Skip to main content

Scaling from Species to Vegetation: The Usefulness of Functional Groups

  • Chapter
Biodiversity and Ecosystem Function

Abstract

The major constraints in predicting vegetation responses to atmospheric changes are the complexity of interactions between plants and their biotic and abiotic environment. Unless we decide to wait and see what the truth will be, we are left with the need to simulate future vegetation responses. This can be done both experimentally and by computer models. Experimental simulations are limited in space and time and can, at best, reveal transitional response characteristics and trends. Models, on the other hand, are not space and time limited but depend totally on accurate parameterization. This causes them to be dependent on experimentation which provides real data.

The most common way to avoid complexity is to overemphasize a single type of observation set. (O’Neill et al. 1986)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus JF, Wilson JH (1976) Photosynthesis of barley and wheat leaves in relation to canopy models. Photosynthetica 10: 367–377

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1986) Ecology. Individuals, populations and communities. Blackwell, Oxford

    Google Scholar 

  • Bowen GD (1984) Tree roots and the use of soil nutrients. In: Bowen GD, Nambiar EKS (eds) Nutrition of plantation forests. Academic Press, London, pp 147–179

    Google Scholar 

  • Carpenter SB, Smith ND (1981) A comparative study of leaf thickness among southern Appalachian hardwoods. Can J Bot 59: 1393–1396

    Article  Google Scholar 

  • Cernusca A (1976) Energy exchange within individual layers of a meadow. Oecologia 23: 141–149

    Article  Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13: 229–259

    Article  Google Scholar 

  • Cowan IR (1986) Economics of carbon fixation in higher plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 133–170

    Google Scholar 

  • Davis SD, Mooney HA (1985) Comparative water relations of adjacent California shrub and grassland communities. Oecologia 66: 522–529

    Article  Google Scholar 

  • Davis SD, Mooney HA (1986) Water use patterns of four co-occurring chaparral shrubs. Oecologia 70: 172–177

    Article  Google Scholar 

  • De Wit CT (1978) Simulation of assimilation, respiration and transpiration of crops. Centre Agric Publ and Documentation, Wageningen

    Google Scholar 

  • Diemer M, Körner Ch, Prock S (1992) Leaf life spans in wild perennial herbaceous plants: a survey and attempts at a functional interpretation. Oecologia 89: 10–16

    Article  Google Scholar 

  • Ellenberg H (1973) Ö; kosystemforschung. Springer, Berlin Heidelberg New York, pp 175–194

    Google Scholar 

  • Ellenberg H (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Scr Geobot 9: 55–97

    Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (1986) Ö; kosystemforschung — Ergebnisse des Sollingprojekts 1966-1986. Ulmer, Stuttgart

    Google Scholar 

  • Eriksson O, Inghe O, Jerling L, Tapper PG, Telenius A, Torstensson P (1983) A note on non-adaptation hypotheses in plant ecology. Oikos 41: 155–156

    Article  Google Scholar 

  • Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 87–107

    Google Scholar 

  • Garnier E (1991) Resource capture, biomass allocation and growth in herbaceous plants. Tree 6: 126–131

    PubMed  CAS  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams & Wilkins, Baltimore

    Book  Google Scholar 

  • Givnish TJ (1986) Introduction. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 1–9

    Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole plant perspective. Aust J Plant Physiol 15: 63–92

    Article  Google Scholar 

  • Goebel K (1913) Organographie der Pflanze, part 1, 2nd edn. Fischer, Jena

    Google Scholar 

  • Goldberg DE, Werner PA (1983) Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. Am J Bot 70: 1098–1104

    Article  Google Scholar 

  • Goudriaan J (1986) Simulation of ecosystem response to rising CO2, with special attention to interfacing with the atmosphere. In: Rosenzweig C, Dickinson R (eds) Climate-vegetation interactions. Proc Workshop NASA, Goddard Space Flight Center, Maryland, 27-29 Jan 1986. UCAR Rep., Boulder, Colorado, pp 49–53

    Google Scholar 

  • Grace JB (1990) On the relationship between plant traits and competitive ability. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego, pp 51–65

    Google Scholar 

  • Graetz RD (1991) The nature and significance of the feedback of changes in terrestrial vegetation on global atmospheric and climatic change. Clim Change 18: 147–173

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111: 1169–1194

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. Unwin Hyman, London

    Google Scholar 

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52: 107–145

    Article  Google Scholar 

  • Grulke NE, Riechers GH, Oechel WC, Hjelm U, Jaeger C (1990) Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia 83: 485–494

    Article  Google Scholar 

  • Halloy S (1990) A morphological classification of plants, with special reference to the New Zealand alpine flora. J Veg Sci 1: 291–304

    Article  Google Scholar 

  • Harper JL (1982) After description. In: Newman EI (ed) The plant community as a working mechanism. Blackwell, Oxford, pp 11–25

    Google Scholar 

  • Harper JL (1989) Canopies as populations. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Soc Exp Biol Semin Ser 31: 105–128

    Google Scholar 

  • Hilbert DW (1987) A model of life history strategies of chaparral shrubs in relation to fire frequency. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress. Functional analysis in mediterranean ecosystems. (Ecol Sci 15, Ser G) Springer, Berlin Heidelberg New York, pp 279–304

    Google Scholar 

  • Hirose T, Werger MJA, VanReenen JWA (1989) Canopy development and leaf nitrogen distribution in a stand of Carex acutiformis. Ecology 70: 1610–1618

    Article  Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15: 1–49

    Article  Google Scholar 

  • Jelmini G, Nösberger J (1978) Einfluss der Lichtintensität auf die Ertragsbildung und den Gehalt an nichtstrukturbildenden Kohlenhydraten und Stickstoff von Festuca pratensis Huds., Lolium multiflonim Lam., Trifolium pratense L., und Trifolium repens L. Z Acker-Pflanzenb 146: 154–163

    CAS  Google Scholar 

  • Keddy PA, MacLellan P (1990) Centrifugal organization in forests. Oikos 59: 75–84

    Article  Google Scholar 

  • Kinzel H (1983) Influence of limestone, silicates and soil pH on vegetation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology 12: physiological plant ecology III. Springer, Berlin Heidelberg New York, pp 201–244

    Chapter  Google Scholar 

  • Kira T, Yoda K (1989) Vertical stratification in microclimate. In: Lieth H, Werger MJA (eds) Tropical rain forest ecosystems. Elsevier, Amsterdam, pp 55–71

    Google Scholar 

  • Körner Ch (1985) Humidity responses in forest trees: precautions in thermal scanning surveys. Arch Meteorol Geophys Bioclimatol Ser B 36: 83–98

    Article  Google Scholar 

  • Körner Ch (1991) Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Funct Ecol 5: 162–173

    Article  Google Scholar 

  • Körner Ch (1992) CO2 fertilization: the great uncertainty in future vegetation development. In: Shugart H, Solomon A (eds) Vegetation dynamics and global change. Chapman and Hall, London (in press)

    Google Scholar 

  • Körner Ch (1993) Biomass fractionation in plants — a reconsideration of definitions based on plant functions. In: Garnier E, Roy J (eds) Carbon-nitrogen interactions — a whole plant perspective. SPB Academic, The Hague (in press)

    Google Scholar 

  • Körner Ch, Arnone J III (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257: 1672–1675

    Article  PubMed  Google Scholar 

  • Körner Ch, Larcher W (1988) Plant life in cold climates. In: Long SF, Woodward FI (eds) Plants and temperature. Symp Soc Exp Biol 42: 25–57

    Google Scholar 

  • Körner Ch, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13: 45–82

    Google Scholar 

  • Kuroiwa S (1978) Radiation environment and photosynthesis in plant stands with different foliage angles. In: Monsi M, Saeki T (eds) JIBP synthesis 19. University Tokyo Press, Tokyo, pp 112–123

    Google Scholar 

  • Larcher W (1963) Die Leistungsfähigkeit der CO2-Assimilation höherer Pflanzen unter Laboratoriumsbedingungen und am natürlichen Standort. Mitt Florist-Soziol Arbeitsgem N.F. 10: 20–33

    Google Scholar 

  • Larcher W (1969) The effect of environmental and physiological variables on the carbon dioxide gas exchange of trees. Photosynthetics 3: 167–198

    CAS  Google Scholar 

  • Larcher W (1977) Ergebnisse des IBP-Projekts “Zwergstrauchheide Patscherkofel”. Sitzungsber Österr Akad Wiss, Math-Naturwiss KI, Abt I 186: 301–371

    Google Scholar 

  • Larcher W (1980) Klimastress im Gebirge — Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westfäl Akad Wiss Vortr N 291: 49–88

    Google Scholar 

  • Larcher W, Thomaser-Thin W (1988) Seasonal changes in energy content and storage patterns of mediterranean sclerophylls in a northernmost habitat. Oecol Plant 9: 271–283

    Google Scholar 

  • Lee DW, Graham R (1986) Leaf optical properties of rainforest sun and extreme shade plants. Am J Bot 73: 1100–1108

    Article  Google Scholar 

  • Lee DW, Bone RA, Tarsis SL, Storch D (1990) Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. Am J Bot 77: 370–380

    Article  Google Scholar 

  • Lewis MC (1972) The physiological significance of variation in leaf structure. Sci Prog Oxf 60: 25–51

    Google Scholar 

  • McNaughton KG, Jarvis PG (1991) Effects of spatial scale on stomatal control of transpiration. Agric For Meteorol 54: 279–301

    Article  Google Scholar 

  • Monsi M (1960) Dry matter reproduction in plants 1. Schemata of dry matter reproduction. Bot Mag Tokyo 73: 81–90

    Google Scholar 

  • Mooney HA (1990) Address of the past president: toward the study of the earth’s metabolism. Bull Ecol Soc Am 71: 221–228

    Google Scholar 

  • Mooney HA (1991) Emergence of the study of global ecology: is terrestrial ecology an impediment to progress? Ecol Applic 1:2–5

    Article  Google Scholar 

  • Napp-Zinn K (1984) Anatomie des Blattes. II. Blattanatomie der Angiospermen. B. Experimentelle und ökologische Anatomie des Angiospermenblattes. In: Braun HJ, Carlqvist S, Ozenda P, Roth I (eds) Handbuch der Pflanzenanatomie, vol 8, part 2B, Liefg 1. Borntraeger, Berlin

    Google Scholar 

  • Odum HT, Pigeon RF (eds) (1970) A tropical rain forest. A study of irradiation and ecology at El Verde, Puerto Rico. Office of Information Services, U.S. Atomic Energy Commission, 103pp

    Google Scholar 

  • Oikawa T (1990) Modelling primary production of plant communities. Physiol Ecol Jpn 27: 63–80

    Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. (Monographs in Popul Biol 23) Princeton University Press, Princeton

    Google Scholar 

  • Pisek A (1956) Der Wasserhaushalt der Meso-und Hygrophyten. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 3. Springer, Berlin Göttingen Heidelberg, pp 825–853

    Google Scholar 

  • Pisek A, Cartellieri E (1932) Zur Kenntnis des Wasserhaushaltes der Pflanzen. II. Schattenpflanzen. Jb Wiss Bot 75: 643–678

    Google Scholar 

  • Pisek A, Larcher W, Moser W, Pack I (1969) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temperaturbereich der Netto-Photosynthese. Flora Abt B 158: 608–630

    Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553–559

    Article  Google Scholar 

  • Rabotnov TA (1978) On coenopopulations of plants reproducing by seeds. Structure and functioning of plant populations. Verh K Ned Akad Wet Natuurkd 2/70: 1–26

    Google Scholar 

  • Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE, Aber JD (1991) A general biogeochemical model describing the response of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol 9: 101–126

    PubMed  CAS  Google Scholar 

  • Raunkiaer C (1904) Biological types with reference to the adaptation of plants to survive the unfavourable season. In: Egerton FN (ed) History of ecology, life forms of plants and Statistical plant geography. Arno, New York (reprint 1977)

    Google Scholar 

  • Rundel PW, Nobel PS (1991) Structure and function in desert root systems. In: Atkinson D (ed) Plant root growth. An ecological perspective. Br Ecol Soc Spec Publ 10. Blackwell, Oxford, pp 349–378

    Google Scholar 

  • Russell G, Marshall B, Jarvis PG (1989a) Plant and canopies: their growth, form and function. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Russell G, Jarvis PG, Monteith JL (1989b) Absorption of radiation by canopies and stand growth. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, pp 21–39

    Chapter  Google Scholar 

  • Rychnovska M (1976) Transpiration in wet meadows and some other types of grassland. Folia Geobot Phytotaxon (Praha) 11: 427–432

    Google Scholar 

  • Sackville-Hamilton NR, Schmid B, Harper JL (1987) Life history concepts and population biology of clonal organisms. Proc R Soc Lond B 232: 35–57

    Article  Google Scholar 

  • Schulze ED (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer, Berlin Heidelberg New York, pp 616–676

    Google Scholar 

  • Schulze ED (1983) Root-shoot interactions and plant life forms. Neth J Agric Sci 4: 291–303

    Google Scholar 

  • Schulze E-D, Hall AE (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology new series, 12B, physiological plant ecology II. Springer, Berlin Heidelberg New York, pp 181–230

    Google Scholar 

  • Schulze ED, Fuchs M, Fuchs MI (1977) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest for northern Germany. Oecologia 30: 239–248

    Article  Google Scholar 

  • Schulze ED, Küppers M, Matyssek R (1986) The roles of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 585–602

    Google Scholar 

  • Sinclair TR, Murphy CE Jr., Knoerr KR (1976) Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J Appl Ecol 13: 813

    Article  Google Scholar 

  • Specht RL, Specht A (1989) Canopy structure in Eucalyptus-dominated communities in Australia along climatic gradients. Acta Oecol Oecol Plant 10: 191–213

    Google Scholar 

  • Stocker O (1967) Der Wasser-und Photosynthese-Haushalt mitteleuropäischer Gräser, ein Beitrag zum allgemeinen Konstitutionsproblem des Grastypus. Flora [B] 157: 56–96

    Google Scholar 

  • Thompson L, Harper JL (1988) The effect of grasses on the quality of transmitted radiation and its influence on the growth of white clover, Trifolium repens. Oecologia 75: 343–347

    Article  Google Scholar 

  • Tilman D (1989) Competition, nutrient reduction and the competitive neighborhood of a bunchgrass. Funct Ecol 3: 215–219

    Article  Google Scholar 

  • Turesson G (1930) The selective effect of climate upon the plant species. Hereditas 14: 99–152

    Article  Google Scholar 

  • Turner NC, Schulze ED, Gollan T (1984) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. I. Species comparisons at high soil water contents. Oecologia 63: 338–342

    Article  Google Scholar 

  • Vareschi V (1980) Vegetationsökologie der Tropen. Ulmer, Stuttgart

    Google Scholar 

  • Webb W, Szarek S, Lauenroth W, Kinerson R, Smith M (1978) Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology 59: 1239–1247

    Article  Google Scholar 

  • Werger MJA, Hirose T (1988) Effects of light climate and nitrogen partitioning on the canopy structure of stands of a dicotyledonous, herbaceous vegetation. In: Werger MJA, Van der Aart PJM, During HJ, Verhoeven JTA (eds) Plant form and vegetation structure. SPB Academic, The Hague, pp 171–181

    Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd edn. Macmillan, New York

    Google Scholar 

  • Wilson SD, Tilman D (1991) Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72: 1050–1065

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Körner, C. (1994). Scaling from Species to Vegetation: The Usefulness of Functional Groups. In: Schulze, ED., Mooney, H.A. (eds) Biodiversity and Ecosystem Function. Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58001-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58001-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58103-1

  • Online ISBN: 978-3-642-58001-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics