Skip to main content

Geomagnetic Events and Relative Paleointensity Records — Clues to High-Resolution Paleomagnetic Chronostratigraphies of Late Quaternary Marine Sediments?

  • Chapter
Use of Proxies in Paleoceanography

Abstract

Magnetochronostratigraphies of marine sediment series are generally determined by correlating the polarity pattern derived from their natural remanent magnetization (NRM) to a geomagnetic polarity time scale (GPTS) inferred from dated marine magnetic anomaly lineations. With regard to the Quaternary, this conventional method can only provide a poor resolution as even the latest available GPTS comprises but a few reversals for this time interval. Numerous recent paleomagnetic studies have revealed supplementary prominent NRM features in marine sedimentary deposits, namely (1) recurrent abrupt changes in stable remanent directions documenting a succession of several geomagnetic events within the Brunhes Chron and (2) conspicuous variations in NRM intensity normalized to the concentration of magnetic minerals (the so-called relative paleointensity) which were attributed to pronounced fluctuations in Earth’s paleofield strength. Detailed records of both phenomena are presented here for late Quaternary sediments recovered on the Ceará Rise in the western equatorial Atlantic. Based on an oxygen isotope age model, that was further refined by orbital tuning and sub-Milankovitch correlations of continuous magnetic susceptibility logs, the polarity and normalized intensity time series indicate repeated full reversals of the Earth’s magnetic field configuration during the last about 380 kyr associated with distinct changes in relative paleointensity. The data sets are discussed as primary proxies to unravel the geomagnetic field history and reviewed in their perspectives and deficiencies to develop a high-resolution magnetostratigraphic framework for the late Quaternary. They also substantially contribute to the basic understanding of NRM acquisition processes in marine sediments summarized in a model outlining their temporal and spatial variability as function of sediment lithology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bleil U (1987) Quaternary high latitude magnetostra-tigraphy. Polar Res 5:325–327

    Article  Google Scholar 

  • Bleil U, Gard G (1989) Chronology and correlation of Quaternary magnetostratigraphy and nannofossil biostratigraphy in Norwegian-Greenland Sea sediments. GeolRundschau 67:1173–1187

    Article  Google Scholar 

  • Cande SC, Kent DV (1992) A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J Geophys Res 97:13917–13951

    Article  Google Scholar 

  • Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J Geophys Res 100: 6093–6095

    Article  Google Scholar 

  • Champion DE, Lanphere MA, Kuntz MA (1988) Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. J Geophys Res 93:11667–11680

    Article  Google Scholar 

  • Clement BM, Kent DV, Opdyke ND (1996) A synthesis of magnetostratigraphic results from Pliocene-Pleistocene sediments cored using the hydraulic piston corer. Paleoceanography 11:299–308

    Article  Google Scholar 

  • Curry WB, Shackleton NJ, Richter C et al (1995) Proceedings ODP Initial Reports 154. Ocean Drilling Program, College Station, pp 1–1111

    Google Scholar 

  • Denham CR, Cave AD (1982) Detrital remanent magnetization: viscosity theory of the lock-in zone. J Geophys Res 87:7126–7130

    Article  Google Scholar 

  • Enneking K, Hensen C, Hinrichs S, Kasten S (1998) Pore water chemistry. In: Bleil U et al Report and preliminary results of METEOR Cruise M 38/2. Ber Fachber Geowiss Univ Bremen 95:80–92

    Google Scholar 

  • Frederichs T (1995) Regionale und altersabhängige Variation gesteinsmagnetischer Parameter in marinen Sedimenten der Arktis. Repts Polar Res 164, pp 1–212

    Google Scholar 

  • Guyodo Y, Valet J-P (1996) Relative variations in geomagnetic intensity from sedimentary records: the past 200.000 years. Earth Planet Sci Lett 143:23–36

    Article  Google Scholar 

  • Hamano Y (1980) An experiment on the post-depositional remanent magnetization in artificial and natural sediments. Earth Planet Sci Lett 51:221–232

    Article  Google Scholar 

  • Hanna RL, Verosub KL (1989) A review of lacustrine paleomagnetic records from the western North America: 0-40.000 years BP. Phys Earth Planet Inter 56:76–95

    Article  Google Scholar 

  • Hoffman KA, Day R (1978) Separation of multi-component NRM: a general method. Earth Planet Sci Lett 40:433–438

    Article  Google Scholar 

  • Hyodo M (1983) Possibility of reconstruction of the past geomagnetic field intensity from homogeneous sediments. Rock Magn Paleogeogr 10:42–49

    Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, Mclntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climats: support from a revised chronology of the marine δ18O record. In: Berger AL et al (eds) Milankovitch and Climate, Part I, Reidel Publ Comp, Dordrecht, pp 269–305

    Google Scholar 

  • Irving E, Major A (1964) Post-depositional detrital remanent magnetization in a synthetic sediment. Sedimentology 3:135–143

    Article  Google Scholar 

  • Jacobs JA (1984) Reversals of the Earth’s Magnetic Field. Adam Hilger, Bristol, pp 1–230

    Google Scholar 

  • Kent D V, Opdyke ND (1977) Paleomagnetic field intensity variations recorded in a Brunhes epoch deep-sea core. Nature 266:156–159

    Article  Google Scholar 

  • Lehman B, Laj C, Kissel C, Mazaud A, Pateme M, Labayrie L (1996) Relative changes of the geomagnetic field intensity during the last 280 kyr obtained from piston cores in the Açores area. Phys Earth Planet Inter 93:269–284

    Article  Google Scholar 

  • Løvlie R (1976) The intensity pattern of post-depositional remanence acquired in some marine sediments deposited during a reversal of the external magnetic field. Earth Planet Sci Lett 30:209–214

    Article  Google Scholar 

  • Løvlie R (1989) Paleomagnetic stratigraphy: a correlation method. Quaterlnt 1:129–149

    Google Scholar 

  • Løvlie R, Markussen B, Sjerup HP, Thiede J (1986) Magnetostratigraphy in three Arctic Ocean sediment cores; arguments for geomagnetic excursions within oxygen-isotope stage 2–3. Phys Earth Planet Inter 43:173–184

    Article  Google Scholar 

  • Mazaud A (1996) ’sawtooth’ variation in magnetic intensity profiles and delayed acquisition of magnetization in deep sea cores. Earth Planet Sci Lett 139:379–386

    Article  Google Scholar 

  • Merrill RT, McFadden PL (1994) Geomagnetic field stability: reversal events and excursions. Earth Planet Sci Lett 121:57–69

    Article  Google Scholar 

  • Meynadier L, Valet J-P (1996) Post-depositional realignment of magnetic grains and asymmetric saw-tooth patterns of magnetization intensity. Earth Planet Sci Lett 140:123–132

    Article  Google Scholar 

  • Meynadier L, Valet J-P, Weeks R, Shackleton NJ, Hagee VL (1992) Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet Sci Lett 114:39–57

    Article  Google Scholar 

  • Mulitza S (1994) Spätquartäre Variationen der oberflachennahen Hydrographie im westlichen äquatorialen Atlantik. Ber Fachber Geowiss Univ Bremen 57, pp 1–97

    Google Scholar 

  • Nowaczyk NR (1997) High-resolution magnetostratigraphy of four sediment cores from the Greenland Sea-II. Rock magnetic and relative palaeointensity data. Geophys J Int 131:325–334

    Article  Google Scholar 

  • Nowaczyk NR (1991) Hochauflösende Magnetostratigraphie spätquartärer Sedimente arktischer Meeresgebiete. Repts Polar Res 78, pp 1–187

    Google Scholar 

  • Nowaczyk NR, Antonow M (1997) High-resolution magnetostratigraphy of four sediment cores from the Greenland Sea-I. Identification of the Mono Lake excursion, Laschamp and Biwa I/Jamaica geomagnetic polarity events. Geophys Int 131: 310–324

    Article  Google Scholar 

  • Nowaczyk NR, Baumann M (1992) Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments. Deep-Sea Res 39:567–601

    Article  Google Scholar 

  • Nowaczyk NR, Frederichs T, Eisenhauer A, Gard G (1994) Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 ka of the Brunhes Chron. Geophys J Int 117:453–471

    Article  Google Scholar 

  • Opdyke ND, Kent DV, Lowrie W (1973) Details of magnetic polarity transitions recorded in a high deposition rate deep-sea core. Earth Planet Sci Lett 20: 315–324

    Article  Google Scholar 

  • Otofuji Y, Sasajima S (1981) A magnetization process of sediments: laboratory experiments on post-depositional remenent magnetization. Geophys. J. R. astr. Soc. 66:241–259

    Article  Google Scholar 

  • Prell WL, Imbrie J, Martinson DG, Morley JJ, Pisias NG, Shackleton NJ, Streeter HF (1986) Graphic correlation of oxygen isotope stratigraphy: application to the late Quaternary. Paleoceanography 1:137–162

    Article  Google Scholar 

  • Rühlemann C, Frank M, Hale W, Mangini A, Mulitza S, Müller P J, Wefer G (1996) Late Quaternary productivity changes in the western equatorial Atlantic: evidence from 230Th-normalized carbonate and organic carbon accumulation rates. Mar. Geology 135:127–152

    Google Scholar 

  • Schulz HD et al. (1991) Bericht und erste Ergebnisse der METEOR-Fahrt M16/2. Ber Fachber Geowiss Univ Bremen 19, pp 1–149

    Google Scholar 

  • Stoner JS, Channell JET, Hillaire-Marcel C (1995) Late Pleistocene relative geomagnetic paleointensity from the deep Labrador Sea: regional and global correlations. Earth Planet Sci Lett 134:237–252

    Article  Google Scholar 

  • Tarduno JA, Wilkison SL (1996) Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments. Earth Planet Sci Lett 144:315–326

    Article  Google Scholar 

  • Tauxe L, Wu G (1990) Normalized remanence in sediments of the western equatorial Pacific, relative paleointensity of the geomagnetic field? J Geophys Res 95:12337–12350

    Article  Google Scholar 

  • Tauxe L, Shackleton NJ (1994) Relative intensity records from the Ontong — Java Plateau. Geophys J Int 117: 769–782

    Article  Google Scholar 

  • Thellier E, Thellier O (1959) Sur 1’aimantation du champ magnétique terrestre dans le passé historique et géologique. Ann Géophys 15:285–376

    Google Scholar 

  • Thießen W (1993) Magnetische Eigenschaften von Sedimenten des östlichen Südatlantiks und ihre paläozeanographische Relevanz. Ber Fachber Geowiss Univ Bremen 41, pp 1–170

    Google Scholar 

  • Thouveny N (1988) High-resolution paleomagnetic study of late Pleistocene sediments from Baffin Bay: first results. Can J Earth Sci 25:833–843

    Article  Google Scholar 

  • Trie E, Valet J-P, Tucholka P, Paterne M, Labeyrie L, Guichard F, Tauxe L, Fortugne M (1992) Paleointensity of the geomagnetic field during the last 80.000 years. J Geophys Res 97:9337–9351

    Article  Google Scholar 

  • Tucholka P, Fortugne M, Guichard F, Paterne M (1987) The Blake magnetic polarity episode in cores from the Mediterranean Sea. Earth Planet Sci Lett 86: 320–326

    Article  Google Scholar 

  • van Hoof A AM, Langereis CG (1991) Reversal records in marine marls and delayed acquisition of remanent magnetization. Nature 351:223–225

    Article  Google Scholar 

  • van Hoof AAM, Os BJH, Rademakers JG, Langereis CG, de Lange GJ (1993) A paleomagnetic and geochemical record of the upper Cochiti reversal and two subsequent precessional cycles from southern Sicily (Italy). Earth Planet Sci Lett 117:235–250

    Article  Google Scholar 

  • Valet J-P, Meynadier L (1993) Geomagnetic field intensity and reversals during the past four million years. Nature 366:234–238

    Article  Google Scholar 

  • Verosub KL (1977) Depositional and post-depositional processes in the magnetization of sediments. Rev Geophys Space Phys 15:129–143

    Article  Google Scholar 

  • Yamazaki T, Ioka N (1994) Long-term secular variation of the geomagnetic field during the last 200 kyr recorded in sediment cores from the western equatorial Pacific. Earth Planet Sci Lett 128:527–544

    Article  Google Scholar 

  • Zijderfeld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collison DW, Creer KM, Runcorn SK (eds) Methods in Palaeomagnetism, Elsevier, Amsterdam, pp 254–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Bleil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bleil, U., von Dobeneck, T. (1999). Geomagnetic Events and Relative Paleointensity Records — Clues to High-Resolution Paleomagnetic Chronostratigraphies of Late Quaternary Marine Sediments?. In: Fischer, G., Wefer, G. (eds) Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58646-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63681-3

  • Online ISBN: 978-3-642-58646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics