Skip to main content

Acetolactate Synthase Inhibitors

  • Chapter
Herbicide Classes in Development

Abstract

Acetolactate synthase (ALS; EC 4.6.3.8, also referred to acetohydroxy acid synthase; AHAS) is the first common enzyme in the biosynthetic pathway to the branched-chain amino acids; valine, leucine and isoleucine (Fig. 1). The pathway exists in plants and microorganisms such as bacteria, fungi and algae. ALS is the primary target site of action for at least four structurally distinct classes of herbicides including the sulfonylureas (SUs; LaRossa and Schloss 1984; Ray 1984), the imidazolinones (IMs; Shaner et al. 1984), the triazolopyrimidine sulfonamides (TPs; Subramanian and Gerwick 1989) and the pyrimidinylsalicylates (pyrimidinyl carboxy herbicides, PCs; Shimizu et al. 1994b), all of which have been successful in their development as commercial herbicides. The extremely good weed control activity achieved with these herbicides indicates that ALS is a very effective target site for herbicidal action. Deficiency of the pathway of branched-chain amino acids biosynthesis in mammals (Singh and Shaner 1995) shows us that it is the selective target between plants and mammals. ALS is therefore attractive for addressing a large number of goals of modern herbicide research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins SW, Wills D, Boersma M, Walker SR, Robinson G, Mcleod RJ, Einam JP (1997) Weeds resistant to chlorsulfuron and atrazine from the north-east grain region of Australia. Weed Res 37:343–349

    Article  Google Scholar 

  • Al-Khatib K, Baumgartner JR, Peterson DE, Currie RS (1998) Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sci 46:403–407

    CAS  Google Scholar 

  • Amann A, Feucht D, Wellmann A (2000) A new herbicide for grass control in winter wheat, rye and triticale. Z Pflanzenkr Pflanzenschutz 17:545–553

    Google Scholar 

  • Anderson DD, Nissen SJ, Martin AR, Roeth FW (1998) Mechanism of primisulfuron resistance in a shattercane (Sorghum bicolor) biotype. Weed Sci 46:158–162

    CAS  Google Scholar 

  • Anderson PC, Georgeson M (1989) Herbicide-tolerant mutants of corn. Plant Sci Res 31:994–999

    CAS  Google Scholar 

  • Aragao FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merrill] plants at a high frequency. Theor Appl Genet 101:1–6

    Article  CAS  Google Scholar 

  • Arfin SM, Koziel DA (1973) Acetolactate synthase of Pseudomonas aeruginosa: II. Evidence for the presence of two nonidentical subunits. Biochim Biophys Acta 321:356–360

    PubMed  CAS  Google Scholar 

  • Babczinski P, Zelinski T (1991) Mode of action of herbicidal ALS-inhibitors on acetolactate synthase from green plant cell cultures, yeast, and Escherichia coli. Pestic Sci 31:305–323

    Article  CAS  Google Scholar 

  • Bedbrook JR, Chaleff RS, Falco SC, Mazur BI, Somerville CR, Yadav NS (1991) Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase. US5013659, EI Du Pont de Nemours and Co

    Google Scholar 

  • Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8774–8778

    Article  PubMed  CAS  Google Scholar 

  • Bekkaoui F, Condie JA, Neustaedter DA, Moloney MM, Crosby WL (1991) Isolation, structure and expression of a cDNA for acetolactate synthase from Brassica nap us. Plant Mol Biol 16:714–744

    Article  Google Scholar 

  • Bekkaoui F, Schorr P, Crosby WL (1993) Acetolactate synthase from Brassica napus: immunological characterization and quaternary structure of the native enzyme. Physiol Plant 88:475–484

    Article  CAS  Google Scholar 

  • Bernasconi P, Woodworth AR, Rosen BA, Subramanian MV, Siehl DL (1995) A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J Biol Chem 270:17381–17385

    Article  PubMed  CAS  Google Scholar 

  • Correction (1996) J Biol Chem 271:13925–13926

    Google Scholar 

  • Boutsalis P, Karotam J, Powles SB (1999) Molecular basis of resistance to acetolactate synthaseinhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pestic Sci 55:507–516

    Article  CAS  Google Scholar 

  • Brady TM, Cross B, Dohner RF, Finn JM, Ladner DL (1998) The discovery of imazamox, a new broad-spectrum imidazolinone herbicide. ACS Symposium Series 686, Washington, DC, pp 30–37

    Google Scholar 

  • Brandle AC, Morrison MJ, Hattori J, Miki BL (1994) A comparison of two genes for sulfonylurea herbicide resistance in transgenic tobacco seedlings. Crop Sci 34:226–229

    Article  CAS  Google Scholar 

  • Bright S, William J, Chang MT, Evans IJ, Macdonald MJ (1992) Herbicide resistant plants. WO9208794, Imperial Chemical Industries PLC

    Google Scholar 

  • Brooks RL, Zoschke A, Porpiglia PJ (1995) CGA-277476: a short residual herbicide for soybean weed control programs. Brighton Crop Protection Conference, Weeds 1, pp 79–85

    Google Scholar 

  • Chang AK, Duggleby RG (1997) Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem J 327:161–169

    PubMed  CAS  Google Scholar 

  • Chang AK, Duggleby RG (1998) Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J 333:765–777

    PubMed  CAS  Google Scholar 

  • Chang SI, Kang MK, Choi JD, Namgoong SK (1997) Soluble over-expression in Escherichia coli,and purification and characterization of wild-type recombinant tobacco acetolactate synthase. Biochem Biophys Res Commun 234:549–553

    Article  PubMed  CAS  Google Scholar 

  • Charest PJ, Hattori J, Demoor J, Iyer VN, Miki BL (1990) In vitro study of transgenic tobacco expressing Arabidopsis wild type and mutant acetohydroxyacid synthase genes. Plant Cell Rep 8:643–646

    Article  CAS  Google Scholar 

  • Chipman D, Barak Z, Schloss JV (1998) Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthase and acetohydroxyacid synthase. Biochim Biophys Acta 1385:401–419

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Ahn S-C, Koo SJ, Joe KH, Oh HS (1997) LGC-40863: a new broad spectrum post-emergence herbicide. Brighton Crop Protection Conference, Weeds 1, pp 17–20

    Google Scholar 

  • Chong CK, Chang SI, Choi JD (1998) Functional amino acid residues of recombinant tobacco acetolactate synthase. J Biochem Mol Biol 31:258–263

    CAS  Google Scholar 

  • Chong CK, Shin HJ, Chang SI, Choi JD (1999) Role of tryptophanyl residues in tobacco acetolactate synthase. Biochem Biophys Res Commun 259:136–140

    Article  PubMed  CAS  Google Scholar 

  • Chong CK, Shin HJ, Chang SI, Choi JD (2000) Determination of the disulfide bond and its possible role in tobacco acetolactate synthase. Arch Biochem Biophys 379:363–366

    Article  PubMed  CAS  Google Scholar 

  • Cornish-Bowden A (1986) Why is uncompetitive inhibition so rare? A possible explanation, with implications for the design of drugs and pesticides. FEBS Lett 203:3–6

    Article  PubMed  CAS  Google Scholar 

  • Croughan TP (1999) Herbicide resistant rice. US5952553, Louisiana State University and Agricultural and Mechanical College, Baton Rouge

    Google Scholar 

  • Cullin C, Baudin-Baillieu A, Gullemete E, Ozier-Kalogeropoulos O (1996) Functional analysis of YCL09C: evidence for a role as the regulatory subunit of acetolactate synthase. Yeast 12:1511–1518

    Article  PubMed  CAS  Google Scholar 

  • Currie RS, Regehr DL (1995) Methods of measuring the impact of the XA17 gene on imazethapyr injury in corn (Zea mays). Weed Technol 9:676–681

    CAS  Google Scholar 

  • Davies ME (1964) Acetolactate and acetoin synthesis in ripening peas. Plant Physiol 39:53–59

    Article  PubMed  CAS  Google Scholar 

  • Currie RS, Kwon CS, Penner D (1995) Magnitude of imazethapyr resistance of corn (Zea mays) hybrids with altered acetolactate synthase. Weed Sci 43:578–582

    CAS  Google Scholar 

  • Dietrich GE (1998) Imidazolinone resistant AHAS mutants. US5731180, American Cyanamid Company

    Google Scholar 

  • Duggleby RG (1997) Identification of acetolactate synthase small subunit gene in two eukaryotes. Gene 190:245–249

    Article  PubMed  CAS  Google Scholar 

  • Duggleby RG, Pang SS (2000) Acetohydroxyacid synthase. J Biochem Mol Biol 33:1–36

    CAS  Google Scholar 

  • Dumas R, Biou V, Douce R (1997) Purification and characterization of a fusion protein of plant acetohydroxyacid synthase and acetohydroxyacid isomeroreductase. FEBS Lett 408:156–160

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Böger P (1988) Acetolactate synthase from barley (Hordeum vulgare L.): purification and partial characterization. Z Naturforsch 43c:850–856

    Google Scholar 

  • Durner J, Böger P (1990) Oligomeric forms of plant acetolactate synthase depend on flavin adenine dinucleotide. Plant Physiol 93:1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Gailus V, Böger P (1991) New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol 95:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Eberlein CV, Guttieri MJ, Thill DC, Mallory-Smith CA, Baerg RJ (1997) Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci 45:212–217

    CAS  Google Scholar 

  • Eberlein CV, Guttieri MJ, Berger PH, Fellman JK, Mallory-Smith CA, Thill DC, Baerg RJ, Belknap WR (1999) Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci 47:383–392

    CAS  Google Scholar 

  • Fang LY, Gross PR, Chen CH, Lillis M (1992) Sequence of two acetohydroxyacid synthase genes from Zea mays. Plant Mol Biol 18:1185–1187

    Article  PubMed  CAS  Google Scholar 

  • Foes MJ, Liu LX, Tranel PJ, Wax LM, Stoller EW (1998) A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci 46:514–520

    CAS  Google Scholar 

  • Foes MJ, Liu L, Stoller EW, Wax LM, Tranel PJ (1999) A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci 47:20–27

    CAS  Google Scholar 

  • Fushimi T, Nakahira K, Tagawa M, Nawamaki T (1997) Herbicide resistant acetolactate synthase. WO9708327, Nissan Chemical Industries, Ltd

    Google Scholar 

  • Gerwick BC, Mireles LC, Eilers RJ (1993) Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol 7:519–524

    CAS  Google Scholar 

  • Glatzer L, Eakin E, Wagner RP (1972) Acetohydroxyacid synthase with a pH optimum of 7.5 from Neurospora crassa mitochondria: characterization and partial purification. J Bacteriol 112: 453–464

    PubMed  CAS  Google Scholar 

  • Grandoni JA, Marta PT, Schloss JV (1998) Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents. J Antimicrob Chemother 42:475–482

    Article  PubMed  CAS  Google Scholar 

  • Grula JW, Hudspeth RL, Hobbs SL, Anderson DM (1995) Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum. Plant Mol Biol 28:837–846

    Article  PubMed  CAS  Google Scholar 

  • Guangfu Y, Huayin L, Huazheng Y (1999) QSAR and 3D-QSAR analysis of structurally diverse ALS inhibitors: sulfonylureas and triazolopyrimidine-2-sulfonamides. Pestic Sci 55:1143–1150

    Article  Google Scholar 

  • Guttieri MJ, Eberlein CV, Mallory-Smith CA, Thill DC, Hoffman DL (1992) DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci 40:670–676

    CAS  Google Scholar 

  • Guttieri MJ, Eberlein CV, Thill DC (1995) Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175–178

    CAS  Google Scholar 

  • Hacker E, Kehne H, Hess M (1996) Herbicides with 4-iodo-2-[3-(4-methoxy-6-methyl-1,3,5triazin-2-yl)ureidosulfonyl]-benzoic acid esters. WO9641537, Hoechst Schering AgrEvo GmbH

    Google Scholar 

  • Hall LM, Stromme KM, Horsman GP (1998) Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci 46:390–396

    CAS  Google Scholar 

  • Hanai R, Kawano K, Shigematsu S, Tamaru M (1993) KIH-6127, a new selective herbicide to control barnyardgrass in rice. Brighton Crop Protection Conference, Weeds 1, pp 47–52

    Google Scholar 

  • Hand JM, Singh BK, Chaleff RS (1992) Herbicide resistant AHAS deletion mutants EP492113, American Cyanamid Company

    Google Scholar 

  • Harms CT, Montoya AL, Privalle LS, Briggs RW (1990) Genetic and biochemical characterization of corn inbred lines tolerant to the sulfonylurea herbicide primisulfuron. Theor Appl Genet 80:353–358

    Article  CAS  Google Scholar 

  • Harms CT, Armour SL, DiMaio JJ, Middlesteadt LA, Murray D, Negrotto DV, Thompson-Taylor H, Weymann K, Montoya AL, Shillito RD, Jen GC (1992) Herbicide resistance due to amplification of a mutant acetohydroxyacid synthase gene. Mol Gen Genet 233:427–435

    Article  PubMed  CAS  Google Scholar 

  • Hart SE, Saunders JW, Pemmer D (1994) Herbicide-resistant crops from cell selection. Rev Weed Sci 6:251–263

    CAS  Google Scholar 

  • Hattori J, Rutledge R, Labbe H, Brown D, Sunohara G, Miki B (1992) Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance. Mol Gen Genet 232:167–173

    PubMed  CAS  Google Scholar 

  • Hattori J, Brown D, Mourad G, Labbe H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B (1995) An acetohydroxyacid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet 246:419–425

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Somerville CR (1990) A mutation causing imidazoline resistance maps to the csrl locus Arabidopsis thaliana. Plant Physiol 92:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211:266–271

    Article  CAS  Google Scholar 

  • Hawkes TR (1989) Studies of herbicides which inhibit branched chain amino acid biosynthesis. British Crop Protection Council Monograph 42, Lavenham Press Limited, Lavenham, UK, pp 131–138

    Google Scholar 

  • Hawkes TR, Thomas SE (1990) Imidazolinones: factors determining their herbicidal efficacy. In: Barak Z, Chipman DM, Schloss JV (eds) Biosynthesis of branched-chain-amino acids. Balaban, Weinheim, pp 373–389

    Google Scholar 

  • Hershey HP, Schwartz LJ, Gale JP, Abell LM (1999) Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia. Plant Mol Biol 40: 795–806

    Article  PubMed  CAS  Google Scholar 

  • Hervieu F, Vaucheret H (1996) A single amino acid change in acetolactate synthase confers resistance. Mol Gen Genet 251:220–224

    Article  PubMed  CAS  Google Scholar 

  • Hess M, Rose E (1995) A new herbicide for broadleaf weed and sedge control in rice. Brighton Crop Protection Conference, Weed 2, pp 763–768

    Google Scholar 

  • Hill CM, Pang SS, Duggleby RG (1997) Purification of Escherichia coli acetohydroxyacid synthase isozyme II and reconstitution of active enzyme from its individual pure subunits. Biochem J 327:891–898

    PubMed  CAS  Google Scholar 

  • Hinz RR, Owen MDK (1997) Acetolactate synthase resistance in a common waterhemp (Amaranthus rudis) population. Weed Technol 11:13–18

    CAS  Google Scholar 

  • Höfgen R, Laber B, Schuttke BL, Klonus AK, Streber W, Pohlenz HD (1995) Repression of acetolactate synthase activity through antisense inhibition. Plant Physiol 107:469–477

    PubMed  Google Scholar 

  • Hur CU, Cho JH, Hong SM, Kim HW, Lim YH, Rim JS, Kim JS, Chae SH (1995) Pyrimidine derivatives, process for their preparation and their use as herbicide. EP658549, Lucky Ltd

    Google Scholar 

  • Ishida Y, Ohta K, Yoshikawa H (1992) Herbicides. EP477808, Takeda Chemical Industries, Ltd

    Google Scholar 

  • Itoh K, Wang GX (1997) An outbreak of sulfonylurea herbicide resistance in Scrophulariaceae paddy weeds in Japan. 16th Asian-Pacific Weed Science Society Conference 4B, pp 219–221

    Google Scholar 

  • Itoh K, Wang GX, Ohba S (1999) Sulfonylurea resistance in Lindernia micrantha,an annual paddy weed in Japan. Weed Res 39:413–423

    Article  CAS  Google Scholar 

  • Kakefuda G, Ott K, Kwagh J, Stockton GW (1996) Structure-based designed herbicide resistant products. WO9633270, American Cyanamid Company

    Google Scholar 

  • Kaku K, Shimizu T, Nagayama K, Hukuda A, Tanaka Y (2001) Isolation and expression of cDNA for acetolactate synthase from Oryza sativa. Abstract Annual Meeting Pesticide Science Society Japan, Sakai, p 101 (in Japanese)

    Google Scholar 

  • Kobayashi M, Yokoyama M, Watanabe O, Sadohara H, Wada N (1995) KIH-2023, a new post-emergence herbicide in rice (Oryza sativa). 15th Asian-Pacific Weed Science Society Conference Proceedings I(A), Kyoto, pp 221–226

    Google Scholar 

  • Koeppe MK, Barefoot AC, Cotterman CD, Zimmerman WT, Leep DC (1997) Basis of selectivity of the herbicide flupyrsulfuron-methyl in wheat. Pestic Biochem Physiol 59:105–117

    Article  CAS  Google Scholar 

  • Kohara H, Konno K, Takekawa M (1999) Occurrence of sulfonylurea-resistant biotypes of Scirpus junco ides Roxb. var. ohwianus. T. Koyama in paddy fields of Hokkaido prefecture, Japan. J Weed Sci Technol 44:228–235

    Article  Google Scholar 

  • Koo SJ, Ahn SC, Lim JS, Chae SH, Kim JS, Lee JH, Cho JH (1997) Biological activity of the new herbicide LGC-40863 (benzophenone O-(2,6-bis((4,6-dimethoxy-2-primidinyl)oxy)benzoyl) oxime). Pestic Sci 51:109–114

    Article  CAS  Google Scholar 

  • Krausz RF, Kapusta G, Matthews JL (1997) Acetolactate synthase-resistant and -susceptible corn (Zea mays) response to imazethapyr, imazaquin, chlorimuron, and CGA-152005. Weed Technol 11:810–816

    Google Scholar 

  • Lange FD, Brown PTH, Loerz H, Kollmorgen JF (1995) In vitro selection for modified amino-acid Triticum species. Plant Breed 114:351–354

    Article  CAS  Google Scholar 

  • LaRossa RA, Schloss JV (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 25:8753–8757

    Google Scholar 

  • LaRossa RA, Van Dyk TK, Smulski DR (1987) Toxic accumulation of 2-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J Bacteriol 169:1372–1378

    PubMed  CAS  Google Scholar 

  • Lavigne C, Millecamps L, Manach H, Cordonnier P, Matejicek A, Vasseur J, Gasquez J (1994) Monogenic semidominant sulfonylurea resistance in a line of white chicory. Plant Breed 113: 305–311

    Article  CAS  Google Scholar 

  • Lee CD, Martin AR, Roeth FW, Johnson BE, Lee DJ (1999) Comparison of ALS inhibitor resistance and allelic interactions in shattercane accessions. Weed Sci 47:275–281

    CAS  Google Scholar 

  • Lee EH, Ahn TW, Choi JD (1991) Properties and feedback inhibition of acetohydroxyacid synthase from pea shoots. Korean Biochem J 24:285–291

    CAS  Google Scholar 

  • Lee KY, Tepperman J, Black M, Chui CF, Mazur B, Dunsmuir P, Bedbrook J (1988) The molecular basis of sulfonylurea resistance in tobacco. EMBO J 7:1241–1248

    PubMed  CAS  Google Scholar 

  • Lee YT, Chang LA, Duggleby RG (1999) Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett 452:341–345

    Article  PubMed  CAS  Google Scholar 

  • Lepiece D, Thompson A, Rijckaert G (1999) Florasulam Primus, a new selective herbicide for the control of broad-leaved weeds in young grass. Mededelingen Fac Landbouwkundige Toegepaste Biol Wetenschappen Univ Gent 64:693–712

    CAS  Google Scholar 

  • Li Z, Hayashimoto A, Murai N (1992) A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selective marker for production of fertile transgenic rice plants. Plant Physiol 100:662–668

    Article  PubMed  CAS  Google Scholar 

  • Loubser JW (1998) Activity of chlorsulfuron, ethoxysulfuron and sulfosulfuron towards selected cereal weeds. Appl Plant Sci 12:57–59

    Google Scholar 

  • Lovell ST, Wax LM, Horak MJ, Peterson DE (1996) Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci 44:789–794

    CAS  Google Scholar 

  • Manley BS, Wilson HP, Hines TE (1996) Smooth pigweed (Amaranthus hybridus) and livid amaranth (A. lividus) response to several imidazolinone sulfonylurea herbicides. Weed Technol 10:835–841

    CAS  Google Scholar 

  • Manley BS, Singh BK, Shaner DL, Wilson HP (1999) Imidazolinone resistance in smooth pigweed (Amaranthus hybridus) is due to an altered acetolactate synthase. Weed Technol 13:697–705

    CAS  Google Scholar 

  • Marquez T, Joshi MM, Fader TP, Massasso W (1995) Azimsulfuron (DPX-A8947): a new sulfonylurea for post-emergence control of Echinochloa species, broadleaf and sedge weeds for southern European rice production. Brighton Crop Protection Conference: Weeds 1:65–72

    Google Scholar 

  • Matsushita H, Hukai Y, Unai T, Ishikawa K, Yusa Y (1994) The report concerning a novel herbicide, KIH-2023: adsorption, translocation and metabolism of KIH-2023 in rice and wheat seedlings. Abstract of Annual Meeting Pesticide Science Society Japan, Sapporo, p 127 (in Japanese)

    Google Scholar 

  • Mazur BJ, Falco SC (1989) The development of herbicide resistant crops. Annu Rev Plant Physiol Plant Mol Biol 40:441–447

    Article  CAS  Google Scholar 

  • McHughen A (1989) Agrobacterium mediated transfer of chlorsulfuron resistance to commercial flax cultivars. Plant Cell Rep 8:445–449

    Article  CAS  Google Scholar 

  • Meyer W, Riehen S (1992) Sulfonylureas. US5209771, Ciba-Geigy Corporation

    Google Scholar 

  • Miflin BJ (1971) Cooperative feedback control of barley acetohydroxyacid synthase by leucine, isoleucine, and valine. Arch Biochem Biophys 146:542–550

    Article  PubMed  CAS  Google Scholar 

  • Miflin BJ (1974) The location of nitrate reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. Plant Physiol 54:550–555

    Article  PubMed  CAS  Google Scholar 

  • Mike BL, Labbe H, Hattori J, Ouellet T, Gabard J, Sunohara G, Charest PJ, Iyer VN (1990) Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor Appl Genet 80:449–458

    Google Scholar 

  • Mizutani H, Shinba K, Asano Y, Yusa Y (1998) Metabolism of a herbicide pyriminobac-methyl in rice and barnyard grass seedlings. Abstract Annual Meeting Pesticide Science Society Japan, Matsue, p 106 (in Japanese)

    Google Scholar 

  • Mourad G, King J (1992) Effect of four classes of herbicides on growth and acetolactate synthase activity in several variants of Arabidopsis. Planta 188:491–497

    Article  CAS  Google Scholar 

  • Mourad G, Haughn G, King J (1994) Intragenic recombination in the csrl locus of Arabidopsis. Mol Gen Genet 243:178–184

    PubMed  CAS  Google Scholar 

  • Müller KH, Koning K, Kluth J, Lürssen K, Santel HJ, Schmidt RR (1992) Sulfonylaminocarbonyltriazolinones with oxygen-bound substituents. EP507171, Bayer AG

    Google Scholar 

  • Muhitch MJ (1988) Acetolactate synthase activity in developing maize (Zea mays L.) kernels. Plant Physiol 86:23–27

    Article  PubMed  CAS  Google Scholar 

  • Muhitch MJ, Shaner DL, Stidham MA (1987) Imidazolinone and acetohydroxyacid synthase from higher plants. Plant Physiol 83:451–456

    Article  PubMed  CAS  Google Scholar 

  • Nakata M (1991) The mode of action of chlorsulfuron in culture cells of tobacco and hamster. J Pestic Sci 16:583–590

    CAS  Google Scholar 

  • Nakayama I, Shimizu T (1993) Bioactivity of ALS inhibitors (in Japanese). 10th Symposium of Research Committee for the Bioactivity of Pesticides, Nagano, pp 62–70

    Google Scholar 

  • Nakayama I, Shimizu T, Nakao T, Abe H (1993) The active forms of pyrimidinylsalicylate herbicides for the inhibition of ALS, and the participation of esterase in their activation. Abstract Annual Meeting Pesticide Science Society Japan, Futyu, p 77 (in Japanese)

    Google Scholar 

  • Nelson KA, Renner KA (1998) Postemergence weed control with CGA-277476 and cloransulammethyl in soybean (Glycine max). Weed Technol 12:293–299

    CAS  Google Scholar 

  • Nelson KA, Renner KA, Penner D (1998) Weed control in soybean (Glycine max) with imazamox and imazethapyr. Weed Sci 46:587–594

    CAS  Google Scholar 

  • Newhouse K, Singh B, Shaner D, Stidham M (1991) Mutations in corn (Zea mays L.) conferring resistance to imidazolinone herbicides. Theor Appl Genet 83:65–70

    Article  CAS  Google Scholar 

  • Newhouse KE, Smith WA, Starrett MA, Schaefer TJ, Singh BK (1992) Tolerance to imidazolinone herbicides in wheat. Plant Physiol 100:882–886

    Article  PubMed  CAS  Google Scholar 

  • Nezu Y, Miyazaki M, Sugiyama K, Kajiwara I (1996a) Dimethoxypyrimidines as novel herbicides. Part 1. Synthesis and herbicidal activity of dimethoxyphenoxyphenoxypyrimidines and analogues. Pestic Sci 47:103–113

    Article  CAS  Google Scholar 

  • Nezu Y, Miyazaki M, Sugiyama K, Nobuhide W, Kajiwara I, Miyazawa T (1996b) Dimethoxypyrimidines as novel herbicides. Part 2. Synthesis and herbicidal activity of O-pyrimidinylsalicylates and analogues. Pestic Sci 47:115–124

    Article  CAS  Google Scholar 

  • Nezu Y, Wada N, Yoshida F, Miyazawa T, Shimizu T, Fujita T (1998) Dimethoxypyrimidines as novel herbicides. Part 4. Quantitative structure-activity relationships of dimethoxypyrimidinyl(thio)salicylic acids. Pestic Sci 52:343–353

    Article  Google Scholar 

  • Odell JT, Caimi PG, Yadav NS, Mauvais CJ (1990) Comparison of increased expression of wild-type and herbicide-resistant acetolactate synthase genes in transgenic plants, and indication of posttranscriptional limitation on enzyme activity. Plant Physiol 94:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Ono Y, Yanagisawa K, Kitamura S, Kawamoto A (1999) Herbicide efficacy of bispyribac-sodium against rice weeds. 17th Asian-Pacific Weed Science Society Conference Proceedings I(B), Bangkok, pp 691–694

    Google Scholar 

  • Ort O, Bauer K, Böringer H (1992) Aryl sulphonylurea compounds, a method of preparing them, and their use as herbicides and growth regulators. WO9213845, Hoechst Aktiengesellschaft

    Google Scholar 

  • Ortega F, Bastide J, Hawkes TR (1996) Comparison between thifensulfuron methyl-induced inactivation of barley acetohydroxyacid synthase and Escherichia coli acetohydroxyacid synthase isozyme II. Pestic Biochem Physiol 56:231–242

    Article  CAS  Google Scholar 

  • Ott KH, Kwagh JG, Stockton GW, Sidorov V, Kakefuda G (1996) Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol 263:359–368

    Article  PubMed  CAS  Google Scholar 

  • Palmer EW, Shaw DR, Holloway C (1999) Influence of CGA-277476 on efficacy of postemergence graminicides. Weed Technol 13:48–53

    CAS  Google Scholar 

  • Parrish SK, Kaufmann JE, Croon KA, Ishida Y, Ohta K, Itoh S (1995) MON 37500: a new selective herbicide to control annual and perennial weeds in wheat. Brighton Crop Protection Conference, Weeds 1, pp 57–63

    Google Scholar 

  • Polowick PL, Baliski MK, Mahon JD (1998) Agrobacterium-mediated genetic transformation of western Canadian pea genotypes. In vitro Cell Dev Biol Anim 34:46A

    Article  Google Scholar 

  • Rajasekaran K, Grula JW, Anderson DM (1996a) Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci 119:115–124

    Article  CAS  Google Scholar 

  • Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM (1996b) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2:307–319

    Article  CAS  Google Scholar 

  • Ray TB (1984) Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol 75:827–831

    Article  PubMed  CAS  Google Scholar 

  • Rutledge RG, Quellet T, Hattori J, Miki BL (1991) Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet 229:31–40

    Article  PubMed  CAS  Google Scholar 

  • Saari LL, Cotterman JC, Thill DC (1994) Resistance to acetolactate synthase inhibiting herbicides. In: Powles SB, Holtum JAM (eds) Herbicide resistance in plants. Biology and biochemistry. CRC Press, Boca Raton, pp 83–139

    Google Scholar 

  • Sadohara (1997) Nominee (bispyribac-sodium): a new post-emergence herbicide in rice. Agrochem Jpn 71:18–19

    Google Scholar 

  • Saito Y, Wada N, Kusano S, Miyazawa T, Takahashi S, Toyokawa Y, Kajiwara Y (1990) Pyrimidine compounds, and herbicidal method and compositions. US4932999, Kumiai Chemical Industry Co, Ltd and Ihara Chemical Industry Co, Ltd

    Google Scholar 

  • Sathasivan K, Haughn GW, Murai N (1990) Nucleotide sequence of an acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res 18:2118

    Article  Google Scholar 

  • Sathasivan K, Haughn GW, Murai N (1991) Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Columbia. Plant Physiol 97:1044–1050

    Article  PubMed  CAS  Google Scholar 

  • Schloss JV, Ciskanik LM, Van Dyk DE (1988) Origin of the herbicide binding site of acetolactate synthase. Nature 331:360–362

    Article  CAS  Google Scholar 

  • Schulze-Siebert D, Schultz G (1989) Formation of aromatic amino acids and valine from 14CO2 or 3-[U-14C]phosphoglycerate by isolated intact spinach chloroplasts. Plant Sci 59:167–174

    Article  CAS  Google Scholar 

  • Schulze-Siebert D, Heineke D, Scharf H, Schultz G (1984) Pyruvate-derived amino acids in spinach chloroplasts. Plant Physiol 76:465–471

    Article  PubMed  CAS  Google Scholar 

  • Sebastian SA, Fader GM, Ulrich FJ, Forney UD, Chaleff RS (1989) Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci 29:1403–1408

    Article  CAS  Google Scholar 

  • Sengnil K, Usui K, Ishizuka K (1992) Selection of bensulfuron methyl-tolerant rice cells and their acetolactate synthase response. Weed Res Jpn 37:232–238

    CAS  Google Scholar 

  • Shaner DL, Reider ML (1986) Physiological responses of corn (Zea mays) to AC 243, 997 in combination with valine, leucine, and isoleucine. Pestic Biochem Physiol 25:248–257

    Article  CAS  Google Scholar 

  • Shaner DL, Singh BK (1993) Phytotoxicity of acetohydroxyacid synthase inhibitors is not due to accumulation of 2-ketobutyrate and/or 2-aminobutyrate. Plant Physiol 103:1221–1226

    PubMed  CAS  Google Scholar 

  • Shaner DL, Anderson PC, Stidham MA (1984) Potent inhibitors of acetohydroxyacid synthase. Plant Physiol 76:545–546

    Article  PubMed  CAS  Google Scholar 

  • Shaw DR, Bennett AC, Grant DL (1999) Weed control in soybean (Glycine max) with flumetsulam, cloransulam, and diclosulam. Weed Technol 13:791–798

    CAS  Google Scholar 

  • Shibaike H (2000) Abstract of 2nd meeting of herbicide resistant weeds in annual meeting weed science society of Japan (in Japanese)

    Google Scholar 

  • Shibuya K, Yoshioka T, Yoshio A, Sotoh S, Yoshida S, Hashiba T (1999) Analysis of acetolactate synthase genes of sulfonylurea herbicides-resistant and -susceptible biotypes in Scirpus juncoides subsp. juncoides. J Weed Sci Technol 44:S72–73

    Article  Google Scholar 

  • Shimizu T (1997) Action mechanism of pyrimidinyl carboxy herbicides. J Pestic Sci 22:245–256

    CAS  Google Scholar 

  • Shimizu T, Nakayama I, Nakao T, Abe H (1986) Acetolactate synthase of etiolated pea seedlings. Abstract Annual Meeting Japan Society of Bioscience, Biotechnology and Agrochemistry, Kyoto, p 229 (in Japanese)

    Google Scholar 

  • Shimizu T, Nakayama I, Nakao T, Yamashita K, Nagayama K, Abe H (1993) Kinetics studies on the inhibition of bacterial ALS by pyrimidinylsalicylic acids. Abstract Annual Meeting Pesticide Science Society Japan, Futyu, p 76 (in Japanese)

    Google Scholar 

  • Shimizu T, Nakayama I, Nakao T, Abe H (1994a) Partial purification and properties of acetolactate synthase of etiolated pea seedlings. J Pestic Sci 19:187–196

    CAS  Google Scholar 

  • Shimizu T, Nakayama I, Nakao T, Nezu Y, Abe H (1994b) Inhibition of plant acetolactate synthase by herbicides, pyrimidinylsalicylic acids. J Pestic Sci 19:59–67

    CAS  Google Scholar 

  • Shimizu T, Nakayama I, Wada N, Nakao T, Abe H (1994c) Kinetic studies on the inhibition of acetolactate synthase by pyrimidinylsalicylic acids. J. Pestic Sci 19:257–266

    CAS  Google Scholar 

  • Shimizu T, Yamashita K, Kato H, Hashimoto N, Abe H, Nakayama I (1995) Interaction of acetolactate synthase and its inhibitors. Abstract Annual Meeting Pesticide Science Society Japan, Tokyo, p 136 (in Japanese)

    Google Scholar 

  • Shimizu T, Kaku K, Nagayama K, Tanaka Y (2001a) Selection of PC herbicide resistant rice cells and their ALS sensitivities to herbicides. Abstract Annual Meeting Pesticide Science Society Japan, Sakai, p 96 (in Japanese)

    Google Scholar 

  • Shimizu T, Kaku K, Takahashi S, Nagayama K (200lb) Sensitivities of ALS prepared from SU- and IMI-resistant weeds against PC herbicides. J Weed Sci Technol 46:S32–33 (in Japanese)

    Article  Google Scholar 

  • Shin YS, Chong CK, Choi JD (1999) Separation and characterization of two forms of acetolactate synthase from etiolated pea seedings. J Biochem Mol Biol 32:393–398

    CAS  Google Scholar 

  • Siehl DL, Bengtson AS, Brockman JP, Butler JH, Kraatz GW, Lamoreaux RJ, Subramanian MV (1996) Patterns of cross-tolerance to herbicides inhibiting acetohydroxyacid synthase in commercial corn hybrids designed for tolerance to imidazolinones. Crop Sci 36:274–278

    Article  CAS  Google Scholar 

  • Simpson DM, Stoller EW (1995) Response of sulfonylurea-tolerant soybean (Glycine max) and selected weed species to imazethapyr and thifensulfuron combinations. Weed Technol 9:582–586

    CAS  Google Scholar 

  • Simpson DM, Stoller EW, Wax LM (1995) An in vivo acetolactate synthase assay. Weed Technol 9:17–22

    CAS  Google Scholar 

  • Singh BK, Schmitt GK (1989) Flavin adenine dinucleotide causes oligomerization of aceto-hydroxyacid synthase from Black Mexican sweet corn cells. FEBS Lett 258:113–115

    Article  CAS  Google Scholar 

  • Singh BK, Shaner DL (1995) Biosynthesis of branched chain amino acids: from test tube to field. Plant Cell 7:935–944

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Stidham MA, Shaner DL (1988a) Assay of acetohydroxyacid synthase. Anal Biochem 171:173–179

    Article  CAS  Google Scholar 

  • Singh BK, Stidham MA, Shaner DL (1988b) Separation and characterization of two forms acetohydroxyacid synthase from Black Mexican sweet corn cells. J Chromatogr 444:251–261

    Article  CAS  Google Scholar 

  • Singh BK, Newhouse KE, Stidham MA, Shaner DL (1989) Acetolactate synthase-imidazolinone interaction. Br Crop Protection Counc Monogr 42:87–95

    CAS  Google Scholar 

  • Singh BK, Lumanglas A, Wang BS (1991) Production of a monocot-specific monoclonal antibody against acetohydroxyacid synthase and its use in the purification and characterization of the enzyme. Proc Natl Acad Sci USA 88:4572–4576

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Szamosi I, Hand JM, Misra R (1992) Arabidopsis acetohydroxyacid synthase expressed in Escherichia coli is insensitive to the feedback inhibitors. Plant Physiol 99:812–816

    Article  PubMed  CAS  Google Scholar 

  • Southan MD, Copeland L (1996) Physical and kinetic properties of acetohydroxyacid synthase from wheat leaves. Physiol Plant 98:824–832

    Article  CAS  Google Scholar 

  • Sprague CL, Stoller EW, Wax LM (1997a) Common cocklebur (Xanthium strumarium) resistance to selected ALS-inhibiting herbicides. Weed Technol 11:241–247

    CAS  Google Scholar 

  • Sprague CL, Stoller EW, Wax LM, Horak MJ (1997b) Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci 45:192–197

    CAS  Google Scholar 

  • Subramanian MV, Gerwick BC (1989) Inhibition of acetolactate synthase by triazolopyrimidines. ACS Symp Ser 389, Washington, DC, pp 277–288

    Google Scholar 

  • Subramanian MV, Loney V, Pao L (1989) Mechanism of action of 1,2,4-triazolo[1,5-a]pyrimidine sulfonamide herbicides. Br Crop Protection Counc Monogr 42:97–100

    CAS  Google Scholar 

  • Subramanian MV, Loney-Gallant V, Dias JM, Mireles LC (1991) Acetolactate synthase inhibiting herbicides bind to the regulatory site. Plant Physiol 96:310–313

    Article  PubMed  CAS  Google Scholar 

  • Sunderland S, Burton JD, Coble HD, Maness EP (1995) Physiological mechanism for tall morning glory (Ipomoea purpurea) resistance to DPX-PE350. Weed Sci 43:21–27

    CAS  Google Scholar 

  • Tachikawa S, Miyazawa T, Sadohara H (1997) Vegetation management by KIH-2023 in rice levees, and highway and railroad right-ways. 16th Asian-Pacific Weed Science Society Conference Proceedings 2A, Kuala Lumpur, pp 114–117

    Google Scholar 

  • Takahashi S, Shigenatsu S, Mirita A, Nezu Y, Claus JS, Williams CS (1991) KIH-2031, a new herbicide for cotton. Brighton Crop Protection Conference, Weeds 1, pp 57–62

    Google Scholar 

  • Tamaru M, Kawamura N, Sato M, Tachikawa S, Yoshida R, Takabe F (1991) Pyrimidine and triazine derivatives and herbicidal composition containing the same. EP435170, Kumiai Chemical Industry Co, Ltd and Ihara Chemical Industry Co, Ltd

    Google Scholar 

  • Tamaru M, Inoue J, Hanai R, Tachikawa S (1997) Studies of the new herbicide KIH-6127.4. Crystal structure of KIH-6127 and quantitative structure-activity relationship of the iminoxy moiety of KIH-6127 derivatives. J Agric Food Chem 45:2777–2783

    Article  CAS  Google Scholar 

  • Teaney SR, Armstrong L, Bentley K, Cotterman D, Leep D, Liang PH, Powley C, Summers J, Cranwell S, Lichtner F, Stichbury R (1995) DPX-KE459: a new sulfonylurea for postemergence grass and broadleaf weed control in cereals. Brighton Crop Protection Conference 1, pp 4956

    Google Scholar 

  • Terakawa T, Wakasa K (1992) Rice mutant resistant to the herbicide bensulfuron methyl (BSM) by in vitro selection. Jpn J Breed 42:267–275

    CAS  Google Scholar 

  • Trabold K, Hacker E, Hess M, Huff HP (2000) A new sulfonylurea for weed control in cereals. Z Pflanzenkr Pflanzenschutz 17:701–707

    Google Scholar 

  • Uchino A, Watanabe H (1999) Mutation in the acetolactate synthase genes of the biotypes of Lindernia spp. resistant to sulfonylurea herbicide. J Weed Sci Technol 44:S80–81

    Google Scholar 

  • Uchino A, Watanabe H, Wang G, Itoh K (1999) Light requirement in rapid diagnosis of sulfonylurea-resistant weeds of Lindernia spp. (Scrophulariaceae). Weed Technol 13:680–684

    Google Scholar 

  • Usui K, Suwangwong S, Watanabe H, Ishizuka K (1991) Effect of bensulfuron methyl, glyphosate and glufosinate on amino acid and ammonia levels in carrot cells. Weed Res Jpn 36:126–134

    CAS  Google Scholar 

  • Van Heertum JC, Gerwick BC, Kleschick WA, Jhonson TC (1992) Herbicidal alkoxy-1,2,4triazolo [1,5-c]pyrimidine-2-sulfonamides. US5163995, DowElanco

    Google Scholar 

  • Volenberg DS, Stoltenberg DE, Boerboom CM (2000) Solanum ptycanthum resistance to acetolactate synthase inhibitors. Weed Sci 48:399–401

    Article  CAS  Google Scholar 

  • Vyazmensky M, Sella C, Barak Z, Chipmand M (1996) Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry 35:10339–10346

    Article  PubMed  CAS  Google Scholar 

  • Wada N, Kusano S, Toyokawa Y (1990) Pyrimidine derivatives and herbicidal method and compounds. US4906285, Kumiai Chemical Industry Co, Ltd and Ihara Chemical Industry Co, Ltd

    Google Scholar 

  • Wang GX, Kohara H, Itoh K (1997) Sulfonylurea resistance in a biotype of Monochoria korsakowii an annual paddy weed in Japan. Brighton Crop Protection Conference, Weeds 1, pp 311–318

    Google Scholar 

  • Wiersma PA, Schmiemann MG, Condie JA, Crosby WL, Moloney MM (1989) Isolation, expression and phylogenetic inheritance of an acetolactate synthase gene from Brassica nap us. Mol Gen Genet 219:413–420

    Article  PubMed  CAS  Google Scholar 

  • Woodworth AR, Bernasconi P, Subramanian M, Rosen B (1996a) A second naturally occurring point mutation confers broad-based tolerance to acetolactate synthase inhibitors. Plant Physiol 111:S105

    Google Scholar 

  • Woodworth AR, Rosen BA, Bernasconi P (1996b) Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in the ALS gene (accession No. U55852). Plant Physiol 111:1353

    Article  Google Scholar 

  • Wright T, Penner D (1998a) Corn (Zea mays) acetolactate synthase sensitivity to four classes of ALS-inhibiting herbicides. Weed Sci 46:8–12

    CAS  Google Scholar 

  • Wright T, Penner D (1998b) In vitro and whole-plant magnitude and cross-resistance characterization of two imidazolinone-resistant sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci 46:24–29

    CAS  Google Scholar 

  • Wright TR, Bascomb NF, Penner D, Sturner SF (1998) Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci 46:13–23

    CAS  Google Scholar 

  • Yamashita K, Nagayama K, Shimizu T, Toyo-oka K, Abe H (1994a) Biological activity of a novel ALS inhibitor, cyclobutenamide that is produced by Streptomyces hygroscopicus. Abstract Annual Meeting Pesticide Science Society Japan, Sapporo, p 39 (in Japanese)

    Google Scholar 

  • Yamashita K, Nagayama K, Wada N, Abe H (1994b) A novel ALS inhibitor produced by Streptomyces hygroscopicus. Nippon Nogeikagaku Kaishi 68:658 (in Japanese)

    Google Scholar 

  • Yang J, Kim S (1997) Effect of pyrimidylsalicylate on the valine sensitive acetolactate synthase purified from Serratia marcescens. J Biochem Mol Biol 30:13–17

    Google Scholar 

  • Yao JL, Cohen D, van den Brink R, Morris B (1999) Assessment of expression and inheritance patterns of three transgenes with the aid of techniques for promoting rapid flowering of transgenic apple trees. Plant Cell Rep 18:727–732

    Article  CAS  Google Scholar 

  • Yokoyama M, Watanabe O, Kawano K, Shigematsu S, Wada N (1993) KIH-2023, a new post-emergence herbicide in rice. Brighton Crop Protection Conference, Weeds 1, pp 61–66

    Google Scholar 

  • Zhu T, Peterson DJ, Taglia L, Clair GS, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96:8768–8773

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Mettenburg K, Peterson DJ, Tagkiani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555–558

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimizu, T., Nakayama, I., Nagayama, K., Miyazawa, T., Nezu, Y. (2002). Acetolactate Synthase Inhibitors. In: Böger, P., Wakabayashi, K., Hirai, K. (eds) Herbicide Classes in Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59416-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59416-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63972-2

  • Online ISBN: 978-3-642-59416-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics