Skip to main content

Stromal Cell Involvement in Cancer

  • Conference paper
Molecular Staging of Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 162))

Abstract

Solid tumors co-opt the body’s endogenous extracellular proteolytic machinery for their invasion and metastasis. This is supported by a large number of independent observations ranging from histochemical and prognostic studies of cancer patient material to animal experiments. There are several extracellular proteolytic systems that are relevant in the context of cancer, but the plasminogen activation (PA) system and the matrix metalloproteases (MMPs) remain the most thoroughly investigated. Localization studies by immunohistochemistry and in situ mRNA hybridization in tumors of common human cancers have repeatedly identified members of the PA and MMP systems in stromal cells. The cancer cells, of epithelial origin, contribute PA and MMP components in some cases, but their contribution fades in comparison with the overwhelming expression of proteolytic components by fibroblasts, macrophages, endothelial cells, and other stromal cells. Ideal animal models of human cancers should recapitulate this fundamental proteolytic aspect of tumor biology. However, in the transplantable tumor models where PA or MMP components have been studied at the cellular level in vivo, this is most often not the case. Transgenic cancer models may provide a closer parallel to the human situation, in that PA and MMP components are synthesized by the tumor stroma. The pivotal role of stromal cells has been confirmed experimentally in mouse models in which the expression pattern of proteolytic components is strongly reminiscent of human tumors. In these models it is possible to reconstitute the wild-type tumor characteristics of proteolytically deficient tumorbearing mice by transplantation with wild-type fibroblasts or hemapoietic cells. These studies collectively show that cancer-associated proteolysis is a collaborative effort of malignant cancer cells and various stromal cells — a collaboration in which stromal cells contribute the majority of the active proteolytic components that are necessary for the invasive behavior of the tumors. This cellular division of labor positions the stromal cells as prime targets for future research and possibly therapy. Vascular endothelial cells are already the focus of intense therapeutically relevant researc, but tumor-associated fibroblasts, macrophages, neutrophils, lymphendothelial cells, etc. provide additional largely unexplored territory in the ongoing search for efficient counter-measures against invaise cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57:25–40

    Article  PubMed  CAS  Google Scholar 

  2. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    PubMed  CAS  Google Scholar 

  3. Sternlicht MD, Bergers G (2000) Matrix metalloproteinases as emerging targets in anticancer therapy: status and prospects. Emerging Therapeutic Targets 4:609–633

    Article  CAS  Google Scholar 

  4. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  5. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  PubMed  CAS  Google Scholar 

  6. Hewitt R, Danø K (1996) Stromal cell expression of components of matrix-degrading protease systems in human cancer. Enzyme Protein 49:163–173

    PubMed  CAS  Google Scholar 

  7. Andreasen PA, Kjøller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72:1–22

    Article  PubMed  CAS  Google Scholar 

  8. Grøndahl-Hansen J, Ralfkiaer E, Kirkeby LT, Kristensen P, Lund LR, Danø K (1991) Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans. Am J Pathol 138:111–117

    PubMed  Google Scholar 

  9. Pyke C, Kristensen P, Ralfkiaer E, Grøndahl-Hansen J, Eriksen J, Blasi F, Danø K (1991) Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am J Pathol 138:1059–1067

    Google Scholar 

  10. Delbaldo C, Cunningham M, Vassalli J-D, Sappino A-P (1995) Plasmin-catalyzed proteolysis in colorectal neoplasia. Cancer Res 55:4688–4695

    PubMed  CAS  Google Scholar 

  11. Wolf C, Rouyer N, Lutz Y, Adida C, Loriot M, Bellocq J-P, Chambon P, Basset P (1993) Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibro-blastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90:1843–1847

    Article  PubMed  CAS  Google Scholar 

  12. Nielsen BS, Sehested M, Timshel S, Pyke C, DanØ, K (1996) Messenger RNA for urokinase plasminogen activator is expressed in myofibroblasts adjacent to cancer cells in human breast cancer. Lab Invest 74:168–177

    PubMed  CAS  Google Scholar 

  13. Nielsen BS, Sehested M, Duun S, Rank F, Timshel S, Rygaard J, Johnsen M, Danø K (2001) Urokinase plasminogen activator is localized in stromal cells in ductal breast cancer. Lab Invest 81:1485–1502

    PubMed  CAS  Google Scholar 

  14. Pyke C, Kristensen P, Ralfkiaer E, Eriksen J, Danø K (1991) The plasminogen activation system in human colon cancer: messenger RNA for the inhibitor PAI-1 is located in endothelial cells in the tumor stroma. Cancer Res 51:4067–4071

    PubMed  CAS  Google Scholar 

  15. Bianchi E, Cohen RL, Dai A, Thor AT, Shuman MA, Smith HS (1995) Immunohistochemical localization of the plasminogen activator inhibitor-1 in breast cancer. Int J Cancer 60:597–603

    Article  PubMed  CAS  Google Scholar 

  16. Pappot H, Gärdsvoll H, Rømer J, Pedersen AN, Grøndahl-Hansen J, Pyke C, Brünner N (1995) Plasminogen activator inhibitor type 1 in cancer: therapeutic and prognostic implications. Biol Chem Hoppe-Seyler 376:259–267

    PubMed  CAS  Google Scholar 

  17. Pyke C, Ralfkiaer E, Rønne E, Høyer-Hansen G, Kirkeby L, Danø K (1994) Immunohistochemical detection of the receptor for urokinase plasminogen activator in human colon cancer. Histopathology 24:131–138

    Article  PubMed  CAS  Google Scholar 

  18. Ohtani H, Pyke C, Danø K, Nagura H (1995) Expression of urokinase receptor in various stromal-cell populations in human colon cancer: immunoelectron microscopical analysis. Int J Cancer 62:691–696

    Article  PubMed  CAS  Google Scholar 

  19. Pyke C, Graem N, Ralfkiaer E, Rønne E, Hoyer-Hansen G, Brünner N, Dan K (1993) Receptor for urokinase is present in tumor-associated macrophages in ductal breast carcinoma. Cancer Res 53:1911–1915

    PubMed  CAS  Google Scholar 

  20. Bianchi E, Cohen RL, Thor AT, Todd RF, Mizukami IF, Lawrence DA, Ljung BM, Shuman MA, Smith HS (1994) The urokinase receptor is expressed in invasive breast cancer but not in normal breast tissue. Cancer Res 54:861–866

    PubMed  CAS  Google Scholar 

  21. Luther T, Magdolen V, Albrecht S, Kasper M, Riemer C, Kessler H, Graeff H, Müller M, Schmitt M (1997) Epitope-mapped monoclonal antibodies as tools for functional and morphological analyses of the human urokinase receptor in tumor tissue. Am J Pathol 150:1231–1244

    PubMed  CAS  Google Scholar 

  22. Okada A, Bellocq J-P, Rouyer N, Chenard M-P, Rio M-C, Chambon P, Basset P (1995) Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 92:2730–2734

    Article  PubMed  CAS  Google Scholar 

  23. Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH (1996) Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149:273–282

    PubMed  CAS  Google Scholar 

  24. Nielsen BS, Sehested M, Kjeldsen L, Borregaard N, Rygaard J, Danø K (1997) Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 77:345–355

    PubMed  CAS  Google Scholar 

  25. Chenard M-P, Lutz Y, Mechine-Neuville A, Stoll I, Bellocq J-P, Rio M-C, Basset P (1999) Presence of high levels of MT1-MMP protein in fibroblastic cells of human invasive carcinomas. Int J Cancer 82:208–212

    Article  PubMed  CAS  Google Scholar 

  26. Nielsen BS, Rank F, Lopez JM, Balbin M, Vizoso F, Lund LR, Danø K, Löpez-Otin C (2001) Collagenase-3 expression in breast myofibroblasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas. Cancer Res 61:7091–7100

    PubMed  CAS  Google Scholar 

  27. Nielsen BS, Timshel S, Kjeldsen L, Sehested M, Pyke C, Borregaard N, Danø K (1996) 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. Int J Cancer 65:57–62

    Article  PubMed  CAS  Google Scholar 

  28. McDonnell S, Navre M, Coffey RJ Jr, Matrisian LM (1991) Expression and localization of the matrix metalloproteinase pump-1 (MMP-7) in human gastric and colon carcinomas. Mol Carcinog 4:527–533

    Article  PubMed  CAS  Google Scholar 

  29. Johnsen M, Lund LR, Römer J, Almholt K, Danø K (1998) Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr Opin Cell Biol 10: 667–671

    Article  PubMed  CAS  Google Scholar 

  30. Sappino A-P, Belin D, Huarte J, Hirschel-Scholz S, Saurat J-H, Vassalli J-D (1991) Differential protease expression by cutaneous squamous and basal cell carcinomas. J Clin Invest 88:1073–1079

    Article  PubMed  CAS  Google Scholar 

  31. Miller SJ, Jensen PJ, Dzubow LM, Lazarus GS (1992) Urokinase plasminogen activator is immunocytochemically detectable in squamous cell but not basal cell carcinomas. J Invest Dermatol 98:351–358

    Article  PubMed  CAS  Google Scholar 

  32. Rømer J, Pyke C, Lund LR, Ralfkiaer E, Danø K (2001) Cancer cell expression of urokinase-type plasminogen activator receptor mRNA in squamous cell carcinomas of the skin. J Invest Dermatol 116: 353–358

    Article  PubMed  Google Scholar 

  33. Pyke C, Ralfkiaer E, Huhtala P, Hurskainen T, Danø K, Tryggvason K (1992) Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization. Cancer Res 52:1336–1341

    PubMed  CAS  Google Scholar 

  34. Airóla K, Johansson N, Kariniemi A-L, Kähäri V-M, Saarialho-Kere UK (1997) Human collagenase-3 is expressed in malignant squamous epithelium of the skin. J Invest Dermatol 109:225–231

    Article  PubMed  Google Scholar 

  35. Clayman G, Wang SW, Nicolson GL, El-Naggar A, Mazar A, Henkin J, Blasi F, Goepfert H, Boyd DD (1993) Regulation of urokinase-type plasminogen activator expression in squamous-cell carcinoma of the oral cavity. Int J Cancer 54:73–80

    Article  PubMed  CAS  Google Scholar 

  36. Skriver L, Larsson L-I, Kielberg V, Nielsen LS, Andresen PB, Kristensen P, Danø K (1984) Immunocytochemical localization of urokinase-type plasminogen activator in Lewis lung carcinoma. J Cell Biol 99:752–757

    Article  Google Scholar 

  37. Kristensen P, Pyke C, Lund LR, Andreasen PA, Danø K (1990) Plasminogen activator inhibitor-type 1 in Lewis lung carcinoma. Histochemistry 93:559–566

    Article  PubMed  CAS  Google Scholar 

  38. Bugge TH, Kombrinck KW, Xiao Q, Holmbäck K, Daugherty CC, Witte DP, Degen JL (1997) Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood 90:4522–4531

    PubMed  CAS  Google Scholar 

  39. Solberg H, Ploug M, Høyer-Hansen G, Nielsen BS, Lund LR (2001) The murine receptor for urokinase-type plasminogen activator is primarily expressed in tissues actively undergoing remodeling. J Histochem Cytochem 49:237–246

    Article  PubMed  CAS  Google Scholar 

  40. R0mer J, Pyke C, Lund LR, Eriksen J, Kristensen P, Rønne E, Høyer-Hansen G, Danø K, Brünner N (1994) Expression of uPA and its receptor by both neoplastic and stromal cells during xenograft invasion. Int J Cancer 57:553–560

    Article  PubMed  Google Scholar 

  41. Collins HM, Morris TM, Watson SA (2001) Spectrum of matrix metalloproteinase expression in primary and metastatic colon cancer: relationship to the tissue inhibitors of metalloproteinases and membrane type-1-matrix metalloproteinase. Br J Cancer 84:1664–1670

    Article  PubMed  CAS  Google Scholar 

  42. McDonnell S, Chaudhry V, Mansilla-Soto J, Zeng Z-S, Shu W-P, Guillem JG (1999) Metastatic and non-metastatic colorectal cancer (CRC) cells induce host metalloproteinase production in vivo. Clin Exp Metastasis 17:341–349

    Article  CAS  Google Scholar 

  43. Bugge TH, Lund LR, Kombrinck KK, Nielsen BS, Holmbäck K, Drew AF, Flick MJ, Witte DP, Danø K, Degen JL (1998) Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice. Oncogene 16:3097–3104

    Article  PubMed  CAS  Google Scholar 

  44. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  PubMed  CAS  Google Scholar 

  45. Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrowderived cells contributes to skin carcinogenesis. Cell 103:481–490

    Article  PubMed  CAS  Google Scholar 

  46. .Stephens RW, Brünner N, Jänicke F, Schmitt M (1998) The urokinase plasminogen activator system as a target for prognostic studies in breast cancer. Breast Cancer Res Treat 52:99–111

    Article  PubMed  CAS  Google Scholar 

  47. Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189:300–308

    Article  PubMed  CAS  Google Scholar 

  48. Grøndahl-Hansen J, Christensen IJ, Rosenquist C, Brunner N, Mouridsen HT, Danø K, Blichert-Toft M (1993) High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 53:2513–2521

    PubMed  Google Scholar 

  49. Grøndahl-Hansen J, Hilsenbeck SG, Christensen IJ, Clark GM, Osborne CK, Briinner N, (1997) significance of PAI-1 and uPA in cytosolic extracts obtained from node-positive breast cancer patients. Breast Cancer Res Treat 43:153–163

    Article  PubMed  Google Scholar 

  50. Foekens JA, Peters HA, Look MP, Portengen H, Schmitt M, Kramer MD, Brunner N, Jânicke F, Meijer-van Gelder ME, Henzen-Logmans SC, van Putten WLJ, Klijn JGM (2000) The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 60:636–643

    PubMed  CAS  Google Scholar 

  51. Grøndahl-Hansen J, Peters HA, van Putten WLJ, Look MP, Pappot H, Rønne E, Danø K, Klijn JGM, Brunner N, Foekens JA (1995) Prognostic significance of the receptor for urokinase plasminogen activator in breast cancer. Clin Cancer Res 1:1079–1087

    PubMed  Google Scholar 

  52. Zeng ZS, Huang Y, Cohen AM, Guillem JG (1996) Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol 14:3133–3140

    PubMed  CAS  Google Scholar 

  53. Zucker S, Hymowitz M, Conner C, Zarrabi HM, Hurewitz AN, Matrisian L, Boyd D, Nicolson G, Montana S (1999) Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Ann NY Acad Sci 878:212–227

    Article  PubMed  CAS  Google Scholar 

  54. Chenard M-P, O’Siorain L, Shering S, Rouyer N, Lutz Y, Wolf C, Basset P, Bellocq J-P, Duffy MJ (1996) High levels of stromelysin-3 correlate with poor prognosis in patients with breast carcinoma. Int J Cancer 69:448–451

    Article  PubMed  CAS  Google Scholar 

  55. Têtu B, Brisson J, Lapointe H, Bernard P (1998) Prognostic significance of stromelysin 3, gelatinase A, and urokinase expression in breast cancer. Hum Pathol 29:979–985

    Article  PubMed  Google Scholar 

  56. Ahmad A, Hanby A, Dublin E, Poulsom R, Smith P, Barnes D, Rubens R, Anglard P, Hart I (1998) Stromelysin 3: an independent prognostic factor for relapse-free survival in nodepositive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol 152:721–728

    Google Scholar 

  57. Zeng ZS, Cohen AM, Zhang ZF, Stetler-Stevenson W, Guillem JG (1995) Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res 1:899–906

    PubMed  CAS  Google Scholar 

  58. Holten-Andersen MN, Stephens RW, Nielsen HJ, Murphy G, Christensen IJ, Stetler-Stevenson W, Brunner N (2000) High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer. Clin Cancer Res 6:4292–4299

    PubMed  CAS  Google Scholar 

  59. Ree AH, Flørenes VA, Berg JP, Maelandsmo GM, Nesland JM, Fodstad ø(1997) High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 3:1623–1628

    PubMed  CAS  Google Scholar 

  60. McCarthy K, Maguire T, McGreal G, McDermott E, O’Higgins N, Duffy MJ (1999) High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer 84:44–48

    Article  PubMed  CAS  Google Scholar 

  61. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051

    PubMed  CAS  Google Scholar 

  62. Boulay A, Masson R, Chenard M-P, El Fahime M, Cassard L, Bellocq J-P, Sautès-Fridman C, Basset P, Rio M-C (2001) High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 61:2189–2193

    PubMed  CAS  Google Scholar 

  63. Noel A, De Pauw-Gillet M-C, Purnell G, Nusgens B, Lapiere C-M, Foidart J-M (1993) Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br. J Cancer 68:909–915

    Article  PubMed  CAS  Google Scholar 

  64. Noël A, Hajitou A, L’Hoir C, Maquoi E, Baramova E, Lewalle JM, Remacle A, Kebers F, Brown P, Calberg-Bacq CM, Foidart JM (1998) Inhibition of stromal matrix metalloproteases: effects on breast-tumor promotion by fibroblasts. Int J Cancer 76:267–273

    Article  PubMed  Google Scholar 

  65. Masson R, Lefebvre O, Noël A, El Fahime M, Chenard M-P, Wendling C, Kebers F, LeMeur M, Dierich A, Foidart J-M, Basset P, Rio M-C (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140:1535–1541

    Article  PubMed  CAS  Google Scholar 

  66. Noël A, Boulay A, Kebers F, Kannan R, Hajitou A, Calberg-Bacq C-M, Basset P, Rio M-C, Foidart J-M (2000) Demonstration in vivo that stromelysin-3 functions through its proteolytic activity. Oncogene 19:1605–1612

    Article  PubMed  Google Scholar 

  67. Danø K, Behrendt N, Brünner N, Ellis V, Ploug M, Pyke C (1994) The urokinase receptor. Protein structure and role in plasminogen activation and cancer invasion. Fibrinolysis 8:189–203

    Article  Google Scholar 

  68. Grégoire M, Lieubeau B (1995) The role of fibroblasts in tumor behavior. Cancer Metastasis Rev 14:339–350

    Article  PubMed  Google Scholar 

  69. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  70. Coussens LM, Werb Z (2001) Inflammatory cells and cancer. Think different! J Exp Med 193: F23–26

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Almholt, K., Johnsen, M. (2003). Stromal Cell Involvement in Cancer. In: Allgayer, H., Heiss, M.M., Schildberg, F.W. (eds) Molecular Staging of Cancer. Recent Results in Cancer Research, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59349-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59349-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63945-6

  • Online ISBN: 978-3-642-59349-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics