Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Implementation of thermal dosimetry requires three steps. First, it is necessary to use accurate thermometers. This subject is covered in Chap. 15 of this volume. Second, it is necessary to use a measure of treatment effect that has biological significance (i.e., there is a quantitative relationship between the measure of treatment delivered and the cytotoxic effect of the treatment). A large database from in vitro and in vivo models has provided useful concepts for this aspect of dosimetry, although recent data from human cells suggest that some key revisions to the concepts may be necessary. In this chapter the relations between temperature, time at temperature, and cytotoxicity will be reviewed. In addition, factors that are known to influence the accuracy of these measures of effect will be presented, along with an emphasis on their clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armour EP, McEachern D, Wang Z, Corry PM, Martinez A (1993) Sensitivity of human cells to mild hyperthermia. Cancer Res 53: 2740–2744

    PubMed  CAS  Google Scholar 

  • Clegg ST, Samulski TV, Murphy K, Rosner G, Dewhirst MW (1994) Inverse techniques in hyperthermia: a sensitivity study. IEEE Trans Biomed Eng 41: 373–382

    Article  PubMed  CAS  Google Scholar 

  • Cook JA, Fox MH (1988) Effects of acute pH 6.6 and 42.0°C heating on the intracellular pH of Chinese hamster ovary cells. Cancer Res 48: 496–502

    Google Scholar 

  • Cox RS, Kapp DS (1992) Correlation of thermal parameters with outcome in combined radiation therapyhyperthermia trials. Int J Hyperthermia 8: 719–732

    Article  PubMed  CAS  Google Scholar 

  • Dewey WC (1994) Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 10: 457–483

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Sim DA (1986) Estimation of therapeutic gain in clinical trials involving hyperthermia and radiotherapy. Int J Hyperthermia 2: 165–178

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Connor WG, Moon TE, Roth HB (1982) Response of spontaneous animal tumors to heat and/or radiation: Preliminary results of a phase III trial. J Natl Cancer Inst Monogr 61: 395–397

    Google Scholar 

  • Dewhirst MW, Connor WG, Sim DA, Wilson S, DeYoung D, Parsells JL (1983) Correlation between initial and long term responses of spontaneous pet animal tumors to heat and radiation or radiation alone. Cancer Res 43: 5735–5741

    PubMed  CAS  Google Scholar 

  • Dewhirst MW, Gross JF, Sim D, Arnold P, Boyer D (1984a) The effect of rate of heating and cooling prior to heating on tumor and normal tissue microcirculatory blood flow. Biorheology 21: 539–558

    PubMed  CAS  Google Scholar 

  • Dewhirst MW, Sim D, Sapareto S, Connor WG (1984b) Importance of minimum tumor temperature in determining early and long-term responses of spontaneous canine and feline tumors to heat and radiation. Cancer Res 44: 43–50

    PubMed  CAS  Google Scholar 

  • Dewhirst MW, Winget JM, Edelstein-Keshet L et al. (1987) Clinical application of thermal isoeffect dose. Int J Hyperthermia 3: 307–318

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Phillips TL, Samulski TV et al. (1990) RTOG quality assurance guidelines for clinical trials using hyperthermia. Int J Radiat Oncol Biol Phys 18: 1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Griffin TW, Smith AR, Parker RG, Hanks GE, Brady LW (1993) Intersociety Council on Radiation Oncology essay on the introduction of new medical treatments into practice. J Natl Cancer Inst 84: 951–957

    Article  Google Scholar 

  • Edelstein-Keshet L, Dewhirst MW, Oleson JR, Samulski TV (1989) Characterization of tumour temperature distribution in hyperthermia based on assumed mathematical forms. Int J Hyperthermia 5: 757–777

    Article  PubMed  CAS  Google Scholar 

  • Field SB, Morris CC (1983) The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiother Oncol 1: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE (1977) Modification of cell lethality at elevated temperatures. The pH effect. Radiat Res 70: 224–235

    CAS  Google Scholar 

  • Gerweck LE, Richards B, Michaels HB (1982) Influence of low pH on the development and decay of 42 degree thermotolerance in CHO cells. Int J Radiat Oncol Biol Phys 8: 1935–1941

    Article  PubMed  CAS  Google Scholar 

  • Hahn GM, Shiu EC (1985) Protein synthesis, thermotolerance and step-down heating. Int J Radiat Oncol Biol Phys 11: 159–164

    Article  PubMed  CAS  Google Scholar 

  • Hahn GM, Ning SC, Elizaga M, Kapp DS, Anderson RL (1989) A comparison of thermal responses of human and rodent cells. Int J Radiat Biol Phys 56: 817–825

    Article  CAS  Google Scholar 

  • Issels RD, Mittermüller J, Gerl A et al. (1991) Improvement of local control by regional hyperthermia combined with systemic chemotherapy (ifosfamide plus etoposide) in advanced sarcomas: updated report on 65 patients. J Cancer Res Clin Oncol 117(Suppl): s141–s147

    Article  PubMed  Google Scholar 

  • Kapp DS, Cox RS, Barnett TA, Ben-Yosef R (1992) Thermoradiotherapy for residual microscopic cancer: elective or post-excisional hyperthermia and radiation therapy in the management of local-regional recurrent breast cancer. Int J Radiat Oncol Biol Phys 24: 261–277

    Article  PubMed  CAS  Google Scholar 

  • Lanks KW, Gao JP, Kasambalides EJ (1988) Nucleoside restoration of heat resistance and suppression of glucoseregulated protein synthesis by glucose-deprived L929 cells. Cancer Res 48: 1442–1445

    PubMed  CAS  Google Scholar 

  • Law MP (1979) Induced thermal resistance in the mouse ear: the relationship between heating time and temperature. Int J Radiat Biol 35: 481–485

    CAS  Google Scholar 

  • Leopold KA, Dewhirst MW, Samulski TV et al. (1992) Relationships among tumor temperature, treatment time and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas. Int J Radiat Oncol Biol Phys 22: 989–998

    Article  PubMed  CAS  Google Scholar 

  • Leopold KA, Dewhirst MW, Samulski TV et al. (1993) Cumulative minutes with T90 greater than Tempindex is predictive of response of superficial malignancies to hyperthermia and radiation. Int J Radiat Oncol Biol Phys 25: 841–847

    Article  PubMed  CAS  Google Scholar 

  • Mackey M, Roti Roti JL (1992) A model of heat-induced clonogenic cell death. J Theor Biol 156: 133–146

    Article  PubMed  CAS  Google Scholar 

  • Nielson OS, Overgaard J (1982) Importance of preheating temperature and time for the induction of thermotolerance in a solid tumour in vivo. Br J Cancer 46: 894–903

    Article  Google Scholar 

  • Oleson JR, Dewhirst MW, Harrelson JM, Leopold KA, Samulski TV, Tso CY (1989) Tumor temperature distributions predict hyperthermia effect. Int J Radiat Oncol Biol Phys 16: 559–570

    Article  PubMed  CAS  Google Scholar 

  • Oleson JR, Samulski TV, Leopold KA, Clegg ST, Dewhirst MW, Dodge RK, George SL (1993) Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25: 289–297

    Article  PubMed  CAS  Google Scholar 

  • Perez CA, Gillespie B, Pajak T, Hornback NB, Emami B, Rubin P (1989) Quality assurance problems in clinical hyperthermia and their impact on therapeutic outcome: a report by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 16: 551–558

    Article  PubMed  CAS  Google Scholar 

  • Roizin-Towle L, Pirro JP (1991) The response of human and rodent cells to hyperthermia. Int J Radiat Oncol Biol Phys 20: 751–756

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, MacFall J, Zhang Y, Grant W, Charles C (1992) Non-invasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermic oncology. Int J Hyperthermia 8: 819–829

    Article  PubMed  CAS  Google Scholar 

  • Sapareto SA (1987) A workshop on thermal dose in cancer therapy: introduction. Int J Hyperthermia 3: 289–290

    Article  PubMed  CAS  Google Scholar 

  • Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10: 787–800

    Article  PubMed  CAS  Google Scholar 

  • Sapozink MD, Cetas T, Corry PM, Egger MJ, Fessenden P (1988) Introduction to hyperthermia device evaluation. Int J Hyperthermia 4: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Sneed PK, Stauffer PR, Gutin PH et al. (1991) Interstitial irradiation and hyperthermia for the treatment of recurrent malignant brain tumors. Neurosurgery 28: 206–215

    Article  PubMed  CAS  Google Scholar 

  • Valdagni R, Liu FE, Kapp DS (1988) Important prognostic factors influencing outcome of combined radiation and hyperthermia. Int J Radiat Oncol Biol Phys 15: 959–972

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dewhirst, M.W. (1995). Thermal Dosimetry. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics