Skip to main content

Regulation of Heat Shock Genes by Ischemia

  • Chapter
Stress Proteins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 136))

Abstract

The evolutionarily conserved and ubiquitous nature of the heat shock response is well established. However, perhaps nowhere is the potential heterogeneity of this response more evident than in the brain. Several recent reviews provide detailed evaluations of the heat shock response following ischemia and other brain insults (Abe and Nowak 1996b; Massa et al. 1996; Planas et al. 1997). As documented in these, as well as below and elsewhere in this volume (see Chaps. 9,11, and 12), different insults induce a given heat shock gene with differing cell type specificities, and an ischémic insult can result in divergent patterns of expression of individual heat shock genes, implying distinct regulatory mechanisms. Furthermore, impaired translation is a prominent feature of ischemic injury in brain, and this imposes a significant limitation on the expression of proteins encoded by ischemia-induced mRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Nowak TS Jr (1996a) Gene expression and induced ischemic tolerance following brief insults. Acta Neurobiol Exp 56:3–8

    CAS  Google Scholar 

  • Abe H, Nowak TS Jr (1996b) The stress response and its role in cellular defense mechanisms after ischemia. In: Siesjö BK, Wieloch T (eds) Cellular and molecular mechanisms of ischemic brain damage. Lippincott-Raven, Philadelphia, p 451 (Advances in neurology, vol 71)

    Google Scholar 

  • Abe K, Kawagoe J, Aoki M, Kogure K (1993) Changes of mitochondrial DNA and heat shock protein gene expressions in gerbil hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 13:773–780

    PubMed  CAS  Google Scholar 

  • Abe K, Kogure K, Itoyama Y (1995) Rapid and semiquantitative analysis of HSP72 and HSC73 heat shock mRNAs by mimic RT-PCR. Brain Res 683:251–253

    PubMed  CAS  Google Scholar 

  • Abe K, Tanzi RE, Kogure K (1991) Induction of HSP70 mRNA after transient ischemia in gerbil brain. Neurosci Lett 125:166–168

    PubMed  CAS  Google Scholar 

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates the heat shock response. Genes Dev 6:1153–1164

    PubMed  CAS  Google Scholar 

  • Andou Y, Mitani A, Masuda S, Arai T, Kataoka K (1992) Re-evaluation of ischemia induced neuronal damage in hippocampal regions in the normothermic gerbil. Acta Neuropathol (Berl) 85:10–14

    CAS  Google Scholar 

  • Aoki M, Abe K, Liu X-H, Lee T-H, Kato H, Kogure K (1993) Reduction of HSP70 and HSC70 mRNA inductions by bifemaline hydrochloride after transient ischemia in gerbil brain. Neurosci Lett 154:69–72

    PubMed  CAS  Google Scholar 

  • Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol 117:1151–1159

    PubMed  CAS  Google Scholar 

  • Baler R, Zou J, Voellmy R (1996) Evidence for a role of Hsp70 in the regulation of the heat shock response in mammalian cells. Cell Stress Chaperones 1:33–39

    PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LA, Welch WJ (1990) Interaction of hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    PubMed  CAS  Google Scholar 

  • Benjamin IJ, Kroger B, Williams RS (1990) Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci USA 87:6263–6267

    PubMed  CAS  Google Scholar 

  • Bergeron M, Mivechi NF, Giaccia AJ, Giffard RG (1996) Mechanism of heat shock protein 72 induction in primary cultured astrocytes after oxygen-glucose deprivation. Neurol Res 18:64–72

    PubMed  CAS  Google Scholar 

  • Bergstedt K (1993) Ischemic and hypoglycemic brain damage. Studies on protein synthesis and heat-shock protein expression in the rat brain, thesis, Lund University, Sweden

    Google Scholar 

  • Blake MJ, Nowak TS Jr, Holbrook NJ (1990) In vivo hyperthermia induces expression of HSP70 mRNA in brain regions controlling the neuroendocrine response to stress. Mol Brain Res 8:89–92

    PubMed  CAS  Google Scholar 

  • Blumenfeld KS, Welsh FA, Harris VA, Pesenson MA (1992) Regional expression of c-fos and heat shock protein-70 mRNA following hypoxia-ischemia in immature rat brain. J Cereb Blood Flow Metab 12:987–995

    PubMed  CAS  Google Scholar 

  • Brown CR, Martin RL, Hansen WJ, Beckmann RP, Welch WJ (1993) The constitutive and stress inducible forms of hsp 70 exhibit functional similarities and interact with one another in an ATP-dependent fashion. J Cell Biol 120:1101–1112

    PubMed  CAS  Google Scholar 

  • Bruce JL, Price BD, Coleman N, Calderwood SK (1993) Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res 53:12–15

    PubMed  CAS  Google Scholar 

  • Buchan A, Pulsinelli WA (1990) Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10:311–316

    PubMed  CAS  Google Scholar 

  • Busto R, Dietrich WD, Globus MY-T, Valses I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738

    PubMed  CAS  Google Scholar 

  • Cattoretti G, Pileri S, Parravicini C., Becker MHG, Poggi S, Bifulco C. Key G, D’Amato L, Sabattini E, Feudale E, Reynolds F, Gerdes J, Rilke F (1993) Antigen unmasking on formalin-fixed, paraffin-embedded tissue sections. J Pathol 171:83–98

    PubMed  CAS  Google Scholar 

  • Charriaut-Marlangue C., Pollard H, Kadri-Hassani N, Khrestchatisky M, Moreau J, Dessi F, Kang KI, Ben-Ari Y (1992) Increase in specific proteins and mRNAs following transient anoxia-aglycaemia in rat CA1 hippocampal slices. Eur J Neurosci 4:766–776

    PubMed  Google Scholar 

  • Chopp M, Li Y, Dereski MO, Levine SR, Yoshida Y, Garcia JH (1991) Neuronal injury and expression of 72-kDa heat-shock protein after forebrain ischemia in the rat. Acta Neuropathol (Berl) 83:66–71

    CAS  Google Scholar 

  • Chopp M, Li Y, Dereski MO, Levine SR, Yoshida Y, Garcia JH (1992) Hypothermia reduces 72-kDa heat-shock protein induction in rat brain after transient forebrain ischemia. Stroke 23:104–107

    PubMed  CAS  Google Scholar 

  • Churn SB, Taft WC., Billingsley MS, Blair RE, DeLorenzo RJ (1990) Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin dependent protein kinase II in gerbils. Stroke 21:1715–1721

    PubMed  CAS  Google Scholar 

  • Colbourne F, Corbett D (1995) Delayed postischemic hypothermia: a six month survival study using behavioral and histological assessments of neuroprotection. J Neurosci 15:7250–7260

    PubMed  CAS  Google Scholar 

  • Colbourne F, Nurse SM, Corbett D (1993) Spontaneous postischemic hyperthermia is not required for severe CA1 ischemic damage in gerbils. Brain Res 623:1–5

    PubMed  CAS  Google Scholar 

  • Colbourne F, Sutherland G, Corbett D (1997) Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol 14:171–201

    PubMed  CAS  Google Scholar 

  • Cooper HK, Zalewska T, Hossmann K-A, Kleihues P (1977) The effect of ischemia and recirculation on protein synthesis in the rat brain. J Neurochem 28:929–934

    PubMed  CAS  Google Scholar 

  • Courgeon A-M, Rollet E, Becker J, Maisonhaute C., Best-Belpomme M (1988) Hydrogen peroxide (H2O2) induces actin and some heat-shock proteins in Drosophila cells. Eur J Biochem 171:163–170

    PubMed  CAS  Google Scholar 

  • Deshpande J, Bergstedt K, Linden T, Kalimo H, Wieloch T (1992) Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp Brain Res 88:91–105

    PubMed  CAS  Google Scholar 

  • Dienel GA, Kiessling M, Jacewicz M, Pulsinelli WA (1986) Synthesis of heat shock proteins in rat brain cortex after transient ischemia. J Cereb Blood Flow Metab 6:505–510

    PubMed  CAS  Google Scholar 

  • Dienel GA, Pulsinelli WA, Duffy TE (1980) Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem 35:1216–1226

    PubMed  CAS  Google Scholar 

  • Dietrich WD, Busto R, Alonso O, Globus MY-T, Ginsberg MD (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global fore brain ischemia in rats. J Cereb Blood Flow Metab 13:541–549

    PubMed  CAS  Google Scholar 

  • Dietrich WD, Busto R, Halley M, Valdes I (1990a) The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol 49:486–497

    PubMed  CAS  Google Scholar 

  • Dietrich WD, Busto R, Valdes I, Loor Y (1990b) Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 21:1318–1325

    PubMed  CAS  Google Scholar 

  • Ferrer I, Soriano MA, Vidal A, Planas AM (1995) Survival of parvalbumin immunoreactive neurons in the gerbil hippocampus following transient forebrain ischemia does not depend on HSP-70 protein induction. Brain Res 692:41–46

    PubMed  CAS  Google Scholar 

  • Ferriero DM, Soberano HQ, Simon RP, Sharp FR (1990) Hypoxia-ischemia induces heat shock protein-like (hsp72) immunoreactivity in neonatal rat brain. Dev Brain Res 53:145–150

    CAS  Google Scholar 

  • Fourie AM, Sambrook JF, Gething M-JH (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J Biol Chem 269:30470–30478

    PubMed  CAS  Google Scholar 

  • Freeman ML, Borrelli MJ, Syed K, Senisterra G, Stafford DM, Lepock JR (1995) Characterization of a signal generated by oxidation of protein thiols that activates the heat shock transcription factor. J Cell Physiol 164:356–366

    PubMed  CAS  Google Scholar 

  • Gass P, Schröder H, Prior P, Kiessling M (1994) Constitutive expression of heat shock protein 90 (HSP90) in neurons of the rat brain. Neurosci Lett 182:188–192

    PubMed  CAS  Google Scholar 

  • Gass P, Spranger M, Herdegen T, Bravo R, Köck P, Hacke W, Kiessling M (1992) Induction of FOS and JUN proteins following focal ischemia in the rat cortex: differential effect of MK-801. Acta Neuropathol (Berl) 84:545–553

    CAS  Google Scholar 

  • Gilby KL, Armstrong JN, Currie WR, Robertson HA (1997) The effects of hypoxia ischemia on expression of c-Fos, c-Jun and Hsp70 in the young rat hippocampus. Mol Brain Res 48:87–96

    PubMed  CAS  Google Scholar 

  • Ginty DD, Marlowe M, Pekala PH, Seidel ER (1990) Multiple pathways for the regulation of ornithine decarboxylase in intestinal epithelial cells. Am J Physiol 258:G454–G460

    PubMed  CAS  Google Scholar 

  • Gonzalez MF, Lowenstein D, Fernyak S, Hisanaga K, Simon R, Sharp FR (1991) Induction of heat shock protein 72-like immunoreactivity in the hippocampal formation following transient global ischemia. Brain Res Bull 26:241–250

    PubMed  CAS  Google Scholar 

  • Gonzalez MF, Shiraishi K, Hisanaga K, Sagar SM, Mandabach M, Sharp FR (1989) Heat shock proteins as markers of neural injury. Mol Brain Res 6:93–100

    PubMed  CAS  Google Scholar 

  • Goodson ML, Park-Sarge O-K, Sarge KD (1995) Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol Cell Biol 15:5288–5293

    PubMed  CAS  Google Scholar 

  • Greenberg ME, Hermanowski AL, Ziff EB (1986) Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription. Mol Cell Biol 6:1050–1057

    PubMed  CAS  Google Scholar 

  • Gubellini P, Bisso GM, Ciofi-Luzzatto A, Fortuna S, Lorenzini P, Michalek H, Scarsella G (1997) Ubiquitin-mediated stress response in a rat model of brain transient ischemia/hypoxia. Neurochem Res 22:93–100

    PubMed  CAS  Google Scholar 

  • Harrub JB, Nowak TS Jr (1998) Cryptic expression of the 70 kDa heat shock protein, hsp72, in gerbil hippocampus after transient ischemia. Neurochem Res 23:703–708

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Litt L, Espanol MT, Gregory GA, Sharp FR, Chan PH (1997) Effects of neuroprotective dose of fructose-1,6-bisphosphate on hypoxia-induced expression of c-fos and hsp70 mRNA in neonatal rat cerebrocortical slices. Brain Res 750:1–10

    PubMed  CAS  Google Scholar 

  • Hayashi T, Takada K, Matsuda M (1991) Changes in ubiquitin and ubiquitin-protein conjugates in the CA1 neurons after transient sublethal ischemia. Mol Chem Neuropathol 15:75–82

    PubMed  CAS  Google Scholar 

  • Hayashi T, Takada K, Matsuda M (1992a) Post-transient ischemia increase in ubiquitin conjugates in the early reperfusion. Neuroreport 3:519–520

    PubMed  CAS  Google Scholar 

  • Hayashi T, Takada K, Matsuda M (1992b) Subcellular distribution of ubiquitin-protein conjugates in the hippocampus following transient ischemia. J Neurosci Res 31:561–564

    PubMed  CAS  Google Scholar 

  • Hayashi T, Tanaka J, Kamikubo T, Takada K, Matsuda M (1993) Increase in ubiquitin conjugates dependent on ischemic damage. Brain Res 620:171–173

    PubMed  CAS  Google Scholar 

  • Higashi T, Nakai A, Uemura Y, Kikuchi H, Nagata K (1995) Activation of heat shock factor 1 in rat brain during cerebral ischemia or after heat shock. Mol Brain Res 34:262–270

    PubMed  CAS  Google Scholar 

  • Higashi T, Takechi H, Uemura Y, Kikuchi H, Nagata K (1994) Differential induction of mRNA species encoding several classes of stress proteins following focal cerebral ischemia in rats. Brain Res 650:239–248

    PubMed  CAS  Google Scholar 

  • Huang LE, Zhang H, Bae SW, Liu AY-C (1994) Thiol reducing reagents inhibit the heat shock response. Involvement of a redox mechanism in the heat shock signal transduction pathway. J Biol Chem 269:30718–30725

    PubMed  CAS  Google Scholar 

  • Iijima T, Mies G, Hossmann K-A (1992) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischémie injury. J Cereb Blood Flow Metab 12:727–733

    PubMed  CAS  Google Scholar 

  • Ikeda J, Nakajima T, Osborne OC., Mies G, Nowak TS Jr (1994) Coexpression of c-fos and hsp70 mRNAs in gerbil brain after ischemia: induction threshold, distribution and time course evaluated by in situ hybridization. Mol Brain Res 26:249–258

    PubMed  CAS  Google Scholar 

  • Izumoto S, Herbert J (1993) Widespread constitutive expression of HSP90 messenger RNA in rat brain. J Neurosci Res 35:20–28

    PubMed  CAS  Google Scholar 

  • Jahngen-Hodge J, Obin MS, Gong X, Shang F, Nowell TR Jr, Gong J, Abasi H, Blumberg J, Taylor A (1997) Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem 272:28218–28226

    PubMed  CAS  Google Scholar 

  • James P, Pfund C., Craig EA (1997) Functional specificity among molecular chaper-ones. Science 275:387–389

    PubMed  CAS  Google Scholar 

  • Kamii H, Kinouchi H, Sharp FR, Koistinaho J, Epstein CJ, Chan PH (1994) Prolonged expression of hsp70 mRNA following transient focal cerebral ischemia in transgenic mice overexpressing CuZn-superoxide dismutase. J Cereb Blood Flow Metab 14:478–486

    PubMed  CAS  Google Scholar 

  • Kamiya T, Jacewicz M, Pulsinelli WA, Nowak TS Jr (1995) CBF thresholds for RNA and protein synthesis after focal ischemia and the effect of MK-801. J Cereb Blood Flow Metab 15:S1

    Google Scholar 

  • Kato H, Araki T, Kogure K (1991) Postischemic spontaneous hyperthermia is not a major aggravating factor for neuronal damage following repeated brief cerebral ischemia in the gerbil. Neurosci Lett 126:21–24

    PubMed  CAS  Google Scholar 

  • Kato H, Chen T, Liu X-H, Nakata N, Kogure K (1993) Immunohistochemical localization of ubiquitin in gerbil hippocampus with induced tolerance to ischemia. Brain Res 619:339–343

    PubMed  CAS  Google Scholar 

  • Kato H, Kogure K, Liu X-H, Araki T, Kato K, Itoyama Y (1995) Immunohistochemical localization of the low molecular weight stress protein HSP27 following focal cerebral ischemia in the rat. Brain Res 679:1–7

    PubMed  CAS  Google Scholar 

  • Kato H, Liu Y, Kogure K, Kato K (1994) Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischémie tolerance. Brain Res 634:235–244

    PubMed  CAS  Google Scholar 

  • Kawagoe J, Abe K, Aoki M, Kogure K (1993) Induction of HSP90α heat shock mRNA after transient global ischemia in gerbil hippocampus. Brain Res 621:121–125

    PubMed  CAS  Google Scholar 

  • Kawagoe J, Abe K, Kogure K (1992a) Different thresholds of HSP70 and HSC70 heat shock mRNA induction in post-ischemic gerbil brain. Brain Res 599:197–203

    PubMed  CAS  Google Scholar 

  • Kawagoe J, Abe K, Sato S, Nagano I, Nakamura S, Kogure K (1992b) Distributions of heat shock protein (HSP) 70 and heat shock cognate protein (HSC) 70 mRNAs after transient focal ischemia in rat brain. Brain Res 587:195–202

    PubMed  CAS  Google Scholar 

  • Kawagoe J, Abe K, Sato S, Nagano I, Nakamura S, Kogure K (1992c) Distributions of heat shock protein-70 mRNAs and heat shock cognate protein-70 mRNAs after transient global ischemia in gerbil brain. J Cereb Blood Flow Metab 12:794–801

    PubMed  CAS  Google Scholar 

  • Kiang JG, Carr FE, Burns MB, McClain DE (1994) HSP-72 synthesis is promoted by increase in [Ca 2+]i or activation of G proteins but not pHi or cAMP. Am J Physiol 267:C104–C114

    PubMed  CAS  Google Scholar 

  • Kiessling M, Dienel GA, Jacewicz M, Pulsinelli WA (1986) Protein synthesis in postis-chemic rat brain: a two-dimensional electrophoretic analysis. J Cereb Blood Flow Metab 6:642–649

    PubMed  CAS  Google Scholar 

  • Kiessling M, Stumm G, Xie Y, Herdegen T, Aguzzi A, Bravo R, Gass P (1993) Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab 13:914–924

    PubMed  CAS  Google Scholar 

  • Kil HY, Zhang J, Piantadosi CA (1996) Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab 16:100–106

    PubMed  CAS  Google Scholar 

  • Kindy M, Bhat AN, Bhat NR (1992) Transient ischemia stimulates glial fibrillary acid protein and vimentin gene expression in the gerbil neocortex, striatum and hippoc ampus. Mol Brain Res 13:199–206

    PubMed  CAS  Google Scholar 

  • Kindy MS, Carney JP, Dempsey RJ, Carney JM (1991) Ischemic induction of protooncogene expression in gerbil brain. J Mol Neurosci 2:217–228

    PubMed  CAS  Google Scholar 

  • Kinouchi H, Sharp FR, Chan PH, Koistinaho J, Sagar SM, Yoshimoto T (1994) Induction of c-fos, junB, c-jun, and hsp70 mRNA in cortex, thalamus, basai ganglia, and hippocampus following middle cerebral artery occlusion. J Cereb Blood Flow Metab 14:808–817

    PubMed  CAS  Google Scholar 

  • Kinouchi H, Sharp FR, Hill MP, Koistinaho J, Sagar SM, Chan PH (1993) Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 13:105–115

    PubMed  CAS  Google Scholar 

  • Kirino T, Tsujita Y, Tamura A (1991) Induced tolerance to ischemia in gerbil hippo campal neurons. J Cereb Blood Flow Metab 11:299–307

    PubMed  CAS  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, Kamada T (1990) “Ischemic tolerance” phenomenon found in brain. Brain Res 528:21–24

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Harris VA, Welsh FA (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15:721–727

    PubMed  CAS  Google Scholar 

  • Kondo T, Murakami K, Honkaniemi J, Sharp FR, Epstein CJ, Chan PH (1996) Expression of hsp70 mRNA is induced in the brain of transgenic mice overexpressing human CuZn-superoxide dismutase following transient global cerebral ischemia. Brain Res 737:321–326

    PubMed  CAS  Google Scholar 

  • Kondo T, Sharp FR, Honkaniemi J, Mikawa S, Epstein CJ, Chan PH (1997) DNA fragmentation and prolonged expression of c-fos, c-jun, and hsp70 in kainic acid induced neuronal cell death in transgenic mice overexpressing human CuZn-superoxide dismutase. J Cereb Blood Flow Metab 17:241–256

    PubMed  CAS  Google Scholar 

  • Kuroiwa T, Bonnekoh P, Hossmann K-A (1990) Prevention of postischemic hyperthermia prevents ischémie injury of CA1 neurons in gerbils. J Cereb Blood Flow Metab 10:550–556

    PubMed  CAS  Google Scholar 

  • Li Y, Chopp M, Garcia JH, Yoshida Y, Zhang ZG, Levine SR (1992) Distribution of the 72-kd heat-shock protein as a function of transient focal cerebral ischemia in rats. Stroke 23:1292–1298

    PubMed  CAS  Google Scholar 

  • Liu Y, Kato H, Nakata N, Kogure K (1993) Temporal profile of heat shock protein 70 synthesis in ischémie tolerance induced by preconditioning ischemia in rat hippocampus. Neuroscience 56:921–927

    PubMed  CAS  Google Scholar 

  • Magnusson K, Wieloch T (1989) Impairment of protein ubiquitination may cause delayed neuronal death. Neurosci Lett 96:264–270

    PubMed  CAS  Google Scholar 

  • Marcuccilli CJ, Mathur SK, Morimoto RI, Miller RJ (1996) Regulatory differences in the stress response of hippocampal neurons and glial cells after heat shock. J Neurosci 16:478–485

    PubMed  CAS  Google Scholar 

  • Marini AM, Kozuka M, Lipsky RL, Nowak TS Jr (1990) 70-Kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: comparison with immunocytochemical localization after hyperthermia in vivo. J Neurochem 54:1509–1516

    PubMed  CAS  Google Scholar 

  • Massa SM, Swanson RA, Sharp FR (1996) The stress gene response in brain. Cereb Brain Metab Rev 8:95–158

    CAS  Google Scholar 

  • Matsuyama T, Michishita H, Nakamura H, Tsuchiyama M, Shimizu S, Watanabe K, Sugita M (1993) Induction of copper-zinc Superoxide dismutase in gerbil hippocampus after ischemia. J Cereb Blood Flow Metab 13:135–144

    PubMed  CAS  Google Scholar 

  • McCabe T, Simon RP (1993) Hyperthermia induces 72kDa heat shock protein expression in rat brain in non-neuronal cells. Neurosci Lett 159:163–165

    PubMed  CAS  Google Scholar 

  • Mestril R, Chi S-H, Sayen R, Dillmann WH (1994) Isolation of a novel inducible rat heat-shock protein (HSP70) gene and its expression during ischaemia/hypoxia and heat shock. Biochem J 298:561–569

    PubMed  CAS  Google Scholar 

  • Mies G, Ishimaru S, Xie Y, Seo K, Hossmann K-A (1991) Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11:753–761

    PubMed  CAS  Google Scholar 

  • Milarski KL, Welch WJ, Morimoto RI (1989) Cell cycle-dependent association of HSP70 with specific cellular proteins. J Cell Biol 108:413–423

    PubMed  CAS  Google Scholar 

  • Morimoto T, Ide T, Ihara Y, Tamura A, Kirino T (1996) Transient ischemia depletes free ubiquitin in the gerbil hippocampal CA1 neurons. Am J Pathol 148:249–257

    PubMed  CAS  Google Scholar 

  • Mosser DD, Duchaine J, Massie B (1993) The DNA binding activity of the human heat shock transcription factor is regulated in vivo by hsp70. Mol Cell Biol 13:5427–5438

    PubMed  CAS  Google Scholar 

  • Mosser DD, Kotzbauer PT, Sarge KD, Morimoto RI (1990) In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc Natl Acad Sci USA 87:3748–3752

    PubMed  CAS  Google Scholar 

  • Munell F, Burke RE, Bandele A, Gubits RM (1994) Localization of c-fos, c-jun, and hsp70 mRNA expression in brain after neonatal hypoxia-ischemia. Dev Brain Res 77:111–121

    CAS  Google Scholar 

  • Newman GC., Qi H, Hospod FE, Grundmann K (1992) Preservation of hippocampal brain slices with in vivo or in vitro hypothermia. Brain Res 575:159–163

    PubMed  CAS  Google Scholar 

  • Nimura T, Weinstein PR, Massa SM, Panter S, Sharp FR (1996) Herne oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Mol Brain Res 37:201–208

    PubMed  CAS  Google Scholar 

  • Nishi S, Taki W, Uemura Y, Higashi T, Kikuchi H, Kudoh H, Satoh M, Nagata K (1993) Ischcmic tolerance due to the induction of HSP70 in a rat ischémie recirculation model. Brain Res 615:281–288

    PubMed  CAS  Google Scholar 

  • Nishimura RN, Dwyer BE (1996) Evidence for different mechanisms of induction of HSP70i: a comparison of cultured rat cortical neurons with astrocytes. Mol Brain Res 36:227–239

    PubMed  CAS  Google Scholar 

  • Nishimura RN, Dwyer BE, Clegg K, Cole R, de Vellis J (1991) Comparison of the heat shock response in cultured cortical neurons and astrocytes. Mol Brain Res 9:39–45

    PubMed  CAS  Google Scholar 

  • Nishimura RN, Dwyer BE, Welch W, Cole R, de Vellis J, Liotta K (1988) The induction of the major heat-stress protein in purified rat glial cells. J Neurosci Res 20:12–18

    PubMed  CAS  Google Scholar 

  • Noga M, Hayashi T (1996) Ubiquitin gene expression following transient forebrain ischemia. Mol Brain Res 36:261–267

    PubMed  CAS  Google Scholar 

  • Nowak TS Jr (1985) Synthesis of a stress protein following transient ischemia in the gerbil. J Neurochem 45:1635–1641

    PubMed  CAS  Google Scholar 

  • Nowak TS Jr (1991) Localization of 70kDa stress protein mRNA induction in gerbil brain after ischemia. J Cereb Blood Flow Metab 11:432–439

    PubMed  CAS  Google Scholar 

  • Nowak TS Jr (1998) Heat shock responses in global ischemia. In: Ginsberg MD, Bogousslavsky J (eds) Cerebrovascular disease: pathophysiology, diagnosis and management. Blackwell Science, Maiden, p 565

    Google Scholar 

  • Nowak TS Jr, Abe H (1994) Postischemic stress response in brain. In: Morimoto RI, Tissières A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory, Plainview, NY, p 553

    Google Scholar 

  • Nowak TS Jr, Bond U, Schlesinger MJ (1990) Heat shock RNA levels in brain and other tissues after hyperthermia and transient ischemia. J Neurochem 54:451–458

    PubMed  CAS  Google Scholar 

  • Nowak TS Jr, Fried RL, Lust WD, Passonneau JV (1985) Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J Neurochem 44:487–494

    PubMed  CAS  Google Scholar 

  • Nowak TS Jr, Jacewicz M (1994) The heat shock/stress response in focal cerebral ischemia. Brain Pathol 4:67–76

    PubMed  Google Scholar 

  • Nowak TS Jr, Osborne OC., Suga S (1993) Stress protein and proto-oncogene expression as indicators of neuronal pathophysiology after ischemia. In: Kogure K, Hossmann K-A, Siesjö BK (eds) Neurobiology of ischemic brain damage. Elsevier Science, Amsterdam, p 195 (Progress in brain research, vol 96)

    Google Scholar 

  • Nowak TS Jr, Zhou Q, Voulalas PJ, Sarvey J (1994) Gene expression as an index of pathophysiology associated with slice preparation. In: Schurr A, Rigor BM (eds) Brain slices in basic and clinical research. CRC Press, Boca Raton, p 257

    Google Scholar 

  • Nunes SL, Calderwood SK (1995) Heat shock factor-1 and the heat shock cognate 70 protein associate in high molecular weight complexes in the cytoplasm of NIH-3T3 cells. Biochem Biophys Res Commun 213:1–6

    PubMed  CAS  Google Scholar 

  • Nurse S, Corbett D (1994) Direct measurement of brain temperature during and after intraischemia hypothermia: correlation with behavioral, physiological, and histo logical endpoints. J Neurosci 14:7726–7734

    PubMed  CAS  Google Scholar 

  • Nurse S, Corbett D (1996) Neuroprotection after several days of mild, drug-induced hypothermia. J Cereb Blood Flow Metab 16:474–480

    PubMed  CAS  Google Scholar 

  • Pardue S, Groshan K, Raese JD, Morrison-Bogorad M (1992) Hsp70 mRNA induction is reduced in neurons of aged rat hippocampus after thermal stress. Neurobiol Aging 13:661–672

    PubMed  CAS  Google Scholar 

  • Paschen W, Uto A, Djuricic B, Schmitt J (1994) Hemeoxygenase expression after reversible ischemia of rat brain. Neurosci Lett 180:5–8

    PubMed  CAS  Google Scholar 

  • Planas AM, Soriano MA, Estrada A, Sanz O, Martin F, Ferrer I (1997) The heat shock response after brain lesions: induction of 72kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Prog Neurobiol 51:607–636

    PubMed  CAS  Google Scholar 

  • Plumier J-CL, David J-C., Robertson HA, Currie WR (1997) Cortical application of potassium chloride induces the low-molecular weight heat shock protein (hsp27) in astrocytes. J Cereb Blood Flow Metab 17:781–790

    PubMed  CAS  Google Scholar 

  • Price BD, Calderwood SK (1991) Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol 11:3365–3368

    PubMed  CAS  Google Scholar 

  • Saito N, Kawai K, Nowak TS Jr (1995) Reexpression of developmentally regulated MAP2c mRNA after ischemia: colocalization with hsp72 mRNA in vulnerable neurons. J Cereb Blood Flow Metab 15:205–215

    PubMed  CAS  Google Scholar 

  • Sharp FR, Lowenstein D, Simon R, Hisanaga K (1991) Heat shock protein hsp72 induction in cortical and striatal astrocytes and neurons following infarction. J Cereb Blood Flow Metab 11:621–627

    PubMed  CAS  Google Scholar 

  • Sick TJ, Somjen GG (1998) Tissue slice: application to study of cerebral ischemia. In: Ginsberg MD, Bogousslavsky J (eds) Cerebrovascular disease: pathophysiology, diagnosis and management. Blackwell Science, Maiden, p 137

    Google Scholar 

  • Simon RP, Cho H, Gwinn R, Lowenstein DH (1991) The temporal profile of 72-kDa heat-shock protein expression following global ischemia. J Neurosci 11:881–889

    PubMed  CAS  Google Scholar 

  • Sistonen L, Sarge KD, Morimoto RI (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol 14:2087–2099

    PubMed  CAS  Google Scholar 

  • Sloviter RS, Lowenstein DH (1992) Heat shock protein expression in vulnerable cells of the rat hippocampus as an indicator of excitation induced neuronal stress. J Neurosci 12:3004–3009

    PubMed  CAS  Google Scholar 

  • Sommer C., Gass P, Kiessling M (1995) Selective c-JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischemia-tolerant state. Brain Pathol 5:135–144

    PubMed  CAS  Google Scholar 

  • Soriano MA, Ferrer 1, Rodriguez FE, Planas AM (1995) Expression of c-fos and inducible hsp-70 mRNA following a transient episode of focal ischemia that had non-lethal effects on the rat brain. Brain Res 670:317–320

    PubMed  CAS  Google Scholar 

  • Soriano MA, Planas AM, Rodníguez-Farré E, Ferrer I (1994) Early 72-kDa heat shock protein induction in microglial cells following focal ischemia in the rat brain. Neurosci Lett 182:205–207

    PubMed  CAS  Google Scholar 

  • Srivastava PK (1993) Peptide-binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation. Adv Cancer Res 62:153–177

    PubMed  CAS  Google Scholar 

  • Suga S, Nowak TS Jr (1998) Postischemic hyperthermia increases expression of hsp72 mRNA after brief ischemia in the gerbil. Neurosci Lett 243:57–60

    PubMed  CAS  Google Scholar 

  • Takeda A, Onodera H, Sugimoto A, Itoyama Y, Kogure K, Shibahara S (1994) Increased expression of heme oxygenase mRNA in rat brain following transient forebrain ischemia. Brain Res 666:120–124

    PubMed  CAS  Google Scholar 

  • Takemoto O, Tomimoto H, Yanagihara T (1995) Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils. Stroke 26:1639–1648

    PubMed  CAS  Google Scholar 

  • Tamura Y, Peng P, Liu K, Daou M, Srivastava PK (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278:117–120

    PubMed  CAS  Google Scholar 

  • Thilmann R, Xie Y, Kleihues P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 71:88–93

    CAS  Google Scholar 

  • Tomioka C., Nishioka K, Kogure K (1993) A comparison of induced heat-shock protein in neurons destined to survive and those destined to die after transient ischemia in rats. Brain Res 612:216–220

    PubMed  CAS  Google Scholar 

  • Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SC., Sharp FR (1998) Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab 18:257–273

    PubMed  CAS  Google Scholar 

  • Uemura Y, Kowall NW, Moskowitz MA (1991) Focal ischemia in rats causes time dependent expression of c-fos protein immunoreactivity in widespread regions of ipsilateral cortex. Brain Res 552:99–105

    PubMed  CAS  Google Scholar 

  • Vass K, Berger ML, Nowak TS Jr, Welch WJ, Lassmann H (1989) Induction of stress protein HSP70 in nerve cells after status epilepticus in the rat. Neurosci Lett 100:259–264

    PubMed  CAS  Google Scholar 

  • Vass K, Welch WJ, Nowak TS Jr (1988) Localization of 70 kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol (Berl) 77:128–135

    CAS  Google Scholar 

  • Velazquez JM, Lindquist S (1984) hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36:655–662

    PubMed  CAS  Google Scholar 

  • Wagstaff MJD, Collaco-Moraes Y, Aspey BS, Coffin RS, Harrison MJG, Latchman DS, de Belleroche JS (1996) Focal cerebral ischaemia increases the levels of several classes of heat shock proteins and their corresponding mRNAs. Mol Brain Res 42:236–244

    PubMed  CAS  Google Scholar 

  • Wang S, Longo FM, Chen J, Butman M, Graham SH, Haglid KG, Sharp FR (1993) Induction of glucose regulated protein (grp78) and inducible heat shock protein (hsp70) mRNAs in rat brain after kainic acid seizures and focal ischemia. Neurochem Int 23:575–582

    PubMed  CAS  Google Scholar 

  • Wei H, Bowen R, Cai Q, Barnes S, Wang Y (1995) Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med 208:124–130

    PubMed  CAS  Google Scholar 

  • Welch WJ, Feramisco JR (1984) Nuclear and nucleolar localization of the 72 000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259:4501–4513

    PubMed  CAS  Google Scholar 

  • Welsh FA, Harris VA (1991) Postischemic hypothermia fails to reduce ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 11:617–620

    PubMed  CAS  Google Scholar 

  • Welsh FA, Moyer DJ, Harris VA (1992) Regional expression of heat shock protein-70 mRNA and c-fos mRNA following focal ischemia in rat brain. J Cereb Blood Flow Metab 12:204–212

    PubMed  CAS  Google Scholar 

  • Welsh FA, Sims RE, Harris VA (1990) Mild hypothermia prevents ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 10:557–563

    PubMed  CAS  Google Scholar 

  • Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822–827

    PubMed  CAS  Google Scholar 

  • Widmann R, Kuroiwa T, Bonnekoh P, Hossmann K-A (1991) [14C]Leucine incorporation into brain proteins in gerbils after transient ischemia: relationship to selective vulnerability of hippocampus. J Neurochem 56:789–796

    PubMed  CAS  Google Scholar 

  • Wong M-L, Weiss SRB, Gold PW, Doi SQ, Banerjee S, Licinio J, Lad R, Post RM, Smith MA (1992) Induction of constitutive heat shock protein 73 mRNA in the dentate gyrus by seizures. Mol Brain Res 13:19–25

    PubMed  CAS  Google Scholar 

  • Yamashita K, Eguchi Y, Kajiwara K, Ito H (1991) Mild hypothermia ameliorates ubiquitin synthesis and prevents delayed neuronal death in the gerbil hippocampus. Stroke 22:1574–1581

    PubMed  CAS  Google Scholar 

  • Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H (1994) Human copper-zinc Superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165–170

    PubMed  Google Scholar 

  • Zhou M, Wu X, Ginsberg HN (1996) Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells. J Biol Chem 271:24769–24775

    PubMed  CAS  Google Scholar 

  • Zhou Q, Abe H, Nowak TS Jr (1995) Immunocytochemical and in situ hybridization approaches to the optimization of brain slice preparations. J Neurosci Meth 59:85–92

    CAS  Google Scholar 

  • Zhou Q, Nowak TS Jr (1996) Induction of hsp72 mRNA following in vitro anoxia/ aglycemia in rat hippocampal slices. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1996. Wissenschaftliche Verlagsgesellschaft, Stuttgart, p 131

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nowak, T.S., Zhou, Q., Valentine, W.J., Harrub, J.B., Abe, H. (1999). Regulation of Heat Shock Genes by Ischemia. In: Latchman, D.S. (eds) Stress Proteins. Handbook of Experimental Pharmacology, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58259-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58259-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63519-9

  • Online ISBN: 978-3-642-58259-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics