Skip to main content

Abstract

Thermal transport properties of a solid material are generally controlled by two mechanisms: (i) electron charge cloud drift and (ii) lattice vibrations, known as phonons. In the latter case, thermal transport properties such as thermal conductivity or thermal diffusivity are directly proportional to the mean free path of phonons [1]. In a perfect crystal, phonon scattering takes place predominantly by four mechanisms; the crystal boundaries, the natural isotopic composition, the inharmonic interaction with other phonons, and the conduction of electrons [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bokros JC (1965) Physics & Chemistry of Carbon. Vol 5, p 1

    Google Scholar 

  2. Gopal ESR (1966) Specific heat at low temperature. Plenum Press NY

    Book  Google Scholar 

  3. Kelly BT (1969) Physics & Chemistry of Carbon. Vol 5, p 119

    CAS  Google Scholar 

  4. Issi JP, Nysten B, Piraux L (1987) Journal of Physics. Vol 3, p 257

    Article  Google Scholar 

  5. Klett JW (1994) Heat transfer in C/C Composites materials. PhD Thesis, Clemson University

    Google Scholar 

  6. Pierson HO (1993) Handbook of Carbon, Graphite, Diamond and Fullerenes. Noyes Publication

    Google Scholar 

  7. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) J App Phys 32, p 1679

    Article  CAS  Google Scholar 

  8. Whittaker AJ, Taylor R (1990) Proc Roy Soc London A 430, p 199

    Article  CAS  Google Scholar 

  9. Harris JP, Yates B, Batchelor J, Carrington PJ (1982) J Mat Sci, Vol 17, p 2925

    Article  CAS  Google Scholar 

  10. Tye RP, Desjarlais AU (1981) 17th Thermal conductivity conference, Washington

    Google Scholar 

  11. Taylor RE, Jortner J, Groot H (1985) Carbon. Vol 23, p 215

    Article  CAS  Google Scholar 

  12. Brennen J, Bentsen LD, Hesselmann DPH (1985) J Mat Sci, Vol 20, p 2339

    Google Scholar 

  13. Whittaker AJ, Taylor R (1981) Proc Roy Soc London 430: 167

    Google Scholar 

  14. Whittaker AJ, Taylor R (1981) Proc Roy Soc London 430: 183

    Google Scholar 

  15. Fitzer E, Fritz W, Geigl KH, Vohmann W (1976) High Temperature - High Pressure Vol 8, p 187

    CAS  Google Scholar 

  16. Kimura S, Yasuda E, Tanade Y (1983) Microstructure and related preperties in C/C Composites. Proc Int Symp on Ceramic Composites for Engines. Japan, p 783

    Google Scholar 

  17. Tanamura T, Shioyama H, Ikeda S, Adachi M, Fujii R (1991) Tanso No 149, p 220

    Article  CAS  Google Scholar 

  18. Zimmer J (1991) Extended abstracts of the 20th Biennial Carbon Conference, p 390

    Google Scholar 

  19. McAllister LE (1983) Multidirection C/C composites. In: Kelly A, Mileiko ST (eds) Fabrication of Composites. PNH Pub

    Google Scholar 

  20. Pierson HO, Northrop DA (1975) J Comp Mat. Vol 9, p 118

    Article  CAS  Google Scholar 

  21. Montaudon M, Gery P, Christin F (1993) 21st Bien Carbon Conf, p 384

    Google Scholar 

  22. Burchell TD, Oku T. Materials Property Data for fusion reactor plasma facing carbon/carbon composites. Preprints

    Google Scholar 

  23. Yamamosto M et al. (1993) Report Evaluation tests on first wall divertor plate material

    Google Scholar 

  24. Baker CF (1993) Proc 21st Biennial Carbon Conf, p 46

    Google Scholar 

  25. Klett JW, Edie DD (1995) Carbon. Vol 33, p 1485

    Article  CAS  Google Scholar 

  26. Ting J, Lake ML (1995) Carbon. Vol 33, p 663

    Article  CAS  Google Scholar 

  27. Bowers DA, Davis JW, Dinwiddie RB (1994) J Nuclear Materials. 212 p, 1163.

    Article  Google Scholar 

  28. Engle GB, Tallon JA, Graves RA (1990) Proc 14 th Conf. on Metal Matrix, Carbon & Ceramic matrix composites, Cocsa Beach Fl NASA Conf. Pub 3097, p 319

    Google Scholar 

  29. Meyer RA, Gyatvay SR, Chase AB (1983) 16th Bien carbon Conf, p 505

    Google Scholar 

  30. Sato S, Kurumada A, Kawamata K, Ishide R (1990) Int Carbon Symp Tsukuba, p 214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fitzer, E., Manocha, L.M. (1998). Thermal Properties of Carbon/Carbon Composites. In: Carbon Reinforcements and Carbon/Carbon Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58745-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58745-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63707-0

  • Online ISBN: 978-3-642-58745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics