Skip to main content

Acquisition, Processing and Analysis of the Surface Electromyogram

  • Chapter
Modern Techniques in Neuroscience Research

Abstract

During muscle activation but prior to contraction and the production of force, small electrical currents are generated by the exchange of ions across muscle fiber membranes. The electric signal generated during muscle activation, often referred to as the myoelectric signal, can be measured through electrodes (conductive elements) applied to the skin surface or inserted into the muscle (cf. Chapter 27). The signal represents the electrical activation of the mechanical system of the muscle fibers and thus the activity preceding the mechanical events. An example of one indwelling recording technique is outlined in Chapter 27. For a complementary overview of other indwelling techniques the reader is referred to (Sanders and Stålberg 1996; Stålberg 1980; Yu and Murray 1984)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basmajian J. V. and DeLuca C. J., Muscles alive: Their functions revealed by electromyography, 5th ed., Williams & Wilkins, Baltimore, 1985.

    Google Scholar 

  • DeLuca C. J., The use of surface electromyography in biomechanics, J. Appl. Biomechanics, 13:135–163, 1997.

    Google Scholar 

  • Duchêne J. and Gouble E, Surface electromyogram during voluntary contraction: Processing tools and relation to physiological events, Crit. Rev. in Biomed. Eng. 21(4):313–397, 1993.

    Google Scholar 

  • Hermens H.J., Hägg G. and Freriks B. (Eds.) European Applications on Surface ElectroMyoGraphy, proceedings of the second general SENIAM workshop Stockholm, Sweden, June 1997. 1997, Roessingh Research and Development b.v.

    Google Scholar 

  • Hermens H.J. and Freriks B. (Eds.) The state of the art on sensors and sensor placement procedures for surface electromyograpghy: A proposal for sensor placement procedures, Deliverable of the SENIAM project, 1998, Roessingh Research and Development b.v.

    Google Scholar 

  • Hägg G.M. Interpretation of EMG spectral alterations and alteration indexes at sustained contraction. J Appl Physiol 1992, 73:1211–1217.

    PubMed  Google Scholar 

  • Kasman G.S., Cram J.R. and Wolf S. L. Clinical Applications in surface Electromyography - Chronic Musculoskeletal Pain. 1997, Aspen Publishers, Gaithersburg. pp 1–415

    Google Scholar 

  • Lindström L. and Petersén I. Power spectrum analysis of EMG signals and its applications. In Computer-aided electromyography. Desmedt J.E. (Ed) 1983, pp 1–51. S. Karger AG, Basel

    Google Scholar 

  • Loeb G.E. and Gans C. Electromyography for experimentalists. 1986, The University of Chicago Press, Chicago, London.

    Google Scholar 

  • Aarâs A, Veieröd MB, Larsen S, Örtengren R, Ro O (1996) Reproducibility and stability of normalised EMG measurements on musculus trapezius. Ergonomics 39: 171–185

    Article  PubMed  Google Scholar 

  • Arendt-Nielsen L, Zwarts M (1989) Measurement of muscle fiber conduction velocity in humans: Techniques and applications. Journal of clinical neurophysiology 6: 173–190

    Article  PubMed  CAS  Google Scholar 

  • Arsenault AB, Winter DA, Marteniuk RG (1986) Is there a “normal” profile of EMG activity in gait? Med Biol Eng Comput 24: 337–343

    Article  PubMed  CAS  Google Scholar 

  • Basmajian JV, De Luca CJ (1985) In Muscles Alive. Their Function Revealed by Electromyography. Williams & Wilkens, Baltimore.

    Google Scholar 

  • Basmajian J, DeLuca CJ (1985) Muscles alive: Their function revealed by electromyography. Wiliams & Wilkins, Baltimore.

    Google Scholar 

  • Bawa P, Binder MD, Ruenzel P, Henneman E (1984) Recruitment order of motoneurons in stretch reflexes is highly correlated with their axonal conduction velocity. Journal of Neurophysiology 52: 410–420

    PubMed  CAS  Google Scholar 

  • Bilodeau M, Arsenault AB, Gravel D, Bourbannais D (1994) EMG power spectrum of elbow extensors: A reliability study. Electromyogr clin neurophysiol 34: 149–158

    PubMed  CAS  Google Scholar 

  • Bodine SC, Roy RR, Eldred E, Edgerton VR (1987) Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. Journal of Neurophysiology 57: 1730–1745

    PubMed  CAS  Google Scholar 

  • Bodine-Fowler S, Garfinkel A, Roy RR, Edgerton VR (1990) Spatial distribution of muscle fibers within the territory of a motor unit. Muscle & Nerve 13: 1133–1145

    Article  CAS  Google Scholar 

  • Botterman BR, Iwamoto GA, Gonyea WJ (1986) Gradation of isometric tension by different activation rates in motor units of cat flexor carpi radialis muscle. Journal of Neurophysiology 56: 494–506

    PubMed  CAS  Google Scholar 

  • Broman H, Bilotto G, De Luca CI (1985a) A note on the noninvasive estimation of muscle fiber conduction velocity. IEEE Trans Biomed Eng 32: 341–344

    Article  CAS  Google Scholar 

  • Broman H, Bilotto G, De Luca CJ (1985b) Myoelectric signal conduction velocity and spectral parameters: influence of force and time. Journal of Applied Physiology 58: 1428–1437

    CAS  Google Scholar 

  • Buchthal F, Guld C, Rosenfalck P (1954) Action potential parameters in normal human muscle and their dependence on physical variables. Acta Physiologica Scandinavica 32: 200–218

    Article  PubMed  CAS  Google Scholar 

  • Buchthal F, Guld C, Rosenfalck P (1955a) Propagation velocity in electrically activated muscle fibres in man. Acta Physiologica Scandinavica 34: 75–89

    Article  CAS  Google Scholar 

  • Buchthal F, Guld C, Rosenfalck P (1955b) Innervation zone and propagation velocity in human muscle. Acta Physiologica Scandinavica 35: 174–190

    Article  CAS  Google Scholar 

  • Buchthal F, Guld C, Rosenfalck P (1957a) Volume conduction of the spike of the motor unit potential investigated with a new type of multielectrode. Acta Physiologica Scandinavica 38: 331–354

    Article  CAS  Google Scholar 

  • Buchthal F, Guld C, Rosenfalck P (1957b) Multi-electrode study of a territory of a motor unit. Acta Physiologica Scandinavica 39: 83–104

    Article  CAS  Google Scholar 

  • Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiological Reviews 60: 90–142

    PubMed  CAS  Google Scholar 

  • Burke RE (1981) Motor units: Anatomy, physiology, and functional organization. In Handbook of Physiology - The Nervous System II. Brooks VB pp 345–422. American Physiological Society, Bethesda.

    Google Scholar 

  • Burke RE, Rudomin P, Zajac FE 3d (1976) The effect of activation history on tension production by individual muscle units. Brain Research 109: 515–529

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Tsairis P (1973) Anatomy and innervation ratios in motor units of cat gastrocnemius. Journal of Physiology (London) 234: 749–765

    CAS  Google Scholar 

  • Cameron T, Loeb GE, Peck RA, Schulman JH, Strojnik P, Troyk PR (1997) Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs. IEEE Transactions on Biomedical Engineering 44: 781–790

    Article  PubMed  CAS  Google Scholar 

  • Carlson CR, Wynn KT, Edwards J, Okekson JP, Nitz AJ, Workman DE, Cassisi J (1996) Ambulatory electromyogram acativity in the upper trapezius region. Patients with muscle pain vs. pain-fre control subjects. Spine 21: 595–599

    Article  PubMed  CAS  Google Scholar 

  • Christensen E (1959) Topography of terminal motor innervation in striated muscles from stillborn infants. American Journal of Physical Medicine 38: 65–78

    PubMed  CAS  Google Scholar 

  • Cioni R, Paradiso C, Battistini N, Starita A, Navona C, Denoth F (1985) Automatic analysis of surface EMG (preliminary findings in healthy subjects and in patients with neurogenic motor diseases). Electroencephalography and Clinical Neurophysiology 61: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Clamann HP (1970) Activity of single motor units during isometric tension. Neurology 20: 254–260

    Article  PubMed  CAS  Google Scholar 

  • Close RI (1972) Dynamic properties of mammalian skeletal muscles. Physiological Reviews 52: 129–197

    PubMed  CAS  Google Scholar 

  • Goers C (1959) Structural organization of the motor nerve endings in mammalian muscle spin- dles and other striated muscle fibers. American Journal of Physical Medicine 38: 166–175

    Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine computation of complex. Fourier series. Mathematics of Computation 19: 297–301

    Article  Google Scholar 

  • Crenshaw A, Karlsson S, Gerdle B, Fridén J (1997) Differential responses in intramuscular pressure and EMG fatigue indicators during low versus high level static contractions to fatigue. Acta Physiol Scand 160: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Daanen HAM, Mazure M, Holewijin M, Van der Velde EA (1990) Reproducibility of the mean power frequency of the surface electromyogram. Eur J Appl Physiol 61: 274–277

    Article  CAS  Google Scholar 

  • Datta AK, Stephens JA (1980) Short-term synchronization of motor unit firing in human first dorsal interosseous muscle. Journal of Physiology (London) 308: 19–20

    Google Scholar 

  • Day SI (1997) The Properties of Electromyogram and Force in Experimental and Computer Simulations of Isometric Muscle Contractions: Data from an Acute Cat Preparation. Dissertation, University of Calgary, Calgary.

    Google Scholar 

  • De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982a) Control scheme governing concurrently active human motor units during voluntary contractions. Journal of Physiology (London) 329: 129–142

    Google Scholar 

  • De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982b) Behaviour of human motor units in different muscles during linearly varying contractions. Journal of Physiology (London) 329: 113–128

    Google Scholar 

  • DeLuca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomechanics 13: 135–163

    Google Scholar 

  • DeLuca CJ, Merletti R (1988) Surface EMG crosstalk among muscles of the leg. Electroencephalography and Clinical Neurophysiology 69: 568–575

    Article  PubMed  Google Scholar 

  • Denny-Brown D, Pennybacker JB (1938) Fibrillation and fasciculation in voluntary muscle. Brain 61: 311–334

    Article  Google Scholar 

  • Dreyer SJ, Dumitru D, King JC (1993) Anodal block V anodal stimulation. Fact or fiction. American Journal of Physical Medicine and Rehabilitation 72: 10–18

    Article  PubMed  CAS  Google Scholar 

  • Duchene J, Goubel F (1993) Surface electromyogram during voluntary contraction: Processing tools and relation to physiological events. Critical Reviews in Biomedical Engineering 21: 313–397

    PubMed  CAS  Google Scholar 

  • Dumitru D, DeLisa JA (1991) Aaem minimonograph #10: Volume conduction. Muscle & Nerve 14: 605–624

    Article  CAS  Google Scholar 

  • Eccles JC, O’Connor WJ (1939) Responses which nerve impulses evoke in mammalian striated muscles. Journal of Physiology (London) 97: 44–102

    CAS  Google Scholar 

  • Elert J (1991) The pattern of activation and relaxation during fatiguing isokinetic contractions in subjectswith and without muscle pain. Medical dissertation, Umeä. pp 1–46.

    Google Scholar 

  • Elert J, Karlsson S, Gerdle B (1998) One-year reproducibility and stability of the signal amplitude ratio and other variables of the EMG: test-retest of a shoulder forward flexion test in female workers with neck and shoulder problems. Clin Physiol 18: 529–538

    Article  PubMed  CAS  Google Scholar 

  • Elert J, Rantapää-Dahlqvist S, Henriksson-Larsén K, Lorentzon R, Gerdle B (1992) Muscle perforamnce, electromyography and fibre type composition in fibromyalgia and work-related myalgia. Scand J Rheumatol 21: 28–34

    Article  PubMed  CAS  Google Scholar 

  • Eng GD, Becker MJ, Muldoon SM (1984) Electrodiagnostic tests in the detection of malignant hyperthermia. Muscle & Nerve 7: 618–625

    Article  CAS  Google Scholar 

  • Enoka RM (1988) Muscle strength and its development. New perspectives. Sports Medicine 6: 146–168

    CAS  Google Scholar 

  • Enoka RM (1995) Morphological features and activation patterns of motor units. Journal of Clinical Neurophysiology 12: 538–559

    Article  PubMed  CAS  Google Scholar 

  • Erim Z, De Luca CJ, Mineo K, Aoki T (1996) Rank-ordered regulation of motor units. Muscle & Nerve 19: 563–573

    Article  CAS  Google Scholar 

  • Finucane SDG, Rafeei T, Kues J, Lamb RL, Mayhew TP (1998) Reproducibility of electromyographic recordings of submaximal concentric and eccentric muscle contractions in humans. Electromyography and Motor Control - Electroencephalography and Clinical Neurophysiology 109: 4 P290–4

    Article  Google Scholar 

  • Fiorito A, Rao S, Merletti R (1994) Analogue and digital instruments for non-invasive estimation of muscle fibre conduction velocity. Med Biol Eng Comput 32: 521–529

    Article  PubMed  CAS  Google Scholar 

  • Fredin Y, Elert J, Britschgi N, Vaher A, Gerdle B (1997) A decreased ability to relax between repetitive muscle contractions in patients with chronic symptoms after whiplash trauma of the neck. J Musculoskel Pain 5: 55–70

    Article  Google Scholar 

  • Fugl-Meyer AR, Gerdle B, Eriksson B-E, Jonsson B (1985) Isokinetic plantar flexion endurance. Scand J Rehabil Med 20: 89–92

    Google Scholar 

  • Fuglevand AJ, Winter DA, Patla AE, Stashuk D (1992) Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biological Cybernetics 67: 143–153

    Article  PubMed  CAS  Google Scholar 

  • Garnett RA, O’Donovan MJ, Stephens JA, Taylor A (1979) Motor unit organization of human medial gastrocnemius. Journal of Physiology (London) 287: 33–43

    CAS  Google Scholar 

  • Geddes LA (1972) Electrodes and the measurement of bioelectric events. John Wiley & Sons, London. Gerdle B, Edström M, Rahm M (1993) Fatigue in the shoulder muscles during static work at two different torque levels. Clin Physiol 13: 469–482

    Google Scholar 

  • Gerdle B, Elert J, Henriksson-Larsén K (1989) Muscular fatigue during repeated isokinetic shoulder forward flexions in young females. Eur J Appl Physiol 58: 666–673

    Article  CAS  Google Scholar 

  • Gerdle B, Henriksson-Larsén K, Lorentzon R, Wretling M-L (1991) Dependence of the mean power frequency of the electromyogram on muscle force and fibre type. Acta Physiol Scand 142: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Gerdle B, Karlsson S (1994) The mean frequency of the EMG of the knee extensors is torque dependent both in the unfatigued and the fatigued states. Clinical Physiology 14: 419–432

    Article  PubMed  CAS  Google Scholar 

  • Gerdle B, Karlsson S, Crenshaw AG, Fridén J (1997) The relationship between EMG and muscle morphology throughout sustained static knee extension at two submaximal force levels. Acta Physiol Scand 160: 341–351

    Article  PubMed  CAS  Google Scholar 

  • Gerdle B, Wretling M-L, Henriksson- Larsén K (1988) Do the fibre-type proportion and the angular velocity influence the mean power frequency of the electromyogram? Acta Physiol Scand 134: 341–346

    Article  PubMed  CAS  Google Scholar 

  • Glendinning DS, Enoka RM (1994) Motor unit behavior in Parkinson’s disease. Physical Therapy 74: 61–70

    PubMed  CAS  Google Scholar 

  • Gootzen THJM, Stegeman DF, Van Oosterom A (1991) Finite limb dimensions and finite muscle length in a model for the generation of electromyographic signals. Electroencephalography and Clinical Neurophysiology 81: 152–162

    Article  PubMed  CAS  Google Scholar 

  • Grill WM, Mortimer JT (1996) Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes. Journal of Neuroscience Methods 65: 43–50

    Article  PubMed  CAS  Google Scholar 

  • Guidetti L, Rivellini G, Figura F (1996) EMG patterns during running: Intra-and inter-individual variability. J electromyogr Kinesiol 6: 37–48

    Article  PubMed  CAS  Google Scholar 

  • Gydikov A, Kostov K, Kossev A, Kosarov D (1984) Estimation of the spreading velocity and the parameters of the muscle potentials by averaging of the summated electromyogram. Electromyography and Clinical Neurophysiology 24: 191–212

    PubMed  CAS  Google Scholar 

  • Hanson J (1974) The effects of repetitive stimulation on the action potential and the twitch of rat muscle. Acta Physiologica Scandinavica 90: 387–400

    Article  PubMed  CAS  Google Scholar 

  • Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126: 1345–1347

    Article  PubMed  CAS  Google Scholar 

  • Hodges PW, Bui BH (1996) A comparison of computer-based methods for the determnation of onset ofmuscle contraction using electromyography. Electroencephalography and clinical neurophysiology 101: 511–519

    Article  PubMed  CAS  Google Scholar 

  • Hogrel JY, Duchene J, Marini JF (1998) Variability of some SEMG parameter estimates with electrode location. Journal of Electromyography and Kinesiology 8: 305–315

    Article  PubMed  CAS  Google Scholar 

  • Hâkansson CH (1956) Conduction velocity and amplitude of the action potential as related to circumference in the isolated fibre of frog muscle. Acta Physiologica Scandinavica 37: 14–34

    Article  PubMed  Google Scholar 

  • Hâkansson CH (1957) Action potentials recorded intra-and extra-cellularly from the isolated frog muscle fibre in ringer’s solution and in air. Acta Physiologica Scandinavica 39: 291–312

    Article  PubMed  Google Scholar 

  • Hägg GM (1991) Zero crossing rate as an index of electromyographic spectral alterations and its applications to ergonomics. Arbetsmiljöinstitutet, Göteborg. pp 1–37.

    Google Scholar 

  • Hägg GM (1992) Interpretation of EMG spectral alterations and alteration indexes at sustained contraction. J Appl Physiol 73: 1211–1217

    PubMed  Google Scholar 

  • Hägg GM (1993) Action potential velocity measurements in the upper trapezius muscle. Journal of Electromyography and Kinesiology 3: 231–235

    Article  PubMed  Google Scholar 

  • Hägg GM, Gloria R (1994) Surface EMG muscular conduction velocity measurement system implemented on a standard personal computer without A/D convertor. Med Biol Eng Comput 32: 691–694

    Article  PubMed  Google Scholar 

  • Inman VT, Ralston HJ, Saunders JBCM, Feinstein B, Wright EW (1952) Relation of human electromyogram to muscular tension. Electroencephalogr Clin Neurophysiol 4: 187–194

    Article  PubMed  CAS  Google Scholar 

  • Iyer VG (1993) Understanding nerve conduction and electromyographic studies. Hand Clinics 9: 273–287

    CAS  Google Scholar 

  • Johansson C (1987) Elite sprinters, ice hockey players, orienteers and marathon runners. Isokinetic leg muscle performance in relation to muscle structure and training. Medical Disseration, Umeâ. pp 1–31.

    Google Scholar 

  • Jonsson B (1978) Kinesiology - with special reference to electromyographic kinesiology. In Contemp. Clin. Neurophysiol. Cobb WA, van Duijn H pp 417–428. Elsevier, Amsterdam.

    Google Scholar 

  • Jonsson B (1982) Measurement and evaluation of local muscular strain in the shoulder during constrained work. J Hum Ergol (Tokyo) 11: 73–88

    CAS  Google Scholar 

  • Karlsson S, Erlandsson B, Gerdle B (1994) A personal computer-based system for real-time analysis of surface EMG signals during static and dynamic contractions. J Electromyogr Kinesiol 4: 170–180

    Article  PubMed  CAS  Google Scholar 

  • Karmen G, Caldwell GE (1996) Physiology and interpretation of the electromyogram. Journal of Clinical Neurophysiology 13: 366–384

    Article  Google Scholar 

  • Kasman GS, Cram JR, Wolf SL (1998) Clinical applications in surface electromyography - chronic musculoskeletal pain. Aspen Publishers, Inc, Gaithersburg

    Google Scholar 

  • Kernell D, Eerbeek O, Verhey BA (1983) Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Experimental Brain Research 50: 220–227

    CAS  Google Scholar 

  • Kernell D, Sjöholm H (1975) Recruitment and firing rate modulation of motor unit tension in a small muscle of the cat’s foot. Brain Research 98: 57–72

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood PA, Sears TA (1978) The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential. Journal of Physiology (London) 275: 103–134

    CAS  Google Scholar 

  • Koh TJ, Grabiner MD (1992) Cross talk in surface electromyograms of human hamstring muscles. Journal of Orthopaedic Research 10: 701–709

    Article  PubMed  CAS  Google Scholar 

  • Koh TJ, Grabiner MD (1993) Evaluation of methods to minimize cross talk in surface electromyography. Journal of Biomechanics 26 Suppl 1: 151–157

    Article  Google Scholar 

  • Komi PA, Tesch P (1979) EMG frequency spectrum, muscle structure and fatigue during dynamic contractions in man. Eur J Appl Physiol 42: 41–50

    Article  CAS  Google Scholar 

  • Krogh-Lund C, Jorgensen K (1993) Myo-electric fatigue manifestations revisited: power spectrum, conduction velocity, and amplitude of human elbow flexor muscles during isolated and repetitive endurance contractions at 30% maximal voluntary contraction. Eur J Appl Physiol 66: 161–173

    Article  CAS  Google Scholar 

  • Kukulka CG, Clamann HP (1981) Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Research 219: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Kupa EJ, Roy SH, Kandarian SC, DeLuca CJ (1995) Effects of muscle fiber type and size on EMG median frequency and conduction velocity. J Appl Physiol 79: 23–32

    PubMed  CAS  Google Scholar 

  • Lindström LH, Magnusson RI (1977) Interpretation of myoelectric power spectra: A model and its applications. Proceedings of the IEEE 65. 653–662

    Article  Google Scholar 

  • Lindström L, Petersen I (1983) Power spectrum analysis of EMG signals and its applications. In Computor-Aided Electromyography. Desmedt JE pp 1–51. Karger, Basel.

    Google Scholar 

  • Lindström LH, Magnusson RI (1977) Interpretation of myoelectric power spectra: a model and its applications. Proceedings of the IEEE 65: 653–662

    Article  Google Scholar 

  • Linssen WHJP, Stegeman DF, Joosten EMG, van’t Hof MA, Binkhorst RA, Notermans SLH (1993) variability and interrelationships of suface EMG parameters during local muscle fatigue. Muscle Nerve 16: 849–856

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, Gans C (1986) In Electromyography for Experimentalists. University of Chicago Press, Chicago.

    Google Scholar 

  • Loeb GE, Peck RA (1996) Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. Journal of Neuroscience Methods 64: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Lynn PA (1979) Direct on-line estimation of muscle fiber conduction velocity by surface electromyograhy. IEEE Transactions on Biomedical Engineering BME-26: 564–571

    Google Scholar 

  • Mannion AF, Dumas GA, Cooper RG, Espinosa FJ, Faris AW, Stevenson JM (1997) Muscle fibre size and type distributation in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: normal values and sex differences. J Anat 190: 505–513

    Article  PubMed  Google Scholar 

  • Mannion AF, Dumas GA, Stevenson JM, Cooper RG (1998) The influence of muscle fiber size and type distribution on electromyographic measures of back muscle fatigability. Spine 23: 576–584

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Miyano H, Sadoyama T (1985) The position of innervation zones in the biceps brachii investigated by surface electromyography. IEEE Transactions on Biomedical Engineering BME-32: 36–42

    Article  Google Scholar 

  • Masuda T, Sadoyama T (1987) Skeletal muscles from which the propagation of motor unit action potentials is detectable with a surface electrode array. Electroencephalography and clinical neurophysiology 67: 421–427

    Article  PubMed  CAS  Google Scholar 

  • Mathiassen SE, Winkel J, Hägg GM (1995) Normalization of surface EMG amplitude from the up- per trapezius muscle in ergonomic studies - a review. J Electromyogr Kinesiol 5: 197–226

    Article  PubMed  CAS  Google Scholar 

  • Matre DA, Sinkjær T, Svensson P, Arendt-Nielsen L (1998) Experimental muscle pain increases the human stretch reflex. Pain 75: 331–339

    Article  PubMed  CAS  Google Scholar 

  • McComas AJ, Galea V, de Bruin H (1993) Motor unit populations in healthy and diseased muscles. Physical Therapy 73: 868–877

    PubMed  CAS  Google Scholar 

  • Merletti R, Lo Conte LR, Orizio C (1991) Indices of muscle fatigue. Journal of Electromyography and Kinesiology 1: 20–33

    Article  PubMed  CAS  Google Scholar 

  • Merletti R, Fiorito A, Lo Conte MR, Cisari C (1998) Repeatability of electrically evoked EMG signals in the human vastus medialis muscle. Muscle & Nerve 21: 184–193

    Article  CAS  Google Scholar 

  • Merletti R, Gulisashvili A, Lo Conte LR (1995) Estimation of shape characteristics of surface muscle signal spectra from time domain data. IEEE Trans Biomed Eng 42: 769–776

    Article  PubMed  CAS  Google Scholar 

  • Merletti R, Knaflitz M, De Luca CJ (1990) Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. Journal of Applied Physiology 69: 1810–1820

    PubMed  CAS  Google Scholar 

  • Merletti R, Knaflitz M, DeLuca CJ (1992) Electrically evoked myoelectric signals. Critical Reviews in Biomedical Engineering 19: 293–340

    PubMed  CAS  Google Scholar 

  • Merletti R, Lo Conte LR (1995) Advances in processing of surface myoelectric signals: Part 1. Med & Biol Eng & Comput 33: 362–372

    Article  CAS  Google Scholar 

  • Merletti R, Migliorini M (1998) Surface EMG electrode noise and contact impedance. Proceedings of the third general SENIAM workshop

    Google Scholar 

  • Milner-Brown HS, Stein RB, Yemm R (1973) Changes in firing rate of human motor units during linearly changing voluntary contractions. Journal of Physiology (London) 230: 371–390

    CAS  Google Scholar 

  • Monster AW, Chan H (1977) Isometric force production by motor units of extensor digitorum communis muscle in man. Journal of Neurophysiology 40: 1432–1443

    PubMed  CAS  Google Scholar 

  • Moritani T, Gaffney FD, Carmichael T, Hargis J (1985) Interrelationships among muscle fiber types, electromyogram and blood pressure during fatiguing isometric contraction. In Biomechanics, IXA. International series on Biomechanics. Winter DA, Norman RW, Wells RP, Hayes KC, Patla AE pp 287–292.

    Google Scholar 

  • Nakashima K, Azumi T, Ohta M, Hamasaki N, Takahashi K (1989) Electromyographic responses in leg muscles after electrical stimulation in myelopathy patients with tonic seizures. Electromyography and Clinical Neurophysiology 29: 203–211

    PubMed  CAS  Google Scholar 

  • Ng JK-F, Richardson CA (1996) Reliability of electromyographic power spectral analysis of back muscle endurance in healthy subjects. Arch phys med rehabil 77: 259–264

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom MA, Fuglevand AJ, Enoka RM (1992) Estimating the strength of common input to human motoneurons from the cross-correlogram. Journal of Physiology (London) 453: 547–574

    CAS  Google Scholar 

  • Oppenheim AV, Schafer RW (1989) In: Discrete-time signal processing. Prentice Hall.

    Google Scholar 

  • Passero S, Paradiso C, Giannini F, Cioni R, Burgalassi L, Battistini N (1994) Diagnosis of thoracic outlet syndrome. Relative value of electrophysiological studies [see comments]. Acta Neurologica Scandinavica 90: 179–185

    Article  PubMed  CAS  Google Scholar 

  • Pedrinelli R, Marino L, Dell’Omo G, Siciliano G, Rossi B (1998) Altered surface myoelectric signals in peripheral vascular disease: correlations with muscle fiber composition. Muscle & Nerve 21: 201–210

    Article  CAS  Google Scholar 

  • Person RS, Kudina LP (1972) Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalography and Clinical Neurophysiology 32: 471–483

    Article  PubMed  CAS  Google Scholar 

  • Potvin JR, Bent LR (1997) A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks. J Electromyogr Kinesiol 7: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Powers RK, Rymer WZ (1988) Effects of acute dorsal spinal hemisection on motoneuron discharge in the medial gastrocnemius of the decerebrate cat. Journal of Neurophysiology 59: 1540–1556

    PubMed  CAS  Google Scholar 

  • Ramaekers VT, Disselhorst-Klug C, Schneider J, Silny J, Forst J, Forst R, Kotlarek F, Rau G (1993) Clinical application of a noninvasive multi-electrode array EMG for the recording of single motor unit activity. Neuropediatrics 24: 134–138

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Pizarro G, Stefani E (1992) Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annual Review of Physiology 54: 109–133

    Article  PubMed  CAS  Google Scholar 

  • Rosenfalck P (1969) Intra-and extracellular potential fields of active nerve and muscle fibres. A physico-mathematical analysis of different models. Thrombosis et Diathesis Haemorrhagica Supplementum 321: 1–168

    PubMed  CAS  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Dick JP, Kachi T, Cowan JM, Marsden CD (1987) Motor cortex stimulation in intact man. 1. General characteristics of EMG responses in different muscles. Brain 110: 1173–90

    Article  PubMed  Google Scholar 

  • Roy SH, De Luca CJ, Schneider J (1986) Effects of electrode locaiton on myoelectric conduciton velocity and median frequency estimates. J Appl Physiol 61: 1510–1517

    PubMed  CAS  Google Scholar 

  • Sanders DB, Stâlberg EV (1996) AAEM minimonograph #25: single-fiber electromyography. Muscle & Nerve 19: 1069–1083

    Article  CAS  Google Scholar 

  • Schleenbaker RE, Mainous AG (1993) Electromyographic biofeedbackk for neuromuscular reeducation in the hemiplegic stroke patient: A meta-analysis. Arch Phys Med Rehabil 74: 1301–1304

    Article  PubMed  CAS  Google Scholar 

  • Schmid UD, Walker G, Hess CW, Schmid J (1990) Magnetic and electrical stimulation of cervical motor roots: technique, site and mechanisms of excitation. Journal of Neurology, Neurosurgery and Psychiatry 53: 770–777

    Article  CAS  Google Scholar 

  • Shankar S, Gander RE, Brandell BR (1989) Changes in the myoelectric signal (MES) power spectra during dynamic contractions. Electroencephalography and clinical Neurophysiology 73: 142–150

    Article  PubMed  CAS  Google Scholar 

  • Sica RE, McComas AI (1971) Fast and slow twitch units in a human muscle. Journal of Neurology, Neurosurgery and Psychiatry 34: 113–120

    Article  CAS  Google Scholar 

  • Simoneau JA, Lortie G, Boulay MR, Thibault MC, Theriault G, Bouchard C (1985) Skeletal muscle histochemical and biochemical characteristics in sedentary male and female subjects. Can J physiol pharmacol 63: 30–35

    Article  PubMed  CAS  Google Scholar 

  • Simoneau J-A, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J physiol 257: 567–572

    Google Scholar 

  • Simons DG, Mense S (1998) Understanding and measurement of muscle t one as related to clinical muscle pain. Pain 75: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Sleivert GG, Wenger HA (1994) Reliability of measuring isometric and isokinetic peak torque, rate of torque development, integrated electromyography, and tibial nerve conduction velocity. Arch Phys Med Rehabil 75: 1315–1521

    PubMed  CAS  Google Scholar 

  • Smits E, Rose PK, Gordon T, Richmond FJ (1994) Organization of single motor units in feline sartorius. Journal of Neurophysiology 72: 1885–1896

    PubMed  CAS  Google Scholar 

  • Sollie G, Hermens HJ, Boon KL, Wallings-De Jonge W, Zilvold G (1985) The measurement of the conduction velocity of muscle fibres with surface EMG according to the cross-correlation method. Electromyogr clin neurophysiol 25: 193–204

    PubMed  CAS  Google Scholar 

  • Stâlberg E (1966) Propagation velocity in human muscle fibers in situ. Acta Physiologica Scandinavica Supplementum 287: 1–112

    Google Scholar 

  • Stâlberg E (1980) Some electrophysiological methods for the study of human muscle. Journal of Biomedical Engineering 2: 290–298

    Article  PubMed  Google Scholar 

  • Stâlberg E, Theile B (1973) Discharge pattern of motoneurones in humans. In New Developments in Electromyography and Clinical Neurophysiology. Desmedt J pp 234–241. Karger, Basel.

    Google Scholar 

  • Stein RB, Ogurtöreli MN (1978) The radial decline of nerve impulses in a restricted cylindrical extracellular space. Biological Cybernetics 28: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Stephenson DG, Lamb GD, Stephenson GM, Fryer MW (1995) Mechanisms of excitation-contraction coupling relevant to skeletal muscle fatigue. Advances in Experimental Medicine and Biology 384: 45–56

    PubMed  CAS  Google Scholar 

  • Svebak S, Braathen ET, Sejersted OM, Bowim B, Fauske S, Laberg JC (1993) Electromyographic activation and proportion of fast versus slow twitch muscle fibers: A genetic disposition for psychogenic muscle tension? Int J Psychophysiol 15: 43–49

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Graven-Nielsen T, Matre D, Arendt-Nielsen L (1998) Experimental muscle pain does not cause long-lasting increases in resting electromyographic activity. Muscle & Nerve 21: 1382–1389

    Article  CAS  Google Scholar 

  • Tehovnik EJ (1996) Electrical stimulation of neural tissue to evoke behavioral responses. Journal of Neuroscience Methods 65: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Ter Haar Romeny BM, Denier van der Gon JJ, Gielen CCAM (1984) Relation between location of a motor unit in the human biceps brachii and its critical firing levels for different tasks. Experimental Neurology 85: 631–650

    Google Scholar 

  • Tesch PA, Komi PV, Jacobs I, Karlsson J, Viitasalo JT (1983) Influence of lactate accumulation of EMG frequency spectrum during repeated concentric contractions. Acta Physiol Scand 119: 61–67

    Article  PubMed  CAS  Google Scholar 

  • Turker KS, Miles TS, Le HT (1988) The lip-clip: a simple, low-impedance ground electrode for use in human electrophysiology. Brain Research Bulletin 21: 139–141

    Article  PubMed  CAS  Google Scholar 

  • Veiersted KB (1995) Medical Dissertation. National Institute of Occupational Health and University of Oslo, Oslo. pp 1–77.

    Google Scholar 

  • Veiersted KB, Westgaard RH, Andersen P (1993) Electromyographic evaluation of muscular work pattern as a predictor of trapezius myalgi. Scand J Work Environ Health 19: 284–290

    Article  PubMed  CAS  Google Scholar 

  • Veiersted K, Westgaard R, Andersen P (1990) Pattern of muscle activity during stereotyped work and its relation to muscle pain. Int Arch Occup Environ Health 62: 31–41

    Article  PubMed  CAS  Google Scholar 

  • Vigreux B, Cnockaert JC, Pertuzon E (1979) Factors influencing quantified surface EMGs. European Journal of Applied Physiology and Occupational Physiology 41: 119–129

    Article  PubMed  CAS  Google Scholar 

  • Viitasalo JHT, Komi PV (1975) Signal characteristics of EMG with special reference to reproducibility of measurements. Acta Physiol Scand 93: 531–539

    Article  PubMed  CAS  Google Scholar 

  • Viitasalo JT, Saukkonen S, Komi PV (1980) Reproducibility of measurements of selected neuromuscular performance variables in man. Electromyogr clin neurophysiol 20: 487–501

    CAS  Google Scholar 

  • Vollestad NK (1997) Measurement of human muscle fatigue. J Neurosci Methods 74: 219–227

    Article  PubMed  CAS  Google Scholar 

  • Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clinical Orthopaedics and Related Research 275–283

    Google Scholar 

  • Windhorst U, Hamm TM, Stuart DG (1989) On the function of muscle and reflex partitioning. Behavioral and Brain Sciences 12: 629–681

    Article  Google Scholar 

  • Winkel J, Mathiassen SE, Hägg GM (1995) Normalization of upper trapezius EMG amplitude in ergonomic studies. Journal Of Electromyography And Kinesiology 5: 197–226

    Article  PubMed  Google Scholar 

  • Winkler T, Stälberg E (1988) Surface anodal stimulation of human peripheral nerves. Experimental Brain Research 73: 481–488

    Article  CAS  Google Scholar 

  • Winter DA (1990) In Biomechanics and Motor Control of Human Movement. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Yang JF, Winter DA (1983) Electromyography reliability in maximal and submaximal isometric contractions. Arch phys med rehabil 64: 417–420

    PubMed  CAS  Google Scholar 

  • Yu YL, Murray NM (1984) A comparison of concentric needle electromyography, quantitative EMG and single fibre EMG in the diagnosis of neuromuscular diseases. Electroencephalography and Clinical Neurophysiology 58: 220–225

    Article  PubMed  CAS  Google Scholar 

  • Zhou S (1996) Acute effect of repeated maximal isometric contraction on electromechanical delay of knee extensor muscle. J Electromyogr Kinesiol 6: 117–127

    Article  PubMed  CAS  Google Scholar 

  • Zipp P (1982) Recommendations for the standardization of lead positions in surface electromyography. J Appl Physiol 50: 41–54

    Google Scholar 

  • Öberg T (1992) Trapezius muscle fatigue and electromyographic frequency analysis. Medical disseration. Linköping University, Linköping.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerdle, B., Karlsson, S., Day, S., Djupsjöbacka, M. (1999). Acquisition, Processing and Analysis of the Surface Electromyogram. In: Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58552-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58552-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63643-1

  • Online ISBN: 978-3-642-58552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics