Skip to main content

Sorption und Desorption hydrophober organischer Schadstoffe in Aquifermaterial und Sedimenten

  • Chapter
Geochemie und Umwelt

Zusammenfassung

Untergrundverunreinigungen durch organische Schadstoffe stellen ein weitverbreitetes Problem hinsichtlich der Boden-und Grundwasserqualität dar. Sie machen in Baden-Württemberg über 90% aller bekannten Untergrundverunreinigungen aus (Stand 1996). Die massivsten Verunreinigungen gehen auf Punktquellen (lokale „Unfälle“, undichte Leitungen etc.) zurück. Zu den am häufigsten angetroffenen Schadstoffen zählen hier die organischen Lösemittel (chlorierte C1-C2 Kohlenwasserstoffe, aromatische Kohlenwasserstoffe), Kraftstoffe, Schmiermittel, (aliphatische und aromatische Kohlenwasserstoffe), Stein-und Braunkohlenteer (mit polyzyklischen aromatischen Kohlenwasserstoffen), Holzschutzmittel (z.T. mit Pentachlorphenol), Transformatorenflüssigkeiten (polychlorierte Biphenyle), Rückstände aus der Pestizidproduktion (z.B. Hexachlorcyclohexan - Lindan) und Weichmacher (Phthalate). Flächige Konta-minationen, die im allgemeinen durch geringere Konzentrationen gekennzeichnet sind, gehen meist auf die Anwendung von Pestiziden in der Landwirtschaft oder atmosphärische Deposition einer Vielzahl anthropogener organischer Verbindungen zurück. Das Verhalten chemischer Verbindungen in der Umwelt und ihre Persistenz hängen von deren physikalisch-chemischen Eigenschaften ab (Box 24.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alvarez-Cohen L, McCarty PL, Roberts PV (1993) Sorption of trichloroethylene onto a zeolite accompanied by methanotrophic biotransformation. Environ Sci Technol 27, 10: 2141–2148

    Article  CAS  Google Scholar 

  • Ball WP. Roberts PV (1991) Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environ Sci Technol 25,7: 1237–1249

    Article  CAS  Google Scholar 

  • Barr-Howell BD, Peppas NA, Winslow DN (1986) Transport of penetrants in the macromolecular structure of coals. II. Effect of porous structure on pyridine transport mechanisms. Chem Eng Comm 43,4–6: 301–315

    Article  CAS  Google Scholar 

  • Briggs GG (1969) Molekular structure of herbicides and their sorption by soils. Nature 223: 1288

    Article  CAS  Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol - water partition coefficients, water solubilities, bioconcentration factors and the parachor. J Agric Food Chem 29, 5: 1050–1059, Washington

    Article  CAS  Google Scholar 

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolekular layers. J Amer Chem Soc 60, 2: 309–319, Washington

    Article  CAS  Google Scholar 

  • Brusseau ML, Jessup RE, Rao PSC (1990) Sorption kinetics of organic chemicals: Evaluation of gas-purge and miscible-displacement techniques. Environ Sci Technol 24: 727–735

    Article  CAS  Google Scholar 

  • Brusseau ML, Jessup RE, Rao PSC (1991) Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes. Environ Sci Technol 25: 134–142

    Article  CAS  Google Scholar 

  • Carroll KM, Harkness MR, Bracco AA, Balarcel RR (1994) Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments. Environ Sci Technol 28, 2: 253–258

    Article  CAS  Google Scholar 

  • Chiou CT (1989) Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. SSSA 22: 1–29

    CAS  Google Scholar 

  • Chiou CT, Peters U, Freed VH (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206,11: 831–832

    Article  CAS  Google Scholar 

  • Chiou CT, Peters U, Freed VH (1981) Soil-water equilibria for nonionic organic compounds. Science 213, 8: 683–684

    Article  Google Scholar 

  • Chiou CT, Porter PE, Schmedding DW (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17,4: 227–231

    Article  CAS  Google Scholar 

  • Chiou CT, Shoup TD, Porter PE (1985) Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Org Geochem 8, 1: 9–14

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. 2. Aufl.: 414 S., University Press Oxford, U.K.

    Google Scholar 

  • Crittenden JC, Hutzler NJ, Geyer DG, Orawitz JL, Friedman G (1986) Transport of organic compounds with saturated groundwater flow: model development and parameter sensitivity. Water Resources Res 22: 271–284

    Article  CAS  Google Scholar 

  • Ditoro DM, Horzempa LM (1982) Reversible and resistant components of PCB adsorption-desorption isotherms. Environ Sei Technol 16,9: 594–602

    Article  CAS  Google Scholar 

  • Farrell J, Reinhard M (1994) Desorption of halogenated organics from model solids, sediments, and soil under unsatuarted conditions. 1. Isotherms. 2. Kinetics. Environ Sci Technol 28,1: 53–72

    Article  CAS  Google Scholar 

  • Frank H, Evans M (1945) Free volume and entropy in condensed systems. III. Mixed liquids. J Chem Phys 13: 507–532

    Article  CAS  Google Scholar 

  • Freeman DH, Chang LS (1981) A gel partition model for organic desorption from a pond sediment. Science 214: 790–792

    Article  CAS  Google Scholar 

  • Freundlich H (1909) Kapillarchemie. Akademische Verlagsgesell-schaft, Leipzig, 591 S.

    Google Scholar 

  • Frisch HL (1980) Sorption and transport in glassy polymers - a review. Polymer Engineering Science 20, 1: 2–13

    Article  Google Scholar 

  • Garbarini DR, Lion LW (1986) Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ Sci Technol 20, 12: 1263–1269

    Article  CAS  Google Scholar 

  • Gauthier TH, Seitz WR, Grant CL (1987) Effects of structural and compositional variation of dissolved humic materials an Pyren Koc values. Environ Sci Technol 21, 3: 243–248

    Article  CAS  Google Scholar 

  • Gierke JS (1986) Modeling the movement of volatile organic chemicals through homogeneous isotropic, unsaturated soils with concurrent air and water flow. M.S. Civil Eng. Thesis, Michigan Inst Technol, Ann Arbor, MI, 220 S.

    Google Scholar 

  • Grathwohl P (1989) Verteilung unpolarer organischer Verbindungen in der wasserungesättigten Bodenzone am Beispiel leicht-flüchtiger aliphatischer Cklorkohlenwasserstoffe - Modell-versuche. Tübinger Geowiss Arb 1: 102 S.

    Google Scholar 

  • Grathwohl P (1990) Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations. Environ Sci Technol 24, 11: 1687–1693

    Article  CAS  Google Scholar 

  • Grathwohl P (1992) Diffusion controlled desorption of organic contaminants in various soils and rocks. 7th Int Symp Water Rock Interaction 1992, Park City, Utah, USA, S. 283 ff.

    Google Scholar 

  • Grathwohl P, Farrell J, Reinhard M (1990) Desorption kinetics of volatile organic contaminants from aquifer materials. In: Arendt F, Hinsenveld M, van den Brink WJ (eds) Contaminated Soil ‘80, Kluwer Academic Publishers, Netherlands, S. 343–350

    Google Scholar 

  • Grathwohl P, Einsele G (1991) Verhalten verschiedener leicht-flüchtiger chlorierter Kohlenwasserstoffe (LCKW) im Untergrund. In: Rosenkranz D, Einsele G, Harreß HM (Hrsg) Handbuch Bodenschutz. Erich Schmidt Verlag, Berlin

    Google Scholar 

  • Grathwohl P, Reinhard M (1992) Sorption and desorption kinetics of trichloroethylene in aquifer material under saturated and unsaturated conditions. Technical Report No. WRC-2; Western Region Hazardous Substances Research Center, Stanford University, Oregon State University; Department of Civil Engineering, Environmental Engineering and Science, Stanford University, USA, 57 S.

    Google Scholar 

  • Grathwohl P, Reinhard M (1993) Desorption of trichloroethylene in aquifer material: Rate limitation at the grain scale. Environ Sci Technol 27, 12: 2360–2366

    Article  CAS  Google Scholar 

  • Grathwohl P, Merkel P, Schüth C, Pyka W (1995) Einfluß der Sorptionskinetik auf das Verhalten organischer Schadstoffe im Untergrund: Transport, Grundwassergefährdung and Sanierung. Z dtsch geol Ges 146, 1: 8–16

    Google Scholar 

  • Hansch C, Quinlen JE, Lawrence GL (1968) The linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J Org Chem 33: 347–350

    Article  CAS  Google Scholar 

  • Harmon TC, Roberts PV (1994) Comparison of intraparticle sorption and desorption rates for a halogenated alkene in a sandy aquifer material. Environ Sci Technol 28,9: 1650–1660

    Article  CAS  Google Scholar 

  • Hassett JH, Banwart WL (1989) The sorption of nonpolar organics by soils and sediments. SSSA 22: 31–44

    CAS  Google Scholar 

  • Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. Am Inst Chem Engineers J 20,3: 611–6615, New York

    Article  CAS  Google Scholar 

  • Isaacson PJ, Frick CR (1984) Nonreversible sorption of phenolic compounds by sediment fractions: The role of organic matter. Environ Sci Technol 18: 43–48

    Article  CAS  Google Scholar 

  • Karickhoff SW (1984) Organic pollutant sorption in aquatic systems. J Hydraulic Engineering 10,6: 707–735, New York

    Article  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13, 3: 241–248

    Article  CAS  Google Scholar 

  • Karickhoff SW, Morris KR (1985) Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environ Toxicol Chem 4: 469–479

    Article  CAS  Google Scholar 

  • Kast W (1988) Adsorption aus der Gasphase. Ingenieurwissenschaftliche Grundlagen and technische Verfahren. VCH, Weinheim, 279 S.

    Google Scholar 

  • Kinniburgh DG (1986) General purpose adsorption isotherms. Environ Sci Technol 20, 9: 895–904

    Article  CAS  Google Scholar 

  • Lambert SM (1966) The influence of soil-moisture on herbizidal response. Weeds 14: 273–275

    Article  CAS  Google Scholar 

  • Lamben SM (1967) Functional relationship between sorption in soil and chemical structure. J Agric Food Chem 15: 572–576

    Article  Google Scholar 

  • Lambert SM, Porter PE, Schieferstein H (1965) Movement and sorption of chemicals applied to the soil. Weeds 13: 185–190

    Article  CAS  Google Scholar 

  • Leo AL, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Reviews 1, 6: 525–554

    Article  Google Scholar 

  • Lever DA, Bradbury MH, Hemingway St (1985) The effect of dead end porosity on rock matrix diffusion. J Hydrol 80: 45–76

    Article  CAS  Google Scholar 

  • Mansour A, Rosenberg DU, Sylvester ND (1982) Numerical solution of liquid-phase multicomponent adsorption in fixed beds. AIChE J 28, 5: 765–772

    Article  CAS  Google Scholar 

  • Mattes A (1993) Vergleichende Untersuchungen zur Sorption and Sorptionsdynamik organischer Schadstoffe (Trichlorethen) in Aquifersanden aus geologisch unterschiedlichen Liefergebieten. Unveröff Diplomarbeit, Inst Geol Paläont Univ Tübingen, 59 S.

    Google Scholar 

  • McCarthy JF, Robertson LE, Burns LW (1989) Association of Benzo(a)pyrene with dissolved organic matter: prediction of Kdom from structural and chemical properties of the organic matter. Chemosphere 19, 12: 1911–1920

    Article  CAS  Google Scholar 

  • Nicoud RM, Schweich D (1989) Solute transport in porous media with solute-liquid mass transfer limitations: applications to ion exchange. Water Resources Res 25,6: 1071–1082

    Article  CAS  Google Scholar 

  • Nkedi-Kizza P, Rao PSC, Johnson JW (1983) Adsorption of Diuron and 2,4,5-T on soil particle-size separates. J Environ Qual 12: 195–197

    Article  CAS  Google Scholar 

  • Nkedi-Kizza P, Brusseau ML, Rao PSC, Hornsby AG (1989) Nonequilibrium sorption during displacement of hydrophobic organic chemicals and 45Ca through soil columns with aqueous and mixed solvents. Environ Sci Technol 23, 7: 814–820

    Article  CAS  Google Scholar 

  • Ogram AV, Jessup RE, Ou LT, Rao PSC (1985) Effect of sorption on biological degradation rates of (2,4-dichloro-phenoxy) acetic acid in soils. Appl Environ Microbiol 49: 582–587

    CAS  Google Scholar 

  • Pignatello JJ (1989) Sorption dynamics of organic compounds in soils and sediments. In: Sawhney BL, Brown K (Hrsg) Reactions and movement of organic chemicals in soils. Soil Sci Soc America, S. 45–81, Madison, Wisconsin, USA

    Google Scholar 

  • Pignatello JJ, Frink CR, Marin PA, Droste EX (1990) Field-observed ethylen dibromide in an aquifer after two decades. J Contaminant Hydrol 5: 195–214

    Article  CAS  Google Scholar 

  • Pignatello JJ, Huang LQ (1991) Sorptive reversibility of atrazine and metachlor residues in field soil samples. J Environ Qual 20: 222–228

    Article  CAS  Google Scholar 

  • Pignatello JJ, Ferrandino FJ, Huang LQ (1993) Elution of aged and freshly added herbicides from a soil. Environ Sci Technol 27,8: 1563–1571

    Article  CAS  Google Scholar 

  • Probst K, Wohlfahrt K (1979) Empirische Abschätzung effektiver Diffusionskoeffizienten in porösen Systemen. Chem-IngTech 1,7: 737–739

    Google Scholar 

  • Ptacek CJ, Gillham RW (1992) Laboratory and field measurements of non-equilibrium transport in the Borden aquifer, Ontario, Canada. J Contaminant Hydrol 10: 119–158

    Article  CAS  Google Scholar 

  • Rao PSC, Jessup RE, Rolston DE, Davidson JM, Kilcrease DP (1980) Experimental and mathematical description of non-adsorbed solute transfer by diffusion in spherical aggregates. Soil Sci Soc Am J 44: 684–688

    Article  CAS  Google Scholar 

  • Rasmuson A, Gimmi T, Flühler H (1990) Modeling reactive gas uptake, transport, and transformation in aggregated soils. Soil Sci Soc Am J 54, 5: 1206–1213

    Article  CAS  Google Scholar 

  • Rignaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of alpha-Hexachlorocyclohexane in contaminanted calcareaous soil. Environ Sci Technol 24, 9: 1349–1354

    Article  Google Scholar 

  • Roberts PV, Goltz MN, Mackay DM (1986) A natural gradient experiment on solute transport in a sand aquifer: 3. Retardation estimates and mass balances for organic solutes. Water Resources Res 22,13:2047–2058

    Article  CAS  Google Scholar 

  • Rounds SA, Tiffany BA, Pankow JF (1993) Description of gas/particle sorption kinetics with an intraparticle diffusion model: desorption experiments. Environ Sci Technol 27, 2: 366–377

    Article  CAS  Google Scholar 

  • Schüth C (1994) Sorptionskinetik und Transportverhalten von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) im Grundwasser - Laborversuche. Unveröff Dissertation, Tübinger Geowiss Arb C1: 80 S.

    Google Scholar 

  • Schüth C, Grathwohl P (1994) Nonequilibrium transport of PAHs: A comparison of column and batch experiments.- In: Dracos TH, Stauffer F (eds) Transport and Reactive Processes in Aquifers. Proc IAHR/AIRH Symp, April 11–15. 1994, Zürich, Switzerland. Balkema, Rotterdam, S. 143–148

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley & Sons, New York, 681 S.

    Google Scholar 

  • Scribner SL, Benzing TR, Sun S, Boyd SA (1992) Desorption and bioavailability of aged simazine residues in soil from a continuos corn field. J Environ Qual 21: 115–120

    Article  CAS  Google Scholar 

  • Sontheimer H, Cornel P, Seym M (1983) Untersuchungen zur Sorption von aliphatischen Chlorkohlenwasserstoffen durch Böden aus Grundwasserleitern. Veröff Ber. Lehrstuhl Wasserchemie und DVGW-Forschungstelle Engler Bunte Institut 21: 1–46, Karlsruhe

    Google Scholar 

  • Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-Dibromethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21, 12: 1201–1208

    Article  CAS  Google Scholar 

  • Stewart DKR, Chisholm D, Ragab MTH (1971) Long term persistence of parathion on soil. Nature 229: 47

    Article  CAS  Google Scholar 

  • Travis CT, Doty CB (1990) Can contaminated aquifers at Superfund sites be remediated? Environ Sci Technol 24, 10: 1461–1466

    Article  Google Scholar 

  • Travis CC, Macinnis JM (1992) Vapor Extraction of organics from subsurface soils: Is it effective? Environ Sci Technol 26, 10: 1885–1887

    Article  CAS  Google Scholar 

  • Versthueren K (1983) Handbook of environmental data on organic chemicals. 2. Aufl. 1310 S., Van Nostrand Reinhold, New York

    Google Scholar 

  • Voice TC, Weber WJ (1983) Sorption of hydrophobic compounds by sediments, soils and suspended solids - I. Theory and background. Water Res 17: 1433–1441

    Article  CAS  Google Scholar 

  • Wakao N, Smith JM (1962) Diffusion in catalyst pellets. Chem Eng Sci 17: 825–834

    Article  CAS  Google Scholar 

  • Weber WJ, DiGiano FA (1996) Process Dynamics in Environ-mental Systems. Wiley & Sons, New York, 943 S.

    Google Scholar 

  • Weber WJ, Smith EH (1987) Simulation and desin models for adsorption processes. Environ Sci Technol 21,11: 1040–1050

    Article  CAS  Google Scholar 

  • Weber WJ, Wang CK (1987) A microscale system for estimation of model parameters for fixed-bed adsorbers. Environ Sci Technol 21,11: 1096–1102

    Article  CAS  Google Scholar 

  • Weber WJ, Voice TC, Pirbazari M, Hunt GE, Ulanoff DM (1983) Sorption of hydrophobic compounds by sediments, soils and suspended solids — II. sorbent evaluation studies. Water Res 17, 10: 1443–1452

    Article  CAS  Google Scholar 

  • Weber W.J, McGinley PM, Katz LE (1991) Sorption Phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Resour Res 25,5: 499–528

    Article  CAS  Google Scholar 

  • Werner P (1989) Factors limiting the biodegradation of organic compounds in the subsurface during remediation measures. Internat Symp Processes governing the movement and fate of contaminants in the subsurface environment. Stanford, California, July 23–26,1989

    Google Scholar 

  • Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J I: 264–270

    Article  Google Scholar 

  • Wolfe HR, Staiff DC, Armstrong JF, Comer SW (1973) Persistence of parathion in soil. Bull Environ Contamin Toxicol 10: 1–9

    Article  CAS  Google Scholar 

  • Wood WW, Kraemer TF, Hearn PP (1990) Intragranular diffusion: An important mechanism influencing solute transport in clastic aquifers. Science 242: 1569–1572

    Article  Google Scholar 

  • Worch E (1993) Eine neue Gleichung zur Berechnung von Diffusionskoeffizienten gelöster Stoffe. Vom Wasser 81: 289–297

    CAS  Google Scholar 

  • Wu SC, Gschwend PM (1986) Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol 20,7: 717–725

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grathwohl, P. (1997). Sorption und Desorption hydrophober organischer Schadstoffe in Aquifermaterial und Sedimenten. In: Geochemie und Umwelt. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59038-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59038-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63826-8

  • Online ISBN: 978-3-642-59038-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics