Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 137))

Abstract

The belowground component of terrestrial ecosystems is much less understood than any of the aboveground components, yet important ecosystem processes such as nutrient recycling, water storage, and long-term carbon accumulation occur largely in this compartment. For instance, belowground structures accounted for up to 83% of the total biomass in 13 Mediterranean woody communities (Hilbert and Canadell 1995), and belowground primary production was 60–80% of the total net primary production in a variety of woody systems (Coleman 1976; Ågren et al. 1980; Fogel 1985). Yet both root biomass and production are infrequently studied and technical difficulties make the measurements often inaccurate. Furthermore, plant root distribution and maximum rooting depths play important roles in overall ecosystem function, but it was not until recently that ecosystem-level and global comprehensive studies have been undertaken (Canadell et al. 1996; Jackson et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J (1985) Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparision of two methods. Oecologia 66:317–321

    Article  Google Scholar 

  • Ågren GI, Axelsson B, Flower-Ellis JGK, Linder S, Persson H, Staaf H, Troeng E (1980) Annual carbon budget for a young Scots pine. Ecol Bull 32:307–313

    Google Scholar 

  • Burke MK, Raynal DJ (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135–146

    Article  CAS  Google Scholar 

  • Caldwell MM, Fernandez OA (1975) Dynamics of Great Basin shrub root systems. In: Hadley NF (ed) Environmental physiology of desert organisms. Halstead Press, New York, pp 38–51

    Google Scholar 

  • Canadell J, López-Soria L (1998) Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs. Funct Ecol 12:31–38

    Article  Google Scholar 

  • Canadell J, Rodà F (1991) Root biomass in a montane Mediterranean forest. Can J For Res 21: 1771–1778

    Article  Google Scholar 

  • Canadell J, Zedler P (1995) Underground structures of woody plants in Mediterranean ecosystems of Australia, California and Chile. In: Fox M, Kalin M, Zedler P (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer, Berlin, pp 177–210

    Chapter  Google Scholar 

  • Canadell J, Riba M, Andrés P (1988) Biomass equations for Quercus ilex L. in Montseny Massif, northeastern Spain. Forestry 61:137–147

    Article  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Google Scholar 

  • Castell C, Terradas J, Tenhunen JD (1994) Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia 98:201–211

    Article  Google Scholar 

  • Cavelier J (1992) Fine-root biomass and soil properties in a deciduous and a lower montane rain forest in Panama. Plant Soil 142:187–201

    Article  CAS  Google Scholar 

  • Coleman DC (1976) A review of root production processes and their influence on soil biota in terrestrial ecosystems. In: Macfadyen JMA (ed) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford

    Google Scholar 

  • Dell B, Jones S, Wallace M (1985) Phosphorus accumulation by lignotubers of jarrah (Eucalyptus marginata Dorm ex Sm.) seedlings grown in a range of soils. Plant Soil 86:225–232

    Article  CAS  Google Scholar 

  • DeSouza J, Silka PA, Davis SD (1986) Comparative physiology of burned and unburned Rhus laurina after chaparral wildfire. Oecologia 71:63–68

    Article  Google Scholar 

  • Djema A (1995) Cuantificación de la biomasa y mineralomasa subterránea de un bosque de Quercus ilex L. MSc Thesis, Instituto Agronómico Mediterraneo de Zaragoza, Zaragoza

    Google Scholar 

  • Ellenberg H, Mayer R, Shauermann J (eds) (1986) Ökosystemforschung: Ergebnisse des Soilingprojekts 1966–1986. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Fahey TJ, Hughes JW (1994) Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J Ecol 82:533–548

    Article  Google Scholar 

  • Farrish KW (1991) Spatial and temporal fine-root distribution in three Louisiana forest soils. Soil Sci Soc Am J 55:1752–1757

    Article  Google Scholar 

  • Fogel R (1985) Roots as primary producers in below-ground ecosystems. In: Fitter AH (ed) Ecological interactions in soil. Spec Publ No 4. British Ecological Society, London, pp 23–36

    Google Scholar 

  • Ford ED, Deans JD (1977) Growth of a Sitka spruce plantation: spatial distribution and seasonal fluctuations of lengths, weights and carbohydrate concentrations of fine roots. Plant Soil 47: 463–485

    Article  Google Scholar 

  • Gracia CA, Sabaté S, Albeza E, Djema A, Tello E, Martínez JM, López B, León B, Bellot J (1994) Análisis de la respuesta de Quercus ilex L. a tratamientos de aclareo selectivo: producción, biomasa y tasa de renovación de hojas y raíces durante el primer año de tratamiento. Reunión de coordinación del Programa de restauración de la cubierta Vegetal de la Comunidad Valenciana, Valencia

    Google Scholar 

  • Harris WF, Kinerson RS, Edwards NT (1977) Comparision of belowground biomass of natural deciduous forest and loblolly pine plantations. In: Marshall JK (ed) The belowground ecosystem: a synthesis of plant-associated processes. Range Science Department Science Series No 26. Colorado State University, Fort Collins, pp 29–38

    Google Scholar 

  • Harris WF, Santantonio D, McGinty D (1980) The dynamic belowground ecosystem. In: Waring RH (ed) Forests: fresh perspectives from ecosystem analysis. Oregon State University Press, Oregon, pp 118–129

    Google Scholar 

  • Hendrick RL, Pregitzer KS (1992) Spatial variation in tree root distribution and growth associated with minirhizotrons. Plant Soil 143:283–288

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1996) Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. J Ecol 84:167–176

    Article  Google Scholar 

  • Hilbert DW, Canadell J (1995) Biomass partitioning and resource allocation of plants from Mediterranean-type ecosystems: possible responses to elevated atmospheric CO2. In: Oechel WC, Moreno J (eds) Global change and Mediterranean-type ecosystems. Springer, Berlin, pp 76–101

    Chapter  Google Scholar 

  • Hoffmann A, Kummerow J (1978) Root studies in the Chilean matorral. Oecologia 32:57–69

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:398–411

    Article  Google Scholar 

  • James S (1984) Lignotubers and burls -their structure, function and ecological significance in Mediterranean ecosystems. Bot Rev 50:225–266

    Article  Google Scholar 

  • Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33:330–346

    Google Scholar 

  • Keeley JE (1988) Population variation in root grafting and a hypothesis. Oikos 52:364–366

    Article  Google Scholar 

  • Lewis DC, Burgy RH (1964) The relationship between oak tree roots and groundwater in fractured rock as determined by tritium tracing. J Geophys Res 69:2579–2588

    Article  Google Scholar 

  • Liu X, Tyree MT (1997) Root carbohydrate reserves, mineral nutrient concentrations and bio-mass in a healthy and a declining sugar maple (Ater saccharum) stand. Tree Physiol 17:179–185

    Article  PubMed  CAS  Google Scholar 

  • López B, Sabaté S, Gracia CA (1996) An inflatable minirhizotron system for stony soils. Plant Soil 179:255–260

    Article  Google Scholar 

  • López B, Sabaté S, Gracia CA (1998) Fine roots dynamics in a Mediterranean forest: effects of drought and stem density. Tree Physiol 18:601–606

    Article  PubMed  Google Scholar 

  • McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Molinas ML, Verdaguer D (1993a) Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae). I. Late embryo. Am J Bot 80:172–181

    Article  Google Scholar 

  • Molinas ML, Verdaguer D (1993b) Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae). II. Germination and young seedling. Am J Bot 80:182–191

    Article  Google Scholar 

  • Montenegro G, Avila G, Schatte P (1983) Presence and development of lignotubers in shrubs of the Chilean matorral. Can J Bot 61:1804–1808

    Article  Google Scholar 

  • Mullete KJ, Bamber RK (1978) Studies of the lignotubers of Eucalyptus gummifera (Gaertn. & Hoch.). III. Inheritance and chemical composition. Aust J Bot 26:23–28

    Article  Google Scholar 

  • Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Oechel WC, Lawrence L (1981) Carbon allocation and utilization. In: Miller PC (ed) Resource use by chaparral and matorral. Springer, Berlin, pp 185–235

    Chapter  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–841

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Richter DD, Makewitz D (1995) How deep is soil? BioScience 45:600–609

    Article  Google Scholar 

  • Rodin LE, Bazilevich NI (1967) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, London

    Google Scholar 

  • Rundel PW (1980) Adaptations of Mediterranean-climate oaks to environmental stress. In: Ecology, management, and utilization of California oaks. USDA For Serv Gen Tech Rep PSW-44:43–54

    Google Scholar 

  • Sabaté S, Djema A, Gracia C, López B (1998) Effects of thinning on belowground biomass of a growth stagnated old coppice Mediterranean Quercus ilex L. forest. Tree Physiol (submitted)

    Google Scholar 

  • Santantonio D, Hermann RK, Overton WS (1977) Root biomass studies in forest ecosystems. Pedobiologia 17:1–31

    CAS  Google Scholar 

  • Schulze E-D, Bauer G, Buchmann N, Canadell J, Ehleringer JR, Jackson RB, Jobbagy E, Loreti J, Mooney HA, Oesterheld M, Sala OE (1996) Water availability, rooting depth, and vegetation zones along an aridity gradient in Patagonia. Oecologia 108:503–511

    Article  Google Scholar 

  • Silva S, Whitford WG, Jarrell WM, Virginia RA (1989) The microarthropod fauna associated with a deep rooted legume, Prosopis glandulosa, in the Chihuahuan desert. Biol Fertil Soils 7:330–335

    Article  Google Scholar 

  • Stone EL, Kalisz PI (1991) On the maximum extent of tree roots. For Ecol Manage 46:59–102

    Article  Google Scholar 

  • Taylor HM (1987) Minirhizotron observation tubes. In: Taylor HM (ed) Methods and applica-tions for measuring rhizosphere dynamics. ASA Spec Publ 50. ASA, CSSA, and SSSA, Madi-son

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Canadell, J. et al. (1999). Structure and Dynamics of the Root System. In: Rodà, F., Retana, J., Gracia, C.A., Bellot, J. (eds) Ecology of Mediterranean Evergreen Oak Forests. Ecological Studies, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58618-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58618-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63668-4

  • Online ISBN: 978-3-642-58618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics