • Yankielun, NE.: An airborne millimeter-wave FM-CW radar for thickness profiling of freshwater ice. CRREL Report 92–20, US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1992, 77 pp.

    Google Scholar 

  • Zuerndorfer, B., England, A. W., Wakefield, GH.: The radiobrightness of freezing terrain. Proceedings, International Geoscience and Remote Sensing Symposium (IGARSS ?89), Vancouver, Canada, 1989, pp. 2748–2751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rango, A., Walker, A.E., Goodison, B.E. (2000). Snow and Ice. In: Schultz, G.A., Engman, E.T. (eds) Remote Sensing in Hydrology and Water Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59583-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59583-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64036-0

  • Online ISBN: 978-3-642-59583-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics