Skip to main content

Plant-Microbe Mutualisms and Community Structure

  • Chapter
Biodiversity and Ecosystem Function

Abstract

Analyses of the occurrence of mutualistic associations between plants and fungi or bacteria in natural plant communities indicate that they are the norm rather than the exception. Thus, for example, 90% of the world’s land plants are known to belong to families in which mutualistic associations with fungi occur routinely to form mycorrhizas (Trappe 1987), three major types of which (vesicular-arbuscular, ecto- and ericoid) are recognised. Major sections of the Leguminosae have nitrogen-fixing bacteria of the genus Rhizobium as mutualists, in addition to mycorrhizal fungi, while N2fixing actinorhizal associations involving Frankia spp. occur in a number of families which are also mycorrhizal (Schwintzer and Tjepkema 1990; Cervantes and Rodriguez-Barrueco 1992). The widespread present-day occurrence, taken along with the fact that there is fossil evidence for the early appearance of both the mycorrhizal (Stubblefield et al. 1987) and nitrogen-fixing (Sprent and Raven 1985) symbioses, suggests that selection has strongly favoured such mutualisms. Indeed, it seems that terrestrial plants co-evolved with their mutualists. In view of this, it is most unlikely that those experimental analyses of the factors determining the development and structure of plant communities which ignore the presence of mutualists will provide a realistic picture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD, DeBoer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum. New Phytol 97: 437–446

    Article  CAS  Google Scholar 

  • Aber DJ, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J (1985) Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66: 317–321

    Article  Google Scholar 

  • Aber DJ, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39: 378–386

    Article  Google Scholar 

  • Abuzinadah RA, Read DJ (1986a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103: 481–493

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1986b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea in mycorrhizal association with Hebeloma crustuliniforme. New Phytol 103: 507–514

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1989a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilisation of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol 112: 55–60

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1989b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol 112: 61–68

    Article  CAS  Google Scholar 

  • Adams CD (1957) Observations on the fern flora of Fernando Po. I. A description of the vegetation, with particular reference to the pteridophyta. J Ecol 45: 479–494

    Article  Google Scholar 

  • Alexander I (1989) Mycorrhizas in tropical forest. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford, pp 169–188

    Google Scholar 

  • Allen EB, Allen MF (1990) The mediation of competition by mycorrhizae in successional and patchy environments. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, New York, pp 367–389

    Google Scholar 

  • Amaranthus MP, Molina R, Perry DA (1990) Soil organisms, root growth and forest regeneration. Proc Soc Am For, Spokane, Washington, pp 89–93

    Google Scholar 

  • Baath E, Söderström B (1979) Fungal biomass and fungal immobilisation of plant nutrients in Swedish coniferous forest soils. Rev Ecol Biol Sol 16: 477–489

    CAS  Google Scholar 

  • Bajwa R, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol 101: 459–467

    Article  CAS  Google Scholar 

  • Bajwa R, Read DJ (1986) Utilization of mineral and amino N sources by the ericoid mycorrhizal endophyte Hymenoscyphus ericae and by mycorrhizal and non-mycorrhizal seedings of Vaccinium. Trans Br Mycol Soc 87: 269–277

    Article  CAS  Google Scholar 

  • Bajwa R, Abuarghub S, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol 101: 469–486

    Article  CAS  Google Scholar 

  • Berendse F, Elberse WT (1990) Competition and nutrient availability in heathland and grassland ecosystems. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, New York, pp 93–116

    Google Scholar 

  • Berendse F, Beltman B, Bobbink R, Kwant R, Schmitz M (1987) Primary production and nutrient availability on wet heathland ecosystems. Acta Oecologia 8: 265–279

    Google Scholar 

  • Berg B, McClaugherty CA (1989) Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin. Can J Bot 67: 1148–1156

    CAS  Google Scholar 

  • Berg B, Söderström B (1979) Fungal biomass and nitrogen in decomposing Scots pine needle litter. Soil Biol Biochem 11: 339–341

    Article  CAS  Google Scholar 

  • Berg B, Staaf H (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. tiIn: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. (Ecological Bulletins 33) Swedish Natural Science Research Council, Stockholm

    Google Scholar 

  • Birch CPD (1986) Development of VA mycorrhizal infection in seedlings in semi-natural grassland turf. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Proceedings of the first European symposium on mycorrhizas. INRA, Paris, pp 233–239

    Google Scholar 

  • Boggie R, Hunter FR, Knight AH (1958) Studies of the root development of plants using radioactive tracers. J Ecol 46: 621–639

    Article  Google Scholar 

  • Borchers SL, Perry DA (1990) Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwest Oregon clear-cuts. Can J For Res 20: 712–721

    Article  Google Scholar 

  • Bowen GD, Smith SE (1981) The effects of mycorrhiza on nitrogen uptake by plants. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. (Ecological Bulletins 33) Swedish National Science Council, Stockholm, pp 237–247

    Google Scholar 

  • Buwalda JG (1980) Growth of a clover-rye grass association with vesicular-arbuscular mycorrhizas. NZ J Agric Res 23: 379–383

    Google Scholar 

  • Carlton TJ, Read DJ (1991) Ectomycorrhizas and nutrient transfer in conifer-feathermoss ecosystems. Can J Bot 69: 778–785

    Article  Google Scholar 

  • Cervantes E Rodriguez-Barrueco C 1992 Relationships between the mycorrhizal and actirhizal symbioses in n-legumes. In rris JR Read DJ Varma AK eds Methods in microbiology 24. pp 417–43

    Google Scholar 

  • Connell JH (1979) Tropical rain forests and coral reefs as open non-equilibrium systems. In: Anderson RM, Turner BO, Taylor LR (eds) Population dynamics. Blackwell, Oxford, pp 141–163

    Google Scholar 

  • Crocker RL, Major J (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43: 427–448

    Article  Google Scholar 

  • Cromack K, Sollins P, Granstein WC, Speidel K, Todd AW, Spycher G, Ching Y-Li, Todd RL (1979) Calcium Oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11: 463–468

    Article  CAS  Google Scholar 

  • Ellenberg H (1982) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 3rd edn. Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe. Cambridge University Press, London

    Google Scholar 

  • Entry JA, Rose CL, Cromack K Jr. (1991a) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem. Soil Biol Biochem 23: 285–290

    Article  CAS  Google Scholar 

  • Entry JA, Donnelly PK, Cromack K Jr. (1991b) Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biol Fertil Soils 11: 75–78

    Article  CAS  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103: 143–156

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands inter-connecting host plants. New Phytol 103: 157–165

    Article  Google Scholar 

  • Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79: 19–25

    Article  Google Scholar 

  • Flanagan, PW, Van Cleve K (1977) Microbial biomass, respiration and nutrient cycling in a black spruce taiga ecosystem. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. (Ecological Bulletin 25) Swedish Natural Science Research Council,Stockholm, pp 261–273

    Google Scholar 

  • Fleming LV (1985) Experimental study of sequences of ectomycorrhizal fungi on birch (Betula sp.) seedling root systems. Soil Biol Biochem 17: 591–600

    Article  Google Scholar 

  • Fogel R (1980) Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol 86: 199–212

    Article  CAS  Google Scholar 

  • Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas fir ecosystem: distribution patterns and turnover. Can J For Res 9: 265-256

    Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307: 53–56

    Article  CAS  Google Scholar 

  • Gimingham CH (1972) Ecology of heathlands. Chapman & Hall, London

    Google Scholar 

  • Gorham E, Vitousek PM, Reiners WA (1979) The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annu Rev Ecol Syst 10: 53–84

    Article  CAS  Google Scholar 

  • Griffiths R, Caldwell BA, Cromack K Jr. Castellano MA, Morita RY (1987) A study of the chemical and microbial variables in forest soils colonized with Hysterangium setchelli rhizomorphs. In: Silva DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Institute of Food and Agricultural Science, University of Florida, Gainesville, p 196

    Google Scholar 

  • Griffiths RP, Caldwell BA, Cromack K and Morita RY, (1990) Microbial dynamics and chemistry in Douglas fir forest soils colonized by ectomycorrhizal mats. 1. Seasonal variation in nitrogen chemistry and nitrogen cycle transformation rates. Can J For Res 20: 211–218

    Article  Google Scholar 

  • Griffiths, RP, Castellano MA, Caldwell BA (1991) Hyphal mats formed by two ectomycorrhizal fungi and their association with Douglas-fir seedlings: a case study. Plant Soil 134: 255–259

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. John Wiley, New York

    Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328: 420–422

    Article  Google Scholar 

  • Grubb PJ (1986) The ecology of establishment. In: Bradshaw AD, Goode DA, Thorpe E (eds) Ecology and design in landscape, vol 24. Symp Br Ecol Soc, Blackwell, Oxford, pp 83–97

    Google Scholar 

  • Gutshick VP (1981) Evolved strategies in nitrogen acquisition by plants. Am Nat 118: 607–637

    Article  Google Scholar 

  • Hall IT (1978) Effects of endomycorrhizas on the competitive abilities of white clover. NZ J Agric Res 21: 509–515

    Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia (Berl) 45: 57–62

    Article  Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Utilisation of lignin by ericoid and ectomycorrhizal fungi. Arch Mikrobiol 153: 352–354

    CAS  Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 108: 417–423

    Article  Google Scholar 

  • Hedberg O (1951) Vegetation belts of the East African mountains. Sven Bot Tidskr 45: 1, 140–202

    Google Scholar 

  • Henricksson E, Henricksson LE, Pejler B (1972) Nitrogen fixation by blue-green algae on the island of Surtsey, Iceland. Res Prog Rep Surtsey 6: 66–68

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Hartnett DC (1989) Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Can J Bot 67: 2608–2615

    Article  Google Scholar 

  • Hingston FJ, Malajczuk N, Grove TS (1982) Acetylene reduction (N2-fixation) by Jarrah forest legumes following fire and phosphate application. J Appl Ecol 19: 631–646

    Article  Google Scholar 

  • Högberg P (1982) Mycorrhizal associations in some woodland and forest trees and shrubs in Tanzania. New Phytol 92: 407–415

    Article  Google Scholar 

  • Högberg P (1989) Root symbioses of trees in savannas In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford, pp 121–136

    Google Scholar 

  • Jalal MAF, Read DJ, Haslam E (1982) Phenolic composition and its seasonal variation in Calluna vulgaris. Phytochemistry 21: 1397–1401

    Article  CAS  Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12: 56–64

    Article  Google Scholar 

  • Janos DP (1983) Tropical mycorrhizas, nutrient cycles and plant growth. In: Sutton SL, Whitmore TC, Chadwick AC(eds) Tropical rain forest. Ecology and management. Blackwell, Oxford, pp 327–345

    Google Scholar 

  • Janos DP (1987) VA mycorrhizas in humid tropical ecosystems. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton

    Google Scholar 

  • Koide R (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117: 365–387

    Article  CAS  Google Scholar 

  • Lea R, Tierson WC, Bickelhaupt DH, Leaf AL (1980) Differential foliar response of northern hardwoods to fertilization. Plant Soil 54: 419–439

    Article  CAS  Google Scholar 

  • Leake JR (1987) Metabolism of phyto-and fungitoxic acids by the ericoid mycorrhizal fungus. In: Sylvia DM, Hung LL, Graham JH (eds) Proceedings of the seventh North American mycorrhiza conference. University of Florida, Gainesville, pp 332–333

    Google Scholar 

  • Leake JR, Read DJ (1989) The biology of mycorrhiza in the Ericaceae. XIII. Some characteristics of the extracellular proteinase activity of the ericoid endophyte Hymenoscyphus ericae. New Phytol 112: 69–76

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1990a) Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol 115: 243–250

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1990b) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94: 993–995

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1990c) The effects of phenolic compounds on nitrogen mobilisation by ericoid mycorrhizal system. Agric Ecosyst Env 29: 225–236

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1991) Experiments with ericoid mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 23. Academic Press, London, pp 435–459

    Google Scholar 

  • Malajczuk N, Hingston FJ (1981) Ectomycorrhizae associated with Jarrah. Aust J Bot 29: 153–462

    Article  Google Scholar 

  • Mann G (1862) Letter to Sir JD Hooker. J Proc Linn Soc Bot 6: 27–30

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1991) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, London, pp 357–423

    Google Scholar 

  • Mosse B, Powell CL, Hayman DS (1976) Plant growth responses to vesicular-arbuscular mycorrhiza IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol 76: 331–342

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine root production in relation to total net primary production along a nitrogen availability gradient in temperate forests: a new hypothesis. Ecology 66: 1377–1390

    Article  Google Scholar 

  • Newbery DM, Alexander IJ, Thomas DW, Gartlan JS (1988) Ectomycorrhizal rain-forest legumes and soil phosphorus in Korup National Park, Cameroon. New Phytol 109: 433–450

    Article  Google Scholar 

  • Newman EI, Child RD, Patrick CM (1986) Mycorrhizal infection in grasses of Kenyan savanna. J Ecol 74: 1179–1183

    Article  Google Scholar 

  • Newton AC, Pigott D (1991) Mineral nutrition and mycorrhizal infection of oak and birch. I. Nutrient uptake and the development of mycorrhizal infection during seedling establishment. New Phytol 17: 37–44

    Article  Google Scholar 

  • Nicolson TH (1967) Vesicular-arbuscular mycorrhiza — a universal plant symbiosis. Sci Prog 55: 561–581

    Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Blackwell, Oxford Odum EP (1975) Ecology, 2nd edn. Holt International, New York

    Google Scholar 

  • Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989) Bootstapping in ecosystems. Bio Science 39: 230–237

    Google Scholar 

  • Post JM, Pastor J, Zinke PJ, Stangenberger AG (1985) Global patterns of nitrogen storage. Nature 317: 613–616

    Article  Google Scholar 

  • Read DJ (1983) The biology of mycorrhiza in the Ericales. Can J Bot 61: 985–1004

    Article  CAS  Google Scholar 

  • Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, London, pp 215–240

    Google Scholar 

  • Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb 96B: 80–110

    Google Scholar 

  • Read DJ (1990) Ecological integration by mycorrhizal fungi. In: Nardon P (ed) Endocytobiology IV. INRA, Paris, pp 99–107

    Google Scholar 

  • Read DJ (1991a) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Read DJ (1991b) The mycorrhizal mycelium. In: Allen M (ed) Mycorrhizal functioning. An integrative plant-fungal process. Chapman & Hall, London, pp 102–133

    Google Scholar 

  • Read DJ, Birch CPD (1988) The effects and implications of disturbance of mycorrhizal mycelial systems. Proc R Soc Edinb 94B: 13–24

    Google Scholar 

  • Read DJ, Koucheki HK, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. I. The occurrence of infection. New Phytol 77: 541–655

    Article  Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil: plants, microbes and animals. (British Ecological Society special publication 4) Blackwell, Oxford, pp 193–217

    Google Scholar 

  • Read DJ, Leake JR, Langdale AR (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Academic Press, London, pp 181–204

    Google Scholar 

  • Reddell P, Malajczuk N (1984) Formation of ectomycorrhizae by jarrah (Eucalyptus marginata Donn ex Smith) in litter and soil. Aust J Bot 32: 435–444

    Article  Google Scholar 

  • Reeves FB, Wagner DW, Morrman T, Kiel J (1979) The role of endomycorrhizae in revegetation practices in the semi-arid west. I. A comparison of incidence of mycorrhizae in severely disturbed US natural environments. Am J Bot 66: 1–13

    Article  Google Scholar 

  • Roell LG 1935 Ecological problems of the humus layer in the forest. Cornell Univ Agric Exp St Mem 170 28p

    Google Scholar 

  • Rundel PW (1988) Leaf structure and nutrition in mediterranean-climate sclerophylls. In: Specht RL (ed) Mediterranean-type ecosystems. A data source book. Kluwer, Dordrecht, pp 157–167

    Chapter  Google Scholar 

  • Schwintzer CR, Tjepkema JD (1990) The biology of Frankia and actinorhizal plants. Academic Press, London, 408pp

    Google Scholar 

  • Singer R, Araujo I (1979) Litter decomposition and ectomycorrhiza in Amazonian forest. I. A comparison of litter decomposing and ectomycorrhizal basidiomycetes in latosol-terra-firme forest and white podzol campinarana. Acta Amazonica 9: 25–41

    Google Scholar 

  • Singer R, Araujo I (1986) Litter decomposition and ectomycorrhizal Basidiomycetes in an igapo forest. Plant Syst Evol 153: 107–117

    Article  Google Scholar 

  • Söderström B, Read DJ (1987) Respiratory activity of intact and excised ectomycorrhizal mycelial system growing in unsterilized soil. Soil Biol Biochem 19: 231–236

    Article  Google Scholar 

  • Specht RL (1979) Heathlands and related shrublands of the world. In: Specht RL (ed) Ecosystems of the world, vol 9A. Heathlands and related shrublands. Descriptive studies. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  • Specht RL, Rundel PW (1990) Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust J Bot 38: 459–474

    Article  Google Scholar 

  • Specht RL, Rayson P, Jackman ME (1958) Dark Island heath (Ninety-Mile Plain, South Australia). VI. Pyric succession: changes in composition, coverage, dry weight, and mineral nutrient status. Aust J Bot 6: 59–88

    Article  Google Scholar 

  • Sprent JI (1985) Nitrogen fixation in arid environments. In: Wickens GE, Goodin JR, Field DV (eds) Plants for arid lands. George Allen & Unwin, London, pp 215–229

    Google Scholar 

  • Sprent JI, Raven JR (1985) Evolution of nitrogen-fixing symbioses. Proc R Soc Edinb B85: 215–237

    Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms. Pure and applied aspects. Chapman & Hall, London, 256pp

    Google Scholar 

  • Staaf H, Berg B (1977) Mobilisation of plant nutrients in a Scots pine forest mor in central Sweden. Silva Fenn 11: 210–217

    Google Scholar 

  • St John TV, Coleman DC, Reid CPP (1983) Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64: 957–959

    Article  Google Scholar 

  • Stribley DP, Read DJ (1974) The biology of mycorrhiza in the Ericaceae. IV. The effects of mycorrhizal infection on the uptake of 15N from labelled soil by Vaccinium macrocarpon Ait. New Phytol 73: 1149–1155

    Article  Google Scholar 

  • Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol 86: 365–371

    Article  CAS  Google Scholar 

  • Stubblefield SP, Taylor TN, Trappe JM (1987) Fossil mycorrhizae: a case for symbiosis. Science 237: 59–60

    Article  PubMed  CAS  Google Scholar 

  • Sutton JC, Sheppard BR (1976) Aggregation of sand-dune soil by endomycorrhizal fungi. Can J Bot 54: 326–333

    Article  Google Scholar 

  • Symington CF (1943) Foresters manual of dipterocarps. Malay Forest Record 16, University of Malaya Press, Kuala Lumpur

    Google Scholar 

  • Tamm CO (1975) Plant nutrients as limiting factors in ecosystems dynamics. In: Productivity of world ecosystems. US National Academy of Science, Washington, pp 123–132

    Google Scholar 

  • Tamm CO, Pettersson A (1969) Studies on nitrogen mobilisation in forest soils. Stud For Suec 75: 1–39

    Google Scholar 

  • Thoen D, Ba AM (1989) Ectomycorrhizas and putative ectomycorrhizal fungi of Afzelia africana Sm and Uapaca guineensis MĂĽll Arg in southern Senegal. New Phytol 113: 549–559

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1979) Stabilisation of soil aggregates by the root systems of rye grass. Aust J Soil Res 17: 429–441

    Article  Google Scholar 

  • Trappe JM (1987) Phylogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, pp 2–25

    Google Scholar 

  • Trappe JM (1988) Lessons from alpine fungi. Mycologia 80: 1–10

    Article  Google Scholar 

  • Tschager A, Hilscher J, Franz S, Kull V, Larcher W (1982) Jahreszeitliche Dynamik der Fettspeicherung von Loiseleuria procumbens und anderen Ericaceen der alpinen Zwergstrauch-Heide. Acta Oecol 3: 119–130

    CAS  Google Scholar 

  • Turkington RA, Cavers PB, Aarssen LW (1977) Neighbourhood relationships in grass-legume communities. I. Interspecfic contacts in four grassland communities near London, Ontario. Can J Bot 55: 2701–2711

    Article  CAS  Google Scholar 

  • Tutin TG (1953) The vegetation of the Azores. J Ecol 41: 53–61

    Article  Google Scholar 

  • Van Cleve K, Viereck LA (1981) Forest succession in relation to nutrient cycling in the boreal forest of Alaska. In: West DC, Shugart HH, Botkin BD (eds) Forest succession. Springer, Berlin Heidelberg New York, pp 185–212

    Chapter  Google Scholar 

  • Viereck LA (1966) Plant succession and soil development on gravel outwash of the Muldrow glacier. Ecol Monogr 36: 181–199

    Article  Google Scholar 

  • Vitousek PM, White PS (1981) Process studies in succession. In: West DC, Shugart HH, Botkin DB (eds) Forest succession. Springer Berlin Heidelberg New York, pp 267–277

    Chapter  Google Scholar 

  • Wace NM, Holdate NW (1958) The vegetation of Tristan da Cunha. J Ecol 46: 593–620

    Article  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis,. Geoderma 15: 1–19

    Article  CAS  Google Scholar 

  • Wallen B (1983) Translocation of 14C in adventitiously rooting Calluna vulgaris on peat. Oikos 40: 241–278

    Article  CAS  Google Scholar 

  • Weatherell J (1957) The use of nurse species in the afforestation of upland heaths. Q J For 51: 298–304

    Google Scholar 

  • Whitmore TG (1975) Tropical rain forests of the far east. Clarendon, Oxford

    Google Scholar 

  • Whittaker RJ, Bush MB, Richards K (1989) Plant recolonization and vegetation succession on the Krakatau Islands, Indonesia. Ecol Monogr 59: 59–123

    Article  Google Scholar 

  • Zehetmayr JWL (1960) Afforestation of upland heaths. For Comm Bull 32: 1–145

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Read, D.J. (1994). Plant-Microbe Mutualisms and Community Structure. In: Schulze, ED., Mooney, H.A. (eds) Biodiversity and Ecosystem Function. Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58001-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58001-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58103-1

  • Online ISBN: 978-3-642-58001-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics