Skip to main content

Abstract

Biocontrol of plant diseases and pests is generally regarded as a safer alternative to chemical pesticides but despite intensive research in the last two decades, there are few commercial products. The early optimism arising from numerous promising laboratory and greenhouse experiments has given way to a sober realization of the difficulties of commercializing biocontrol agents (BCAs). With few exceptions, there appears to be little likelihood of broad-spectrum BCAs and each pest or disease may have to be countered by a specific antagonistic microrganism, which proliferates and acts in the infection court or ecological niche of the target species. Therefore, a thorough understanding of the ecology of the BCA and the plant pathogen or pest provides the best chance of delivering a commercial product.

Corresponding authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deverall BJ. Psychrophiles. In: Ainsworth GC, Sussman AS, eds. The Fungi, vol. 3. New York: Academic Press, 1968:129–135.

    Google Scholar 

  2. McBeath JH, Wenko L. A simple, versatile method to determine extracellular enzymes in snow molds. Phytopathology 1986; 76:1143.

    Google Scholar 

  3. McBeath JH, Mehdizadegan F, Lockwood H. Anther culture selection to enhance snow mold disease resistance in winter wheat. In: Nijkamp HJJ, Van Der Plas LHW, Van Aartrijk J, eds. The Progress in Plant Celluar and Molecular Biology. Current Plant Science and Biotechnology in Agriculture, The Netherlands: Kluwer Academic Publishers, 1990:258–263.

    Google Scholar 

  4. Kiyomoto RK, Bruehl GW. Carbohydrate accumulation and depletion by winter cereals differing in resistance to Typhula idahoensis. Phytopathology, 1977; 67:206–211.

    Article  CAS  Google Scholar 

  5. Amano Y, Osanai SI. Winter wheat breeding for resistance to snow mold and cold hardiness. III. Varietal differences of ecological characteristics on cold acclimtion and relationships of them to resistance. Bull Hokkaido Prefect Agric Expt Sta 1983; 50:83–97.

    Google Scholar 

  6. Smith JD, Davidson JGN. Acremonium boreale n. sp., a sclerotial, low-temperature-tolerant, snow mold antagonist. Can J Bot 1979; 57:2122–2139.

    Article  Google Scholar 

  7. Burpee LL, Kaye LM, Goulty LG, Lawton MB. Suppression of gray snow mold on creeping bentgrass by an isolate of Typhula phacorrhiza. Plant Disease 1987; 71:97–100.

    Article  Google Scholar 

  8. Lawton MB, Burpee LL. Effect of rate and frequency of application of Typhula phacorrhiza on biological control of Typhula blight of creeping bentgrass. Phytopathology 1990; 80:70–73.

    Article  Google Scholar 

  9. Matsumoto N, Tajimi T. Biological control of Typhula ishikariensis on perennial ryegrass. Ann Phytopath Soc Japan 1992; 58:741–751.

    Article  Google Scholar 

  10. McBeath JH. Cold Tolerant Trichoderma. International Application Published under the Patent Cooperative Treaty (PCT), International Publication Number WO 92.03056, 1992.

    Google Scholar 

  11. Nelson EB, Burpee, LL, Lawton MB. Biological control of turfgrass diseases In: Leslie AR, ed. Handbook of Integrated Pest Management for Turf and Ornamentals. Ann Arbor: Lewis Publishers, 1994:409–427.

    Google Scholar 

  12. Wu C, Hsiang T, Yang L, Liu LX. Evaluation of Typhula phacorrhiza for the biocontrol of grey snow mold in turfgrass. In: Tang W, Cook R J, Rovira A D, eds. Advances in Biological Control of Plant Diseases. Beijing: China Agricultural University Press, 1996:227–233.

    Google Scholar 

  13. Burpee LL. Interactions among low-temperature-tolerant fungi: prelude to biological control. Can J Plant Pathol 1994; 16:247–250.

    Article  Google Scholar 

  14. Matsumoto N. Biological control of snow mold. In: Li PH, Chen TH, eds. Plant Cold Hardiness. New York: Plenum, 1998:343–350.

    Google Scholar 

  15. McBeath JH, Matheke G, Wagner P. Control of petunia Sclerotiinia stem rot with Trichoderma atroviride. Phytopathology 1996; 86:S37.

    Google Scholar 

  16. Wong PTW. Biocontrol of wheat take-all in the field using soil bacteria and fungi. In: Ryder MH, Stephen PM, Bowen GD, eds. Improving Plant Productivity with Rhizobacteria. Adelaide: CSIRO Division of Soils, 1994:24–28.

    Google Scholar 

  17. Deacon JW. Control of the take-all fungus by grass leys in intensive cereal cropping. Plant Pathol 1973; 22:88–94.

    Article  Google Scholar 

  18. Wong PTW. Cross-protection against the wheat and oat take-all fungi by Gaeumannomyces graminis var. graminis. Soil Biol Biochem 1975; 7:189–194.

    Article  Google Scholar 

  19. Wong PTW, Southwell RJ. Field control of take-all of wheat by avirulent fungi. Ann Appl Biol 1980; 94:41–49.

    Article  Google Scholar 

  20. Speakman JB. Control of Gaeumannomyces graminis var. tritici in wheat by isolates of the G. graminis var. graminis/Phialophora sp. (lobed hyphopodia) complex under field conditions Phytopathol ‘Z 1984; 109:188–191.

    Google Scholar 

  21. Rothrock CS. Effect of chemical and biological treatments on take-all of winter wheat. Crop Prot 1988; 7:20–24.

    Article  CAS  Google Scholar 

  22. Duffy BK, Weller DM. Use of Gaeumannomyces graminis var. graminis alone and in combination with fluorescent Pseudomonas spp. to supress take-all of wheat. Plant Disease 1995; 79:907–911.

    Article  Google Scholar 

  23. Wong PTW. Biological control by cross-protection. In: Asher MJC, Shipton PJ, eds. Biology and Control of Take-all. London: Academic Press, 1981:417–431.

    Google Scholar 

  24. Wong PTW. Effect of temperature on growth of some avirulent fungi and cross-protection against the wheat take-all fungus. Ann Appl Biol 1980; 95:291–299.

    Article  Google Scholar 

  25. Wong PTW, Mead JA, Holley, MP. Enhanced field control of wheat take-all using cold tolerant isolates of Gaeumannomyces graminis var. graminis and Phialophora sp. (lobed hyphopodia). Plant Pathol 1996; 45:285–293.

    Article  Google Scholar 

  26. Tivoli B, Lemaire JM, Jouan, B. Premunition du Ble contre Ophiobolus graminis Sacc. par des souches peu agressives du meme parasite. Ann Phytopathol 1974; 6:395–406.

    Google Scholar 

  27. Deverall BJ, Wong PTW, McLeod, S. Failure to implicate antifungal substances in cross-protection of wheat against take-all. Trans Br Mycol Soc 1979; 72:233–236.

    Article  Google Scholar 

  28. Speakman JB, Lewis BG. Limitation of Gaeumannomyces graminis by wheat root responses to Phialophora radicicola. New Phytol 1978; 80:373–380.

    Article  Google Scholar 

  29. Gillespie AT. The use of fungi to control pests of agricultural importance. In: Burge MN, ed. Fungi in Biological Control Systems. Manchester: Manchester University Press, 1988:37–80.

    Google Scholar 

  30. Rath AC. Metarhizium anisopliae for control of the Tasmanian pasture scarab Adoryphorus couloni. In: Jackson TA, Clare TR, eds. The Use of Pathogens in Scarab Pest Management. Andover: Intercept, 1992:217–227.

    Google Scholar 

  31. Rath AC, Koen TB, Yip HY. The influence of abiotic factors on the distribution and abundance of Metarhizium anisopliae in Tasmanian pasture soils. Mycol Res 1992; 96:378–384.

    Article  Google Scholar 

  32. Rath AC, Koen TB, Anderson GC, Worledge D. Field evaluation of the entomogenous fungus Metarhizium anisopliae (DAT F-001) as a biocontrol agent for the redheaded pasture cockchafer, Adoryphorus couloni (Coleoptera: Scarabaeidae) Aust J Agric Res 1995; 46:429–440.

    Article  Google Scholar 

  33. Yip HY, Rath AC, Koen TB. Characterization of Metarhizium anisopliae isolates from Tasmanian pasture soils and their pathogenicity to redheaded cockchafer (Coleoptera; Scarabaeidae: Adoryphorus couloni). Mycol Res 1992; 96:92–96.

    Article  Google Scholar 

  34. McCammon SA, Rath AC. Separation of Metarhizium anisopliae strains by temperature dependent germination rates. Mycol Res 1994; 98:1253–1257.

    Article  Google Scholar 

  35. Samuels KDZ, Heale JB, Llewellyn M. Characteristics relating to the pathogenicity of Metarhizium anisopliae toward Nilaparvata lugens. J Invertebr Pathol 1989; 53:25–31.

    Article  Google Scholar 

  36. Rath AC, Anderson GC, Worledge D, Koen TB. The effect of low temperature on the virulence of Metarhizium anisopliae (DAT F-001) to the subterranean scarab Adoryphorus couloni. J Invertebr Pathol 1995; 65:186–192.

    Article  Google Scholar 

  37. Rath AC, Carr CJ, Graham BR. Characterization of Metarhizium anisopliae strains by carbohydrate utilization (AP150CH). J Invertebr Pathol 1995; 65:152–161.

    Article  Google Scholar 

  38. Roddam LF, Rath AC. Isolation and characterization of Metarhizium anisopliae and Beauveria bassiana from subantarctic Macquarie Island. J. Invertebr Pathol 1997; 69:285–288.

    Article  Google Scholar 

  39. Vanninen I. Distribution and occurrence of four entomopathogenic fungi in Finland: effect of geographical location, habitat type and soil type. Mycol Res 1996;100:93–101.

    Article  Google Scholar 

  40. Schneider EF, Seaman WL. Typhula phacorrhiza on winter wheat. Can J Plant Pathol 1986; 8:269–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wong, P.T.W., McBeath, J.H. (1999). Plant protection by cold-adapted fungi. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics