Skip to main content

Differential Wear of Enamel: A Mechanism for Maintaining Sharp Cutting Edges

  • Chapter
Biomechanics of Feeding in Vertebrates

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 18))

Abstract

Mammals are characterized by unilateral dental occlusion, complex molar patterns and highly organized enamel. The variety of molar types that evolved during the long history of mammals represents adaptations to different diets. In this chapter we wish to discuss the adaptive features of the tribosphenic molars of several insectivorous mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer M, Flannery TF, Ritchie A, Molnar RE (1985) The first Mesozoic mammal from Australia — an Early Cretaceous monotreme. Nature 318: 363–366

    Article  Google Scholar 

  • Bonaparte JF (1990) New late Cretaceous mammals from the Los Alamitos formation, northern Patagonia. Nat Geogr Res 6: 63–93

    Google Scholar 

  • Boyde A (1984) Dependence of rate of physical erosion on orientation and density in mineralized tissues. Anat Embryol 170: 57–62

    Article  PubMed  CAS  Google Scholar 

  • Clemens WA Jr, Lees PM (1971) A review of English early Cretaceous mammals. Suppl 1, Zool J Linn Soc 50: 117–130

    Google Scholar 

  • Cooper JS, Poole DFG (1973) The dentition and dental tissues of the agamid lizard Uromastyx. J Zool Soc Lond 169: 85–100

    Article  Google Scholar 

  • Crompton AW (1971) The origin of the tribosphenic molar. Zool J Linn Soc Suppl 1, 50: 65–88

    Google Scholar 

  • Crompton AW (1972) Postcanine occlusion in cynodonts and tritylodontids. Bull Br Mus Nat Hist Geol 21: 27–71

    Google Scholar 

  • Crompton AW (1974) The dentitions and relationships of the southern African mammals, Erythrotherium parringtoni and Megazostrodon rudnerae. Bull Br Mus Nat Hist Geol 24: 397–437

    Google Scholar 

  • Crompton AW, Jenkins FA Jr (1968) Molar occlusion in Late Triassic mammals Biol Rev 43: 427–458

    Article  PubMed  CAS  Google Scholar 

  • Crompton AW, Kielan-Jaworowska Z (1978) Molar structure and occlusion in Cretaceous therian mammals. In: Butler PM Joysey KA (eds) Development, function and evolution of teeth. Academic Press, London pp. 249–288

    Google Scholar 

  • Crompton AW, Luo Z (1993) Relationships of the Liassic mammals, Sinoconodon, Morganucodon oehleri and Dinnetherium. In: Szalay FS, McKenna MC, Novacek MJ (eds) Mammal phylogeny. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Crompton AW, Yang S, A functional interpretation of enamel ultrastructure in the musk shrew, Suncus murinus. (in prep.)

    Google Scholar 

  • Every RG (1970) Sharpness of teeth in man and other primates Postilla 143: 1–30

    Google Scholar 

  • Every RG, Kühne WG (1971) Bimodel wear of mammalian teeth. Zool J Linn Soc, Suppl 1, 50: 23–28

    Google Scholar 

  • Fortelius M (1985) Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zool Fenn 180: 1–76

    Google Scholar 

  • Frank RM, Sigogneau-Russell D, Hemmerlé J (1988) Ultrastructural study of Triconodont (Prototheria, Mammalia) teeth from the Rhaeto-Liassic. In: Russell DE, Santoro JP, Sigogneau Russell-D (eds) Teeth revisited, Proceedings of the VIIth International Symposium on Dental morphology. Mém Mus Natl Hist Nat, Paris 53: 101–108

    Google Scholar 

  • Hahn G, Sigogneau-Russell, Godefroit P (1991) New data on Brachyzostrodon (Mammalia; Upper Triassic). Geol Palaeontol 25: 237–249

    Google Scholar 

  • Grine FE, Vrba ES (1980) Prismatic enamel: a preadaption for mammalian diphyodonty? S Afr J Sci 76: 139–141

    Google Scholar 

  • Grine FE, Gow CE, Kitching JW (1979) Enamel structure in the cynodonts Pachygenelus and Tritylodon. Proc Elect Microsc Soc S Afr 9: 99–100

    Google Scholar 

  • Jenkins FA Jr (1990) Monotremes and the biology of Mesozoic mammals. Neth J Zool 40: 5–31

    Article  Google Scholar 

  • Kielan-Jaworowska Z, Crompton AW, Jenkins FA Jr (1987) The origin of egg-laying mammals. Nature 326: 871–873

    Article  Google Scholar 

  • Koenigswald Wv (1988) Enamel modification in enlarged front teeth among mammals and the various possible reinforcements of the enamel. In: Russell DE, Santoro JP, Sigogneau-Russell D (eds) Teeth revisited. Proceedings of the Vllth International Symposium on Dental morphology. Mém Mus Natl Hist Nat, Paris 53: 148–165

    Google Scholar 

  • Koenigswald Wv, Clemens WA (1992) Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scanning Microsc 6: 195–218

    PubMed  CAS  Google Scholar 

  • Koenigswald Wv, Pfretzschner H-U (1987) Hunter-Schreger-Bander im Zahnschmelz von Säugetieren: Anordnung und Prismenverlauf Zoomorphology 106: 329–338

    Google Scholar 

  • Krebs B (1971) Evolution of the mandible and lower dentition in dryolestids (Pantotheria, Mammalia). Zool J Linn Soc Suppl 1, 50: 89–102

    Google Scholar 

  • Lester KS (1989) Procerbus enamel: a missing link. Scanning Microsc 3: 634–639

    Google Scholar 

  • Lester KS, Koenigswald W (1989) Crystallite orientation discontinuites and the evolution of mammalian enamel — or, when is a prism? Scanning Microsc 3: 645–663

    PubMed  CAS  Google Scholar 

  • Lilligraven JA, Kielan-Jaworowska Z, Clemens WA (eds) (1979) Mesozoic mammals: the first two-thirds of mammalian history. University of California Press, Berkeley

    Google Scholar 

  • Odin GS, Curry D, Gale NH, Kennedy WJ (1982) The Phanerozoic time scale in 1981. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, Chichester, p 957–960

    Google Scholar 

  • Pfretzschner H-U (1986) Structural reinforcement and crack propagation in enamel In: Russell DE, Santoro JP, Sigogneau-Russell D (eds) Teeth revisited. Proceedings of the VIIth International Symposium on Dental morphology. Mém Mus Natl Hist Nat, Paris 53: 133–143

    Google Scholar 

  • Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic theria. Bull Am Mus Nat. Hist 167: 281–325

    Google Scholar 

  • Rensburger JM, Koenigswald Wv (1980) Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Palaeobiology 6: 477–495

    Google Scholar 

  • Sahni A, Lester KS (1988) The nature and significance of enamel tubules in therapsids and mammals. In: Russell DE, Santoro J-P, Sigogneau-Russell D (eds) Teeth revisited Proceedings of the VIIth International Symposium on Dental morphology. Mém Mus Natl Hist Nat, Paris 53: 85–89

    Google Scholar 

  • Sigogneau-Russell D, Frank RM, Hemmerlé J (1985) Enamel and dentine ultrastructure in the Early Jurassic therian Kuehneotherium Zool J Linn Soc 82: 207–215

    Article  Google Scholar 

  • Sigogneau-Russell D, Bonaparte JF, Frank RM, Escribano V (1991) Ultrastructure of dental hard tissues of Gondwanathrium and Kuehneotherium. Zool J LinnSoc 82: 207–215

    Article  Google Scholar 

  • Stern DN (1989) Structure, function and development of primitive mammalian enamel. PhD Thesis, Harvard University

    Google Scholar 

  • Stern DN, Crompton AW, Skobe Z (1989) Enamel ultrastructure and masticatory function in molars of the American opossum. Didelphis virginiana. Zool J Linn Soc 95: 331–334

    Article  Google Scholar 

  • Stern DN, Song MJ, Landis WJ (1992) Tubule formation and elemental detection in developing opossum enamel. Anat Rec 234: 34–48

    Article  PubMed  CAS  Google Scholar 

  • Wood CB (1992) Comparative studies of enamel and functional morphology in selected mammals with tribosphenic molar teeth: Phylogenetic applications. PhD Thesis, Harvard University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crompton, A.W., Wood, C.B., Stern, D.N. (1994). Differential Wear of Enamel: A Mechanism for Maintaining Sharp Cutting Edges. In: Bels, V.L., Chardon, M., Vandewalle, P. (eds) Biomechanics of Feeding in Vertebrates. Advances in Comparative and Environmental Physiology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57906-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57906-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63399-7

  • Online ISBN: 978-3-642-57906-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics