Skip to main content

DNA Gel Electrophoresis

  • Chapter
Nucleic Acid Electrophoresis

Part of the book series: Springer Lab Manual ((SLM))

Abstract

The development of gel electrophoresis as a method of separating and analyzing DNA has been one of the forces driving the revolution in molecular biology for the last 20 years. In principle, DNA gel electrophoresis is conceptually easy to understand and technically easy to execute. In practice, there are a lot of small details that affect the accuracy and reproducibility of the results. This chapter presents a detailed description of the experimental methods used for DNA gel electrophoresis, designed as a guide for the investigator with little or no experience with this technique. The methods described here are those used every day in the author’s laboratory; additional protocols and ancillary techniques may be found in Sambrook et al. (1987). All discussions refer to the separation of double-stranded DNA molecules in slab gels, using unidirectional electric fields and fluorescent detection methods. The pulsed field gel electrophoresis (PFGE) of large DNA molecules (Birren and Lai 1993) and DNA capillary electrophoresis (Righetti and Gelfi 1996) are described in detail elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birren B, Lai E (1993) Pulsed field gel electrophoresis: a practical guide. Academic, Harcourt Brace Jovanovich, San Diego, California

    Google Scholar 

  • Carlsson D, Jonsson M, Akerman B (1995) Double bands in DNA gel electrophoresis caused by bis-intercalating dyes. Nucleic Acids Res 23: 2413–2420

    Article  PubMed  CAS  Google Scholar 

  • Duke T, Viovy J-L, Semenov AN (1994) Electrophoretic mobility of DNA in gels. I. New biased reptation theory including fluctuations. Biopolymers 34: 239–247

    Article  CAS  Google Scholar 

  • Chrambach A (1985) The Practice of Quantitative Gel Electrophoresis, VCH, Wein-heim Germany

    Google Scholar 

  • Ferguson KA (1964) Starch-gel electrophoresis–application to the classification of pituitary proteins and polypeptides. Metabolism 13: 985–1002

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN, Peck K, Mathies RA (1990) A stable double-stranded DNA-ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels. Proc Natl Acad Sci USA 87: 3851–3855

    Article  PubMed  CAS  Google Scholar 

  • Haugland RP (1992) Handbook of fluorescent probes and research chemicals, 5th ed, Molecular Probes, Eugene, Oregon, pp 221–229

    Google Scholar 

  • Holmes DL, Stellwagen NC (199la) Estimation of polyacrylamide gel pore size from Ferguson plots of normal and anomalously slowly migrating DNA fragments. I. Gels containing 3% N,N’-methylenebisacrylamide. Electrophoresis 12:253–263

    Article  CAS  Google Scholar 

  • Holmes DL, Stellwagen NC (1991b) Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide. Electrophoresis 12: 612–619

    Article  CAS  Google Scholar 

  • Kozulic B (1995) Models of gel electrophoresis. Anal Biochem 231: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Lerman LA, Frisch HL (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21: 995–997

    Article  PubMed  CAS  Google Scholar 

  • Lumpkin OJ, Zimm BH (1982) Mobility of DNA in gel electrophoresis. Biopolymers 21: 2315–2316

    Article  PubMed  CAS  Google Scholar 

  • McDonell MW, Simon MN, Studier FW (1977) Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol 110: 119–146

    Article  PubMed  CAS  Google Scholar 

  • Ogston AG (1958) The spaces in a uniform random suspension of fibers. Trans Faraday Soc 54: 1754–1757

    Article  Google Scholar 

  • Olivera BM, Baine P, Davidson N (1964) Electrophoresis of the nucleic acids. Biopolymers 2: 245–257

    Article  CAS  Google Scholar 

  • Righetti PG, Gelfi C (1996) Capillary electrophoresis of DNA. In: Righetti PG (ed) Capillary electrophoresis in analytical biotechnology, CRC, Boca Raton, pp 431–476

    Google Scholar 

  • Rodbard D, Chrambach A (1970) Unified theory of gel electrophoresis and filtration. Proc Natl Acad Sci USA 4: 970–977

    Article  Google Scholar 

  • Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN (1992) Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20: 2803–2812

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1987) Molecular cloning: a laboratory manual. 2nd ed, Cold Spring Harbor Laboratory, New York, New York

    Google Scholar 

  • Skeidsvoll J, Ueland, PM (1995) Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR Green I. Anal Biochem 231: 359–365

    Article  PubMed  CAS  Google Scholar 

  • Slater GW, Guo HL (1996) An exactly solvable Ogston model of gel electrophoresis: I. The role of the symmetry and randomness of the gel structure. Electrophoresis 17: 977–988

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen NC (1987) Electrophoresis of DNA in agarose and polyacrylamide gels. Adv Electrophoresis 1: 177–228

    CAS  Google Scholar 

  • Stellwagen NC (1992) Agarose gel pore radii are not dependent on the casting buffer. Electrophoresis 13: 601–603

    Article  PubMed  CAS  Google Scholar 

  • Studier FW (1973) Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 79: 237–248

    Article  PubMed  CAS  Google Scholar 

  • Tietz D (1988) Evaluation of mobility data obtained from gel electrophoresis: Strategies in the computation of particle and gel properties on the basis of the extended Og ston model. Adv Electrophoresis 2: 109–169

    CAS  Google Scholar 

  • Tietz, D, Chrambach, A (1992) Concave Ferguson plots of DNA fragments and convex Ferguson plots of bacteriophages: evaluation of molecular and fiber properties, using desktop computers. Electrophoresis 13: 286–294

    Article  PubMed  CAS  Google Scholar 

  • West R (1987) The electrophoretic mobility of DNA in agarose gel as a function of temperature. Biopolymers 26: 607–608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stellwagen, N.C. (1998). DNA Gel Electrophoresis. In: Tietz, D. (eds) Nucleic Acid Electrophoresis. Springer Lab Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58924-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58924-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-47763-8

  • Online ISBN: 978-3-642-58924-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics