Skip to main content

Invariant Subspace Methods for the Numerical Solution of Riccati Equations

  • Chapter
The Riccati Equation

Part of the book series: Communications and Control Engineering Series ((CCE))

Abstract

In this tutorial paper, an overview is given of progress over the past ten to fifteen years towards reliable and efficient numerical solution of various types of Riccati equations. Our attention will be directed primarily to matrix-valued algebraic Riccati equations and numerical methods for their solution based on computing bases for invariant subspaces of certain associated matrices. Riccati equations arise in modeling both continuous-time and discrete-time systems in a wide variety of applications in science and engineering. One can study both algebraic equations and differential or difference equations. Both algebraic and differential or difference equations can be further classified according to whether their coefficient matrices give rise to so-called symmetric or nonsymmetric equations. Symmetric Riccati equations can be further classified according to whether or not they are definite or indefinite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Ahlbrandt Continued fraction representations of maximal and minimal solutions of a discrete matrix Riccati equation. preprint (1990).

    Google Scholar 

  2. F.A. Aliev, B.A. Bordyug, and V.B. Larin. The spectral method of solving matrix algebraic Riccati equations. Soviet Math. Dokl., 35:121–125, 1987.

    MATH  Google Scholar 

  3. F.A. Aliev, B.A. Bordyug, and V.B. Larin. Orthogonal projections and the solution of a matrix algebraic Riccati equation. Soviet Math. Dokl., 38:531–534, 1989.

    MathSciNet  Google Scholar 

  4. B.D.O. Anderson. Solution of quadratic matrix equations. Electron. Letters, 2:371–372, 1966.

    Article  Google Scholar 

  5. B.D.O. Anderson. Second-order convergent algorithms for the steady-state Riccati equation. Int. J. Control, 28:295–306, 1978.

    Article  MATH  Google Scholar 

  6. B.D.O. Anderson and J.B. Moore. Linear Optimal Control. Prentice Hall, Englewood Cliffs, NJ, 1971.

    MATH  Google Scholar 

  7. B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice Hall, Englewood Cliffs, NJ, 1979.

    MATH  Google Scholar 

  8. L.R. Anderson, D.W. Brewer, and A.R. Baykam. Numerical solution of the symmetric Riccati equation through iteration. In Proc. 1982 Amer. Control Conf., pages 1010–1015, Arlington, VA, June 1982.

    Google Scholar 

  9. S. Arimoto. Optimal feedback control minimizing the effects of noise distrubances. Trans. SICE, 2 (1966), pp. 1–7, (in Japanese).

    Google Scholar 

  10. W.F. Arnold, III. On the Numerical Solution of Algebraic Matrix Riccati Equations. PhD thesis, Univ. of Southern California, Dept of Elec. Eng.—Systems, Los Angeles, CA, December 1983.

    Google Scholar 

  11. W.F. Arnold, III and A.J. Laub. A software package for the solution of generalized algebraic Riccati equations. In Proc. 22nd IEEE Conf. Decis. Control, pages 415–417, San Antonio, TX, December 1983.

    Chapter  Google Scholar 

  12. W.F. Arnold, III and A.J. Laub. Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. of IEEE, 72:1746–1754, 1984.

    Article  Google Scholar 

  13. M. Athans, Editor. Special issue on the linear-quadratic-Gaussian estimation and control problem. IEEE Trans. Auto. Control, AC-16, December 1971.

    Google Scholar 

  14. L. Balzer. Accelerated convergence of the matrix sign function. Int. J. Control, 32:1057–1078, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Bar-Ness and G. Langholz. The solution of the matrix equation XC-BX = D as an eigenvalue problem. Int. J. Syst. Sci., 8:385–392, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  16. A.Y. Barraud. Investigation autour de la fonction signe d’une matrice—application à l’équation de Riccati. R.A.I.R.O. Automatique/Systems Analysis and Control, 13:335–368, 1979.

    MathSciNet  MATH  Google Scholar 

  17. A.Y. Barraud. Produit étoile et fonction signe de matrice—application à l’équation de Riccati dans le cas discret. R.A.I.R.O. Automatique/Systems Analysis and Control, 14:55–85, 1980.

    MathSciNet  MATH  Google Scholar 

  18. R.H. Bartels and G.W. Stewart Solution of the matrix equation AX+XB = C:Algorithm 432. Commun. ACM, 15:820–826, 1972.

    Article  Google Scholar 

  19. R.W. Bass. Machine solution of high-order matrix Riccati equations. Technical Report 4538, Douglas Aircraft, Missile and Space Systems Division, 1967.

    Google Scholar 

  20. A.R. Baykam. Comparison of algebraic Riccati equation solvers. Master’s thesis, Virginia Polytechnic and State University, Dept of Aerospace and Ocean Eng., Blacksburg, VA, 1981.

    Google Scholar 

  21. A.N. Beavers and E.D. Denman. A computational method for eigenvalues and eigenvectors of a matrix with real eigenvalues. Numer. Math., 21:389–396, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  22. A.N. Beavers and E.D. Denman. Asymptotic solutions to the matrix Riccati equation. Mathematical Biosciences, 20:339–344, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  23. A.N. Beavers and E.D. Denman. A new similarity transformation method for eigenvalues and eigenvectors. Mathematical Biosciences, 21:143–169, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  24. A.N. Beavers and E.D. Denman. A new solution method for quadratic matrix equations. Mathematical Biosciences, 20:135–143, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  25. D.J. Bender. Descriptor Systems and Geometric Control Theory. PhD thesis, Univ. of California, Santa Barbara, ECE Dept., Santa Barbara, CA, September 1985.

    Google Scholar 

  26. D.J. Bender and A.J. Laub. The linear-quadratic optimal regulator problem for descriptor systems. In Proc. 24th IEEE Conf. Decis. Control, pages 957–962, Ft. Lauderdale, FL, December 1985.

    Google Scholar 

  27. D.J. Bender and A.J. Laub. The linear-quadratic optimal regulator for descriptor systems: Discrete-time case. Automatica, 23:71–85, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  28. D.J. Bender and A.J. Laub. The linear-quadratic optimal regulator for descriptor systems. IEEE Trans. Auto. Control, AC-32:672–688, 1987.

    Article  MathSciNet  Google Scholar 

  29. G.J. Bierman. Matrix sign function solution to the continuous time algebraic Riccati equation. Technical report, Factorized Estimation Applications, Inc., 7017 Deveron Ridge Road, Canoga Park,CA, 1983.

    Google Scholar 

  30. G.J. Bierman. Computational aspects of the matrix sign function solution to the ARE. In Proc. 23rd IEEE Conf. Decis. Control, pages 514–519, Las Vegas, NV, December 1984.

    Chapter  Google Scholar 

  31. S.P. Bingulac, M.R. Stojic, and N. Ćuk. Solution of time-invariant Riccati equations. In Proc. 1971 Joint Automatic Control Conf., pages 178–182, St. Louis, MO, 1971.

    Google Scholar 

  32. R.R. Bitmead, M. Gevers, I.R. Petersen, and R.J. Kaye. Monotonicity and stabilizability properties of solutions of the Riccati difference equation: Propositions, lemmas, theorems, fallacious conjectures, and counterexamples. Sys. Control Lett., 5:309–315, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Bittanti, editor. Proc. Workshop on the Riccati Equation in Control, Systems, and Signals; Como, Italy. Pitagora Editrice Bologna, June 1989.

    Google Scholar 

  34. T.R. Blackburn. Solution of the algebraic matrix Riccati equation via the Newton-Raphson iteration. In Proc. Joint Automatic Control Conf., pages 940–945, University of Michigan, Ann Arbor, 1968.

    Google Scholar 

  35. T.R. Blackburn and J.C. Bidwell. Some numerical aspects of control engineering computations. In Proc. Joint Automatic Control Conf., pages 203–207, University of Michigan, Ann Arbor, 1968.

    Google Scholar 

  36. R.D. Brandt Smooth Extrapolation and Gradient Methods for Inherently Discrete Applications. PhD thesis, Univ. of California, Santa Barbara, ECE Dept., Santa Barbara, CA, July 1988.

    Google Scholar 

  37. R.D. Brandt and A.J. Laub. Continuous eigenvector decomposition. submitted to Math. Comp., May 1990.

    Google Scholar 

  38. A.E. Bryson and W.E. Hall. Optimal control and filter synthesis by eigenvector decomposition. Technical Report No. 436, Stanford University, Dept. of Aeronautics and Astronautics, December 1971.

    Google Scholar 

  39. R.S. Bucy. Global theory of the Riccati equation. J. Comp. Sys. Sci., 1:349–361, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  40. R.S. Bucy. Two-point boundary value problems of linear Hamiltonian systems. SIAM J. Appl. Math., 15:1385–1389, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  41. R.S. Bucy. Structural stability for the Riccati equation. SIAM J. Control Opt., 13:749–753, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  42. R.S. Bucy and P.D. Joseph. Filtering for Stochastic Processes with Applications to Guidance. Interscience, New York, 1968. (second edition:1987, Chelsea, New York.

    Google Scholar 

  43. J.R. Bunch. The weak and strong stability of algorithms in numerical algebra. Lin. Alg. Appl., 88:49–66, 1987.

    Article  MathSciNet  Google Scholar 

  44. A. Bunse-Gerstner. Eigenvalue algorithm for matrices with special structure. Colloquia Math. Soc. Jànos Bolyai 50. Numerical Methods. Miskolc (Hungary), pages 141–163, 1986.

    Google Scholar 

  45. A. Bunse-Gerstner. Matrix factorization for symplectic QR-like methods. Lin. Alg. Appl., 83:49–77, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Bunse-Gerstner. Symplectic QR-Like Methods. PhD thesis, Universität Bielefeld, Bielefeld,FRG, 1986. Habilitationsschrift.

    Google Scholar 

  47. A. Bunse-Gerstner, R. Byers, and V. Mehrmann. Numerical methods for algebraic Riccati equations. In S. Bittanti, editor, Proc. Workshop on the Riccati Equation in Control, Systems, and Signals, pages 107–116, Como, Italy, June 1989.

    Google Scholar 

  48. A. Bunse-Gerstner, R. Byers, and V. Mehrmann. A chart of numerical methods for structured eigenvalue problems. SIAM J. Matrix Anal. Appl., 1991. to appear.

    Google Scholar 

  49. A. Bunse-Gerstner and V. Mehrmann. A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation. IEEE Trans. Auto. Control, AC-31:1104–1113, 1986.

    Article  MathSciNet  Google Scholar 

  50. A. Bunse-Gerstner and V. Mehrmann. The HHDR-algorithm and its application to optimal control problems. R.A.I.R.O. Automatique/Productique Informatique Industrielle, 4:309–329, 1989.

    Google Scholar 

  51. N. Burgoyne and R. Cushman. Normal forms for real Hamiltonian matrices. In R. Hermann, editor, The 1976 Ames Research Center Conference on Geometric Control Theory, pages 483–529, Brookline, MA, 1976.

    Google Scholar 

  52. R. Byers. Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation. PhD thesis, Cornell University, Dept Comp. Sci., Ithaca, NY, 1983.

    Google Scholar 

  53. R. Byers. Numerical condition of the algebraic Riccati equation. In Linear Algebra and Its Role in Systems Theory, volume 47, pages 35–49. Contemp. Math., 1985. AMS.

    Article  MathSciNet  Google Scholar 

  54. R. Byers. A Hamiltonian QR-algorithm. SIAM J. Sci. Stat. Comp., 7:212–229, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  55. R. Byers. Numerical stability and instability in matrix sign function based algorithms. In C.I. Byrnes and A. Lindquist, editors. Computational and Combinatorial Methods in Systems Theory, pages 185–200. Elsevier(North-Holland), New York, 1986.

    Google Scholar 

  56. R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Lin. Alg. Appl., 85:267–279, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Byers. A Hamiltonian-Jacobi algorithm. IEEE Trans. Auto. Control, AC-35:566–570, 1990.

    Article  MathSciNet  Google Scholar 

  58. R. Byers and V. Mehrmann. Symmetric updating of the solution of the algebraic Riccati equation. In Proc. 10th Symposium on Operations Research, volume 54, pages 117–125, Universität München, August 1985.

    MathSciNet  Google Scholar 

  59. J.P. Charlier and P. Van Dooren. A systolic algorithm for Riccati and Lyapunov equations. Math. Control, Signals, Sys., 2:109–136, 1989.

    Article  MATH  Google Scholar 

  60. C. Choi and AJ. Laub. Constructing Riccati differential equations with known analytic solutions for numerical experiments. IEEE Trans. Auto. Control, AC-35:437–439, 1990.

    Article  MathSciNet  Google Scholar 

  61. C. Choi and A.J. Laub. Efficient matrix-valued algorithms for solving stiff Riccati differential equations. IEEE Trans. Auto. Control, AC-35:770–776, 1990. (see also Proc. 1989 CDC, pp. 885-887).

    Article  MathSciNet  Google Scholar 

  62. C.H. Choi. Efficient Algorithms for Solving Stiff Matrix-Valued Riccati Differential Equations. PhD thesis, Univ. of California, Santa Barbara, ECE Dept., Santa Barbara, CA, September 1988.

    Google Scholar 

  63. W.A. Coppel. Matrix quadratic equations. Bull. Austral. Math. Soc., 10:377–401, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Demmel. On condition numbers and the distance to the nearest ill-posed problem. Numer. Math., 51:251–289, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  65. E.D. Denman and A.N. Beavers. The matrix sign function and computations in systems. Appl. Math. Comp., 2:63–94, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  66. E.D. Denman and J. Leyva-Ramos. Spectral decomposition of a matrix using the generalized sign matrix. Appl. Math. Comp., 8:237–250, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  67. C.E. DeSouza, M.R. Gevers, and G.C. Goodwin. Riccati equations in optimal filtering of nonstabilizable systems having singular state transition matrices. IEEE Trans. Auto. Control, AC-31:831–838, 1986.

    Article  Google Scholar 

  68. L. Died and R.D. Russell. On the computation of invariant subspaces. Technical report, Simon Eraser University, LCCR, Dept. of Math. and Stats., Burnaby, BC, 1987.

    Google Scholar 

  69. J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart linpack Users’ Guide. SIAM, Philadelphia, PA, 1979.

    Google Scholar 

  70. J.J. Dongarra, C.B. Moler, and J.H. Wilkinson. Improving the accuracy of computed eigenvalues and eigenvectors. SIAM J. Numer. Anal., 20:46–58, 1983.

    Article  MathSciNet  Google Scholar 

  71. P. Dorato and A. Levis. Optimal linear regulators: The discrete-time case. IEEE Trans. Auto. Control, AC-16:613–620, 1971.

    Article  MathSciNet  Google Scholar 

  72. J. Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis. State-space solutions to standard H 2 and H control problems. IEEE Trans. Auto. Control, AC-34:831–847, 1989.

    Article  MathSciNet  Google Scholar 

  73. L. Eisner. Matrix decompositions, symmetries and eigenvalue algorithms. In Proc. Matrix Theory Conf., Auburn, AL, 1986.

    Google Scholar 

  74. A. Emami-Naeini and G.F. Franklin. Design of steady-state-quadratic-loss optimal digital controls for systems with a singular system matrix. In Proc. 13th Asilomar Conf. Circuits, Systems, and Computers, pages 370–374, November 1979.

    Google Scholar 

  75. A. Emami-Naeini and G.F. Franklin. Deadbeat control and tracking of discrete-time systems. IEEE Trans. Auto. Control, AC-27:176–181, 1982.

    Article  MathSciNet  Google Scholar 

  76. F.A. Farrar and R.C. DiPietro. Comparative evaluation of numerical methods for solving the algebraic matrix Riccati equation. Technical Report No. R76-140268-1, United Technologies Res. Center, East Hartford, CT, December 1976.

    Google Scholar 

  77. A.F. Fath. Computational aspects of the linear optimal regulator problem. IEEE Trans. Auto. Control, AC-14:547–550, 1969.

    Article  MathSciNet  Google Scholar 

  78. D.S. Flamm and RA. Walker. Remark on Algorithm 506. ACM Trans. Math. Software, 8:219–220, 1982.

    Article  Google Scholar 

  79. U. Flaschka and D. Zywietz. Strukturerhaltende Zerlegungsalgorithmen zur lösung des allgemeinen symplektischen eigenwertproblems. Master’s thesis, Universität Bielefeld, Bielefeld, FRG, 1988. Diplomarbeit.

    Google Scholar 

  80. W.C. Freestedt, R.F. Webber, and R.W. Bass. The GASP computer program—an integrated tool for optimal control and filter design. In Proc. Joint Automatic Control Conf., pages 198–202, University of Michigan, Ann Arbor, 1968.

    Google Scholar 

  81. P. Gahinet and A.J. Laub. Computable bounds for the sensitivity of the algebraic Riccati equation. SIAM J. Control Opt., 28 1990, pp. 1461–1480.

    Article  MathSciNet  MATH  Google Scholar 

  82. P. Gahinet and A.J. Laub. Estimating the distance to the nearest uncontrollable pair through the algebraic Riccati equation., SIAM J Control Opt., 1991, to appear.

    Google Scholar 

  83. P. Gahinet, A.J. Laub, C. Kenney, and G. Hewer. Sensitivity of the stable discrete-time Lyapunov equation. IEEE Trans. Auto. Control, AC-35 (1990), pp. 1209–1217.

    Article  MathSciNet  Google Scholar 

  84. P. Gahinet, A.J. Laub, M. Sorine, and C. Kenney. Stability margins and Lyapunov equations for linear operators in Hilbert space. Proc. 29th IEEE Conf. Decis. Control, pp. 2638–2639, Honolulu, HI, December 1990.

    Chapter  Google Scholar 

  85. P.M. Gahinet. Perturbational and Topological Aspects of Sensitivity in Control Theory. PhD thesis, Univ. of California, Santa Barbara, ECE Dept., Santa Barbara, CA, December 1989.

    Google Scholar 

  86. B.S. Garbow, J.M. Boyle, J.J. Dongarra, and C.B. Moler. Matrix Eigensystem Routines — sceispack Guide Extension, volume 51 of Lecture Notes in Computer Science. Springer-Verlag, New York, 1977.

    Book  Google Scholar 

  87. J.D. Gardiner. Iterative and Parallel Algorithms for the Solution of Algebraic Riccati Equations. PhD thesis, Univ. of California, Santa Barbara, ECE Dept., Santa Barbara, CA, July 1988.

    Google Scholar 

  88. J.D. Gardiner and A.J. Laub. Parallel algorithms for algebraic Riccati equations, to appear in Int. J. Control, 1991.

    Google Scholar 

  89. J.D. Gardiner and A.J. Laub. A generalization of the matrix-sign-function solution for algebraic Riccati equations. Int. J. Control, 44:823–832, 1986. (see also Proc. 1985 CDC, pp. 1233-1235.

    Article  MATH  Google Scholar 

  90. J.D. Gardiner and A.J. Laub. Implementation of two control system design algorithms on a message-passing hypercube. In M.T. Heath, editor, Hypercube Multiprocessors 1987, pages 512–519. SIAM, Philadelphia, PA, 1987.

    Google Scholar 

  91. J.D. Gardiner and A.J. Laub. Matrix sign function implementations on a hypercube multiprocessor. In Proc. 27th IEEE Conf. Decis. Control, pages 1466–1471, Austin, TX, December 1988.

    Chapter  Google Scholar 

  92. J.D. Gardiner and A.J. Laub. Solving the algebraic Riccati equation on a hypercube multiprocessor. In G. Fox, editor, Hypercube Concurrent Computers and Applications, Vol. II, pages 1562–1568. ACM Press, New York, 1988.

    Chapter  Google Scholar 

  93. J.D. Gardiner, A.J. Laub, J.A. Amato, and C.B. Moler. Solution of the Sylvester Matrix Equation AXB T + CXDT = E, to appear in ACM Trans. Math. Software, 1991.

    Google Scholar 

  94. A. Ghavimi, C. Kenney, and A.J. Laub. Convergence analysis of conjugate gradient methods for solving algebraic Riccati equations, to appear in IEEE Trans. Auto. Control, 1991.

    Google Scholar 

  95. I. Gohberg, P. Lancaster, and L. Rodman. Invariant Subspaces of Matrices with Applications. Wiley, New York, 1986.

    MATH  Google Scholar 

  96. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, 1983. (second edition:1989).

    MATH  Google Scholar 

  97. G.H. Golub and J.H. Wilkinson. Ill-conditioned eigensystems and the computation of the Jordan canonical form. SIAM Review, 18:578–619, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  98. T. Gudmundsson, C. Kenney, and A.J. Laub. Scaling of the discrete-time algebraic Riccati equation to enhance stability of the Schur solution method, to appear in IEEE Trans. Auto. Control, 1991.

    Google Scholar 

  99. S.J. Hammarling. Newton’s method for solving the algebraic Riccati equation. NPL Report DITC 49/81, National Physical Laboratory, 1981.

    Google Scholar 

  100. S.J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal., 2:303–323, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  101. S.J. Hammarling and M.A. Singer. A canonical form for the algebraic Riccati equation. In Proc. MTNS, Beer Sheeva, Israel, 1983.

    Google Scholar 

  102. G.A. Hewer. An iterative technique for the computation of steady state gains for the discrete optimal regulator. IEEE Trans. Auto. Control, AC-16:382–384, 1971.

    Article  Google Scholar 

  103. G.A Hewer and C. Kenney. The sensitivity of the stable Lyapunov equation. SIAM J. Control Opt., 26:321–344, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  104. G.A. Hewer and G. Nazaroff. A survey of numerical methods for the solution of algebraic Riccati equations. Technical report, Michelson Laboratory, Naval Weapons Center, China Lake, CA, 1974.

    Google Scholar 

  105. N.J. Higham. Computing the polar decomposition—with applications. SIAM J. Sci. Stat. Comp., 7:1160–1174, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  106. N.J. Higham and R.S. Schreiber. Fast polar decomposition of an arbitrary matrix. SIAM J. Sci. Stat. Comp., 11:648–655, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  107. K.L. Hitz and B.D.O. Anderson. Iterative method of computing the limiting solution of the matrix Riccati differential equation. Proc. of IEEE, 60:1402–1406, 1972.

    Google Scholar 

  108. W.E. Holley and S.Y. Wei. Improved method for solving the algebraic Riccati equation. AIAA J. Guid. Control, 3:190–192, 1980.

    Article  MATH  Google Scholar 

  109. R.D. Howerton and J.L. Hammond,Jr. A new computational solution of the linear optimal regulator problem. IEEE Trans. Auto. Control, AC-16:645–651, 1971.

    Article  Google Scholar 

  110. J.L. Howland. The sign matrix and the separation of matrix eigenvalues. Lin. Alg. Appl., 49:221–232, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  111. M. Jamshidi. An overview on the solutions of the algebraic matrix Riccati equation and related problems. Large Scale Systems, 1:167–192, 1980.

    MathSciNet  MATH  Google Scholar 

  112. B. Kågström and A. Ruhe. Matrix Pencils (Proceedings, Pite Havsbad, 1982). Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  113. R.E. Kaiman. Contributions to the theory of optimal control. Boletin Sociedad Matematica Mexicana, 5:102–119, 1960.

    Google Scholar 

  114. R.E. Kaiman and T.S. Englar. A user’s manual for the automatic synthesis program. RIAS Report CR-475, NASA, June 1966.

    Google Scholar 

  115. C. Kenney and G. Hewer. The sensitivity of the algebraic and differential Riccati equations. SIAM J. Control Opt., 28:50–69, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  116. C. Kenney and A.J. Laub. Condition estimates for matrix functions. SIAM J. Matrix Anal. Appl., 10:191–209, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  117. C. Kenney and A.J. Laub. On scaling Newton’s method for polar decomposition and the matrix sign function. In Proc. 1990 Amer. Control Conf., pp. 2560–2564, San Diego, CA, May 1990.

    Google Scholar 

  118. C. Kenney and A.J. Laub. On scaling Newton’s method for polar decomposition and the matrix sign function, SIAM J. Matrix Anal. Appl., 1991, to appear.

    Google Scholar 

  119. C. Kenney and A.J. Laub. Polar decomposition and matrix sign function condition estimates. SIAM J. Sci. Stat. Comp., 1991, to appear.

    Google Scholar 

  120. C. Kenney and A.J. Laub. Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl., 1991, to appear.

    Google Scholar 

  121. C. Kenney, A.J. Laub, and E.A. Jonckheere. Positive and negative solutions of dual Riccati equations by matrix sign function iteration. Sys. Control Lett., 13:109–116, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  122. C. Kenney, A.J. Laub, and M. Wette. A stability-enhancing scaling procedure for Schur-Riccati solvers. Sys. Control Lett., 12:241–250, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  123. C. Kenney, A.J. Laub, and M. Wette. Error bounds for Newton refinement of solutions to algebraic Riccati equations. Math. Control, Signals, Sys., 3:211–224, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  124. C. Kenney and R.B. Leipnik. Numerical integration of the differential matrix Riccati equation. IEEE Trans. Auto. Control, AC-30:962–970, 1985.

    Article  MathSciNet  Google Scholar 

  125. D.L. Kleinman. On an iterative technique for Riccati equation computations. IEEE Trans. Auto. Control, AC-13:114–115, 1968.

    Article  Google Scholar 

  126. D.L. Kleinman. An easy way to stabilize a linear constant system. IEEE Trans. Auto. Control, AC-15:692, 1970.

    Article  Google Scholar 

  127. D.L. Kleinman. Stabilizing a discrete constant linear system, with application to iterative methods for solving the Riccati equation. IEEE Trans. Auto. Control, AC-19:479–481, 1974.

    MathSciNet  Google Scholar 

  128. M.M. Konstantinov, P.Hr. Petkov, and N.D. Christov. Perturbation analysis of the continuous and discrete matrix Riccati equations. In Proc. 1986 Amer. Control Conf., pages 636-639, Seattle, WA, June 1986.

    Google Scholar 

  129. V. Kučera. The structure and properties of time optimal discrete linear control. IEEE Trans. Auto. Control, AC-16:375–377, 1971.

    Article  Google Scholar 

  130. V. Kučera. A contribution to matrix quadratic equations. IEEE Trans. Auto. Control, AC-17:344–347, 1972.

    Article  Google Scholar 

  131. V. Kučera. On nonnegative definite solutions to matrix quadratic equations. Automatica, 8:413–423, 1972.

    Article  MATH  Google Scholar 

  132. V. Kučera. A review of the matrix Riccati equation. Kybernetica (Prague), 9:42–61, 1973.

    MATH  Google Scholar 

  133. H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley-Interscience, New York, 1972.

    MATH  Google Scholar 

  134. D.G. Lainiotis. Partitioned Riccati solutions and integration-free doubling algorithms. IEEE Trans. Auto. Control, AC-21:677–689, 1976.

    Article  MathSciNet  Google Scholar 

  135. P. Lancaster, A.C.M. Ran, and L. Rodman. Hermitian solutions of the discrete algebraic Riccati equation. Int. J. Control, 44:777–802, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  136. P. Lancaster, A.C.M. Ran, and L. Rodman. An existence and monotonicity theorem for the discrete algebraic Riccati equation. Lin. Multilin. Alg., 20:353–361, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  137. P. Lancaster and L. Rodman. Existence and uniqueness theorems for the algebraic Riccati equation. Int. J. Control, 32:285–309, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  138. A.J. Laub. Canonical forms for σ-symplectic matrices. Master’s thesis, Univ. of Minnesota, School of Mathematics, Minneapolis, MN, December 1972.

    Google Scholar 

  139. A.J. Laub. A Schur method for solving algebraic Riccati equations. LIDS Rept. LIDS-R-859, MIT, Lab. for Info. and Decis. Syst., Cambridge, MA, October 1978. (including software).

    Google Scholar 

  140. A.J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. Auto. Control, AC-24:913–921, 1979. (see also Proc. 1978 CDC (Jan. 1979), pp. 60-65).

    Article  MathSciNet  Google Scholar 

  141. A.J. Laub. Further ‘Comments on the numerical solution of the discrete-time algebraic Riccati equation’. IEEE Trans. Auto. Control, AC-25:1252–1253, 1980.

    Article  Google Scholar 

  142. A.J. Laub. Schur techniques for Riccati differential equations. In D. Hinrichsen and A. Isidori, editors, Feedback Control of Linear and Nonlinear Systems, pages 165–174. Springer-Verlag, New York, 1982.

    Chapter  Google Scholar 

  143. A.J. Laub. Schur techniques in invariant imbedding methods for solving two-point boundary value problems. In Proc. 21st IEEE Conf. Decis. Control, pages 55–61, Orlando, FL, December 1982.

    Google Scholar 

  144. A.J. Laub. Numerical aspects of solving algebraic Riccati equations. In Proc. 22nd IEEE Conf. Decis. Control, pages 184–186, San Antonio, TX, December 1983.

    Chapter  Google Scholar 

  145. A.J. Laub. Numerical linear algebra aspects of control design computations. IEEE Trans. Auto. Control, AC-30:97–108, 1985.

    Article  MathSciNet  Google Scholar 

  146. A.J. Laub. Algebraic aspects of generalized eigenvalue problems for solving Riccati equations. In CI. Byrnes and A. Lindquist, editors, Computational and Combinatorial Methods in Systems Theory, pages 213–227. Elsevier (North-Holland), 1986.

    Google Scholar 

  147. A.J. Laub and J.D. Gardiner. Hypercube implementation of some parallel algorithms in control. In M.J. Denham and A.J. Laub, editors. Advanced Computing Concepts and Techniques in Control Engineering, pages 361–390. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  148. A.J. Laub and K.R. Meyer. Canonical forms for symplectic and Hamiltonian matrices. Celestial Mechanics, 9:213–238, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  149. K.H. Lee. Generalized Eigenproblem Structures and Solution Methods for Riccati Equations. PhD thesis, Univ. of Southern California, Dept of Elec. Eng.—Systems, Los Angeles, CA, January 1983.

    Google Scholar 

  150. R.B. Leipnik. Rapidly convergent recursive solution of quadratic operator equations. Numer. Math., 17:1–16, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  151. R.B. Leipnik. A canonical form and solution for the matrix Riccati differential equation. J. Austral. Math. Soc., Ser. B, 26:355–361, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  152. J.J. Levin. On the matrix Riccati equation. Proc. Amer. Math. Soc., 10:519–524, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  153. W. Levine and M. Athans. On the optimal error regulation of a string of moving vehicles. IEEE Trans. Auto. Control, AC-11:355–361, 1966.

    Article  Google Scholar 

  154. W.-W. Lin. A new method for computing the closed loop eigenvalues of a discrete-time algebraic Riccati equation. Lin. Alg. Appl., 6:157–180, 1987.

    Article  Google Scholar 

  155. W.-W. Lin. An SDR algorithm for the solution of the generalized algebraic Riccati equation. IEEE Trans. Auto. Control, AC-34:875–879, 1989.

    Google Scholar 

  156. A.G.J. MacFarlane. An eigenvector solution of the optimal linear regulator problem. J. Electron. Contr., 14:643–654, 1963.

    Article  MathSciNet  Google Scholar 

  157. M. Maki. Numerical solution of the algebraic Riccati equation for single input systems. IEEE Trans. Auto. Control, AC-17:264–265, 1972.

    Article  Google Scholar 

  158. K. Mårtensson. On the matrix Riccati equation. Info. Sci., 3:17–49, 1971.

    Article  MATH  Google Scholar 

  159. K. Mårtensson. Approaches to the numerical solution of optimal control problems. Technical Report No. 7206, Lund. Inst. of Tech., Div. of Automat. Contr., Lund, Sweden, March 1972.

    Google Scholar 

  160. V. Mehrmann. Der SR-algorithmus zur berechnung der eigenweite einer matrix. Master’s thesis, Universität Bielefeld, Bielefeld, FRG, 1979. Diplomarbeit.

    Google Scholar 

  161. V. Mehrmann. The Linear Quadratic Control Problem: Theory and Numerical Algorithms. PhD thesis, Universität Bielefeld, Bielefeld, FRG, 1987. Habilitationsschrift.

    Google Scholar 

  162. V. Mehrmann. A symplectic orthogonal method for single input or single output discrete time optimal linear quadratic control problems. SIAM J. Matrix Anal. Appl., 9:221–248, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  163. V. Mehrmann. Uniqueness and stability of solutions to singular, linear-quadratic control problems. Lin. Alg. Appl., 1990. to appear.

    Google Scholar 

  164. V. Mehrmann and E. Tan. Defect correction methods for the solution of algebraic Riccati equations. IEEE Trans. Auto. Control, AC-33:695–698, 1988.

    Article  MathSciNet  Google Scholar 

  165. H.B. Meyer. The matrix equation AZ + B − ZCZ − ZD = 0. SIAM J. Appl. Math., 30:136–142,1976.

    Article  MathSciNet  MATH  Google Scholar 

  166. M.L. Michelson. On the eigenvalue, eigenvector method for solution of the stationary discrete matrix Riccati equation. IEEE Trans. Auto. Control, AC-24:480–481, 1979.

    Article  Google Scholar 

  167. C.B. Moler and G.W. Stewart An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal., 10:241–256, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  168. B.P. Molinari. The stabilizing solution of the algebraic Riccati equation. SIAM J. Control Opt., 11:262–271, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  169. B.P. Molinari. The time invariant linear quadratic optimal control problem. Automatica, 13:347–357, 1977.

    Article  MATH  Google Scholar 

  170. J.J. O’Donnell. Asymptotic solution of the matrix Riccati equation of optimal control. In Proc. Fourth Allerton Conf. Circuit and System Theory, pages 577–586, University of Illinois, Urbana, IL, October 1966.

    Google Scholar 

  171. Y. Oshman and I.Y. Bar-Itzhack. Eigenfactor solution of the matrix Riccati equation—A continuous square root algorithm. IEEE Trans. Auto. Control, AC-30:971–978, 1985.

    Article  MathSciNet  Google Scholar 

  172. M. Pachter and T.E. Bullock. Ordering and stability properties of the Riccati equation. Technical Report No. WISK 264, Nat. Res. Inst. for Math. Sci., Pretoria, June 1977.

    Google Scholar 

  173. C.C. Paige and C.F. Van Loan. A Schur decomposition for Hamiltonian matrices. Lin. Alg. Appl., 14:11–32, 1981.

    Article  Google Scholar 

  174. P. Pandey, C. Kenney, and A.J. Laub. A parallel algorithm for the matrix sign function. Int. J. High Speed Computing, 2 (1990) pp. 181–191.

    Article  MATH  Google Scholar 

  175. T. Pappas. Solution of discrete-time LQG problems with singular transition matrix. MIT, May 1979. B.S. Thesis, Dept. of Elec. Engr.

    Google Scholar 

  176. T. Pappas, A.J. Laub, and N.R. Sandell. On the numerical solution of the discrete-time algebraic Riccati equation. LIDS Rept. LIDS-P-908, MIT, Lab. for Info, and Decis. Syst., Cambridge, MA, May 1979.

    Google Scholar 

  177. T. Pappas, A.J. Laub, and N.R. Sandell. On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Trans. Auto. Control, AC-25:631–641, 1980.

    Article  MathSciNet  Google Scholar 

  178. R.V. Patel and M. Toda. On norm bounds for algebraic Riccati and Lyapunov equations. IEEE Trans. Auto. Control, AC-23:87–88, 1978.

    Article  MathSciNet  Google Scholar 

  179. H.J. Payne and L.M. Silverman. On the discrete time algebraic Riccati equation. IEEE Trans. Auto. Control, AC-18:226–234, 1973.

    Article  MathSciNet  Google Scholar 

  180. C.E.M. Pearce. On the solution of a class of algebraic matrix Riccati equation. IEEE Trans. Auto. Control, AC-31:252–255, 1986.

    Article  Google Scholar 

  181. P.Hr. Petkov, N.D. Christov, and M.M. Konstantinov. Reliability of the algorithms and software for synthesis of linear optimal systems. Dept. of Automatics, Higher Institute of Mechanical and Electrical Engineering, 1986. B1.2; 1156 Sofia, Bulgaria.

    Google Scholar 

  182. P.Hr. Petkov, N.D. Christov, and M.M. Konstantinov. On the numerical properties of the Schur approach for solving the matrix Riccati equation. Sys. Control Lett., 9:197–201, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  183. J.E. Potter. Matrix quadratic solutions. SIAM J. Appl. Math., 14:496–501, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  184. M.A. Poubelle, R.R. Bitmead, and M.R.k Gevers. Fake algebraic Riccati techniques. IEEE Trans. Auto. Control, AC-33:379–381, 1988.

    Article  Google Scholar 

  185. M.A. Poubelle, I.R. Petersen, M.R. Gevers, and R.R. Bitmead. A miscellany of results on an equation of Count J.F. Riccati. IEEE Trans. Auto. Control, AC-31:651–653, 1986.

    Article  MathSciNet  Google Scholar 

  186. A.V. Ramesh, S. Utku, and J.A. Garba. Computational complexities and storage requirements of some Riccati equation solvers. AIAA J. Guid. Control, 12:469–479, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  187. A.C.M. Ran and R. Vreugdenhil. Existence and comparison theorems for algebraic Riccati equations for continuous-and discrete-time systems. Lin. Alg. Appl., 99:63–83, 1974.

    Article  MathSciNet  Google Scholar 

  188. W.T. Reid. Riccati Differential Equations. Academic Press, New York, 1972.

    MATH  Google Scholar 

  189. D.W. Repperger. A square root of a matrix approach to obtain the solution to a steady-state matrix Riccati equation. IEEE Trans. Auto. Control, AC-21:786–787, 1976.

    Article  MathSciNet  Google Scholar 

  190. J.R. Rice. A theory of condition. SIAM J. Numer. Anal., 3:287–310, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  191. J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control, 32:677–687, 1980. (reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971).

    Article  MATH  Google Scholar 

  192. J. Rodriguez-Canabal. The geometry of the Riccati equation. Stochastics, 1:129–149, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  193. W.E. Roth. On the matrix equation X 2 + AX + XB + C = 0. Proc. AMS, 1:586–589, 1950.

    MATH  Google Scholar 

  194. N.R. Sandell. On Newton’s method for Riccati equation solution. IEEE Trans. Auto. Control, AC-19:254–255,1974.

    Article  MathSciNet  Google Scholar 

  195. G. Schulz. Iterative computation of reciprocal matrices. Z. Angew. Math. Mech., 13:57–59, 1933. (in German).

    Article  MATH  Google Scholar 

  196. I. Schur. Über die charakteristischen wurzeln einer linearen substitution mit einer anwendung auf die theorie der Integralgleichungen (On the characteristic roots of a linear substitution with an application to the theory of integral equations). Math. Ann., 66:488–510, 1909. (in German).

    Article  MathSciNet  MATH  Google Scholar 

  197. M.A. Shayman. Geometry of the algebraic Riccati equation, Part I. SIAM J. Control Opt., 21:375–394, 1983.

    Article  MathSciNet  Google Scholar 

  198. M.A. Shayman. Geometry of the algebraic Riccati equation, Part II. SIAM J. Control Opt., 21:395–409, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  199. H.A. Shubert. Analytic solution for the algebraic Riccati equation. IEEE Trans. Auto. Control, AC-19:255–256, 1974.

    Article  Google Scholar 

  200. G.S. Sidhu and G.J. Bierman. Integration-free interval doubling for Riccati equation solutions. IEEE Trans. Auto. Control, AC-22:831–834, 1977.

    Article  MathSciNet  Google Scholar 

  201. L.M. Silverman. Discrete Riccati equations:Alternative algorithms, asymptotic properties, and system theory interpretations. In C.T. Leondes, editor, Advances in Control Systems, Vol. 12, pages 313–386. Academic Press, New York, 1976.

    Google Scholar 

  202. M.A. Singer and S.J. Hammarling. The algebraic Riccati equation: A summary review of some available results. NPL Report DITC 23/83, National Physical Laboratory, 1983.

    Google Scholar 

  203. B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler. Matrix Eigensystem Routineseispack Guide, Second Edition, volume 6 of Lecture Notes in Computer Science. Springer-Verlag, New York, 1976.

    Book  MATH  Google Scholar 

  204. G.W. Stewart. Error bounds for approximate invariant subspaces of closed linear operators. SIAM J. Numer. Anal., 8:796–808, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  205. G.W. Stewart. On the sensitivity of the eigenvalue problem Ax = λBx. SIAM J. Numer. Anal., 9:669–686, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  206. G.W. Stewart. Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Review, 15:727–764, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  207. G.W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.

    MATH  Google Scholar 

  208. G.W. Stewart. Gershgorin theory for the generalized eigenvalue problem Ax = λBx. Math. Comp., 29:600–606, 1975.

    MATH  Google Scholar 

  209. G.W. Stewart. Algorithm 506—HQR3 and EXCHNG: Fortran subroutines for calculating and ordering the eigenvalues of a real upper Hessenberg matrix. ACM Trans. Math. Software, 2:275–280, 1976.

    Article  Google Scholar 

  210. G.W. Stewart. Perturbation theory for the generalized eigenvalue problem. In C. de Boor and G.H. Golub, editors, Recent Advances in Numerical Analysis, pages 193–206. Academic Press, New York, 1978.

    Google Scholar 

  211. W.G. Tuel. An improved algorithm for the solution of the discrete regulation problem. IEEE Trans. Auto. Control, AC-12:522–528, 1967.

    Article  Google Scholar 

  212. P. Van Dooren. The generalized eigenstructure problem in linear system theory. IEEE Trans. Auto. Control, AC-26:111–129, 1981.

    Article  Google Scholar 

  213. P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comp., 2:121–135, 1981.

    Article  MATH  Google Scholar 

  214. P. Van Dooren. Algorithm 590—DSUBSP and EXCHQZ: Fortran subroutines for computing deflating subspaces with specified spectrum. ACM Trans. Math. Software, 8:376–382, 1982.

    Article  MATH  Google Scholar 

  215. C.F. Van Loan. A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Lin. Alg. Appl., 16:233–251, 1984.

    Article  Google Scholar 

  216. A.C.M. Van Swieten. Qualitative Behavior of Dynamical Games with Feedback Strategies. PhD thesis, University of Groningen, Groningen, The Netherlands, 1977.

    Google Scholar 

  217. W.H. Vandevender. On the stability of an invariant imbedding algorithm for the solution of two-point boundary value problems. Technical Report Rept. No. SAND77-1107, Sandia Laboratories, August 1977.

    Google Scholar 

  218. J.M. Varah. On the separation of two matrices. SIAM J. Numer. Anal., 16:216–222, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  219. D.R. Vaughan. A negative exponential solution for the matrix Riccati equation. IEEE Trans. Auto. Control, AC-14:72–75, 1969.

    Article  MathSciNet  Google Scholar 

  220. D.R. Vaughan..A nonrecursive algebraic solution for the discrete Riccati equation. IEEE Trans. Auto. Control, AC-15:597–599, 1970.

    Google Scholar 

  221. G. Von Escherich. Die zweite variation der einfachen integrale. Wiener Sitzungsberichte, 107:1191–1250, 1898.

    MATH  Google Scholar 

  222. R.A. Walker, A. Emami-Naeini, and P. Van Dooren. A general algorithm for solving the algebraic Riccati equation. In Proc. 21st IEEE Conf. Decis. Control, pages 68–72, Orlando, FL, December 1982.

    Google Scholar 

  223. O.H.D. Walter. Eigenvector scaling in a solution of the matrix Riccati equation. IEEE Trans. Auto. Control, AC-15:486–487, 1970.

    Article  Google Scholar 

  224. R.C. Ward. The combination shift QZ algorithm. SIAM J. Numer. Anal., 12:835–853, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  225. R.C. Ward. Balancing the generalized eigenvalue problem. SIAM J. Sci. Stat. Comp., 2:141–152, 1981.

    Article  MATH  Google Scholar 

  226. L.-F. Wei and F.-B. Yez, A modified Schur method for solving algebraic Riccati equations. Sys. Control Lett., 1991, to appear.

    Google Scholar 

  227. L.-F. Wei and F.-B. Yeh. On dual algebraic Riccati equations. IEEE Trans. Auto. Control, 1991, to appear.

    Google Scholar 

  228. M.R. Wette, J.D. Gardiner and A.J. Laub. Algorithm: A Fortran-77 software package for solving the Sylvester matrix equation AXB T + CXD T = E, to appear in ACM Trans. Math. Software, 1991.

    Google Scholar 

  229. M. Wette and A.J.k Laub. Numerical algorithms and software for spectral factorization problems. In Proc. 1988 Amer. Control Conf., pages 311–316, Atlanta, GA, June 1988.

    Google Scholar 

  230. M.R. Wette. Numerical Algorithms for Spectral Factorization Problems in Linear Filtering and Control. PhD thesis, Univ. of California, Santa Barbara, ECE Dept., Santa Barbara, CA, July 1988.

    Google Scholar 

  231. J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

    MATH  Google Scholar 

  232. J.C. Willems. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Auto. Control, AC-16:621–634, 1971.

    Article  MathSciNet  Google Scholar 

  233. H.K. Wimmer. On the algebraic Riccati equation. Bull. Austral. Math. Soc., 14:457–461, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  234. H.K. Wimmer. Monotonicity of maximal solutions of algebraic Riccati equations. Sys. Control Lett., 5:317–319, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  235. M. Womble and J.E. Potter. A prefiltering version of the Kaiman filter and new numerical integration formulas for Riccati equations. IEEE Trans. Auto. Control, AC-20:378–380, 1975.

    Google Scholar 

  236. W.M.k Wonham. On a matrix Riccati equation of stochastic control. SIAM J. Control Opt., 6:681–697, 1968.

    Article  MathSciNet  Google Scholar 

  237. W.M. Wonham. Linear Multivariable Control: A Geometric Approach. Springer-Verlag, NewYork, 2nd edition, 1979.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laub, A.J. (1991). Invariant Subspace Methods for the Numerical Solution of Riccati Equations. In: Bittanti, S., Laub, A.J., Willems, J.C. (eds) The Riccati Equation. Communications and Control Engineering Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58223-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58223-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63508-3

  • Online ISBN: 978-3-642-58223-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics