Skip to main content

Molecular and Cellular Mechanisms of Hyperthermia

  • Chapter
Thermoradiotherapy and Thermochemotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The success of tumor therapy is determined by the efficiency with which the killing of tumor cells is achieved under conditions of no or only slight damage to the normal tissues. Cell killing in this sense means that the clonogenicity of stem cells is destroyed by agents such as ionizing radiation, cytotoxic chemicals, or heat. Hyperthermia, the heating of cells to 40°-45°C, can act as a cytotoxic agent by itself or as a sensitizing agent in combination with ionizing radiation or cytotoxic drugs (Streffer 1990). The characteristics and mechanisms of sensitization by heat will be described in other chapters in the volume; therefore the focus of this chapter will be on the action of heat alone. During prolonged heating for several hours at temperatures of about 42°C and below or after a short heat shock, cells can become more thermorésistant. These phenomena of thermotolerance will also be described in a later chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahnström G, Edvardsson KA (1974) Radiation-induced single-strand breaks in DNA determined by rate of alkaline strand separation and hydroxylapatite chromatography: an alternative to velocity sedimentation. Taylor & Francis, London. Int J Radiat Biol 26: 493–497

    Google Scholar 

  • Alper T (1979) Cellular radiobiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Anghilari LJ, Crone-Escanye MC, Marchai C, Robert J (1984) Plasma membrane changes during hyperthermia: probable role of ionic modification in tumor cell death. In: Overgaard J (ed) Hyperthermic oncology, vol I, pp 49–52

    Google Scholar 

  • von Ardenne M (1982) Hyperthermia and cancer therapy. Adv Pharmacol Chemother 10: 339

    Google Scholar 

  • von Ardenne M, Reitnauer P (1976) Verstärkung der mit Glukoseinfusion erzielbaren Tumorübersäuerung in vivo durch NAD. Arch Geschwulstforsch 30: 319–330

    Google Scholar 

  • von Ardenne M, Chaplain R, Reitnauer P (1969) Selektive Krebszellenschädigung durch eine Attackenkombination mitÜbersäuerung, Hyperthermie, Vitamin A, Dimethylsulfoxid und weiteren die Freisetzung lysosomaler Enzyme fördernden Agenzien. Arch Geschwulstforsch 33: 331–344

    Google Scholar 

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17: 241–254

    PubMed  CAS  Google Scholar 

  • Auersperg N (1966) Differential heat sensitivity of cells in tissue culture. Nature 209: 415–416

    PubMed  CAS  Google Scholar 

  • Bass H, Moore JL, Coakely WT (1978) Lethality in mammalian cells due to hyperthermia under oxic and hypoxic conditions. Int J Radiat Biol 33: 57–67

    CAS  Google Scholar 

  • Belt JA, Thomas JA, Buchsbaum RN, Racker E (1979) Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry 18: 3506–3511

    PubMed  CAS  Google Scholar 

  • van Beuningen D, Streffer C (1988) Importance of ther-motolerance for radiothermotherapy as assessed using two human melanoma cell lines. Recent Results Cancer Res 109: 203–213

    PubMed  Google Scholar 

  • van Beuningen D, Molls M, Schulz S, Streffer C (1978) Effects of irradiation and hyperthermia on the development of preimplanted mouse embryos in vitro. In: Streffer C (eds) Cancer therapy by hyperthermia and radiation. Urban & Schwarzenberg, Baltimore, pp 151–153

    Google Scholar 

  • Bhuyan BK, Day KJ, Edgerton CE, Ogunbase O (1977) Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia. Cancer Res 37: 3780–3784

    PubMed  CAS  Google Scholar 

  • Boonstra J, Schamhart DHJ, de Laat SW, van Wijk R (1984) Analysis of K+ and Na+ transport and intracellular contents during and after heat shock and their role in protein synthesis in rat hepatoma cells. Cancer Res 44: 955–960

    PubMed  CAS  Google Scholar 

  • Borelli MJ, Wong RSL, Dewey WC (1986) A direct correlation between hyperthermia-induced membrane blebbing and survival in synchronous G1 CHO cells. J Cell Physiol 126: 181–190

    Google Scholar 

  • Bowler K, Duncan CJ, Gladwell RT, Davison TF (1973) Cellular heat injury. Comp Biochem Physiol (A) 45: 441–450

    CAS  Google Scholar 

  • Breipohl W, van Beuningen D, Ummels M, Streffer C, Schönfelder B (1983) Effect of hyperthermia on the intestinal mucosa of mice. Verh Anat Ges 77: 567–569

    Google Scholar 

  • Burdon RH (1985) Heat shock proteins. In: Overgaard J (ed) Hyperthermic oncology, 1984, vol 2. Taylor & Francis, London, pp 223–230

    Google Scholar 

  • Burdon RH (1988) Hyperthermic toxicity and the modulation of heat damage to cell protein synthesis in HeLa cells. Recent Results Cancer Res 109: 1–8

    PubMed  CAS  Google Scholar 

  • Burdon RH, Cutmore CMM (1982) Human heat shock gene expression and the modulation of plasma membrane Na+/K+ ATPase activity. FEBS Lett 140: 45–48

    PubMed  CAS  Google Scholar 

  • Burdon RH, Kerr SM, Cutmore CMM, Munro J, Gill V (1984) Hyperthermia, Na+/K+ ATPase and lactic acid production in some human tumour cells. Br J Cancer 49: 437–445

    PubMed  CAS  Google Scholar 

  • Calderwood St. K, Hahn GM (1983) Thermal sensitivity and resistance of insulin-receptor binding. Biochim Biophys Acta 756: 1–8

    Google Scholar 

  • Calderwood St. K, Bump EA, Stevenson MA, van Kersen I, Hahn GM (1985) Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cells stressed with starvation and heat. J Cell Physiol 124: 261–268

    Google Scholar 

  • Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Moricca G, Rossi-Fanelli A (1967) Selective heat sensitivity of cancer cells (biochemical and clinical studies). Cancer 20: 1351–1381

    PubMed  CAS  Google Scholar 

  • Chen TT, Heidelberger C (1969) Quantitative studies on the malignant transformation of mouse prostate cells by carcinogenic hydrocarbons in vitro. Int J Cancer 4: 166–178

    PubMed  CAS  Google Scholar 

  • Coss RA, Dewey WC, Bamburg JR (1982) Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res 42: 1059–1071

    PubMed  CAS  Google Scholar 

  • Cress AE, Culver PS, Moon TE, Gerner EW (1982) Correlation between amounts of cellular membrane components and sensitivity to hyperthermia in a variety of mammalian cell lines in cultures. Cancer Res 42: 1716–1721

    PubMed  CAS  Google Scholar 

  • Dennis WH, Yatvin MB (1981) Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int J Radiat Biol 39: 265–271

    CAS  Google Scholar 

  • Dermietzel R, Streffer C (1992) The cytoskeleton and proliferation of melanoma cells under hyperthermal conditions. A correlative double immuno-labelling study. Strahlenther Onkol 168: 593–602

    CAS  Google Scholar 

  • Dertinger H, Jung H (1970) Molekulare Strahlenbiologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dewey WC (1988) Hyperthermic effects studied in vitro. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research. Taylor and Francis, London, pp 954–959

    Google Scholar 

  • Dewey WC (1989) The search for critical cellular targets damaged by heat. Radiat Res 120: 191–204

    PubMed  CAS  Google Scholar 

  • Dewey WC, Esch JL (1982) Transient thermal tolerance: cell killing and polymerase activities. Radiat Res 92: 611–614

    PubMed  CAS  Google Scholar 

  • Dewey WC, Li XL (1988) Cell cycle effects: killing, division delay, and chromosomal aberrations. In: Sugahara T, Saito M (eds) 5th International symposium on Hyperthermic Oncology, Kyoto (Abstracts), Taylor & Francis, London, p 20

    Google Scholar 

  • Dewey WC, Westra A, Miller HH (1971) Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J Radiat Biol 20: 505–520

    CAS  Google Scholar 

  • Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE (1977) Cellular responses to combinations of hyperthermia and radiation. Radiology 123: 463–474

    PubMed  CAS  Google Scholar 

  • Dewey WC, Freeman ML, Raaphorst GP et al. (1980) Cell biology of hyperthermia and radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven Press, New York, pp 589–623

    Google Scholar 

  • Dube DK, Seal G, Loeb LA (1977) Differential heat sensitivity of mammalian DNA polymerase. Biochem Biophys Res Commun 76: 483–487

    CAS  Google Scholar 

  • Durand RE (1978) Potentiation of radiation lethality by hyperthermia in a tumor model: effects of sequence, degree and duration of heating. Int J Radiat Oncol Biol Phys 4: 401–406

    PubMed  CAS  Google Scholar 

  • Francesconi R, Mayer M (1979) Heat-and exercise-induced hyperthermia: effects on high-energy phosphate. Aviat Space Environ Med 50: 799–802

    PubMed  CAS  Google Scholar 

  • Freeman ML, Dewey WC, Hopwood LE (1977) Effect of pH on hyperthermic cell survival. J Natl Cancer Inst 58: 1837–1839

    PubMed  CAS  Google Scholar 

  • George KC, Singh BB (1982) Synergism of chlorpromazine and hyperthermia in two mouse solid tumours. Br J Cancer 45: 309–313

    PubMed  CAS  Google Scholar 

  • George KC, Singh BB (1985) Hyperthermic response of a mouse fibrosarcoma as modified by phenothiazine drug. Br J Cancer 51: 737–738

    PubMed  CAS  Google Scholar 

  • George KC, Streffer C, Pelzer T (1989) Combined effects of x-rays, Ro-03-8799 and hyperthermia on growth, necrosis and cell proliferation in a mouse tumour. Int J Radiat Oncol Biol Phys 16: 1119–1122

    PubMed  CAS  Google Scholar 

  • Gerner EW (1983) Thermotolerance: In: Storm FK (ed) Hyperthermia and cancer therapy. G.K. Hall, Boston, Mass, pp 141–162

    Google Scholar 

  • Gerner EW (1984) Definition of thermal dose. In Overgaard J (ed) Hyperthermic oncology, vol 2. Taylor & Francis, London, pp 245–251

    Google Scholar 

  • Gerner EW, Connor WG, Boone MLM, Doss JD, Mayer EG, Miller RG (1975) The potential of localized heating as an adjunct to radiation therapy. Radiology 116: 433–489

    PubMed  CAS  Google Scholar 

  • Gerner EW, Holmes PW, McCullough JA (1979) Influence of growth state on several thermal responses of EMT-6/Az tumor cells in vitro. Cancer Res 39: 981–986

    PubMed  CAS  Google Scholar 

  • Gerweck LE (1977) Modification of cell lethality at elevated temperatures: the pH effect. Radiat Res 70: 224–235

    PubMed  CAS  Google Scholar 

  • Gerweck LE (1982) Effect of microenvironmental factors on the response of cells to single and fractionated heat treatments. NCJ Monogr 61: 19–25

    CAS  Google Scholar 

  • Gerweck LE (1985) Environmental and vascular effect. In: Overgaard J (ed) Hyperthermic oncology, vol 2. Taylor & Francis, London, pp 253–262

    Google Scholar 

  • Gerweck LE, Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41: 845–849

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Nygaard TG, Burlett M (1979) Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39: 966–972

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B, Michaels HB (1982) Influence of low pH on the development and decay of 42°C thermotolerance in CHO cells. Int J Radiat Oncol Biol Phys 8: 1935–1941

    PubMed  CAS  Google Scholar 

  • Giovanella BC (1983) Thermosensitivity of neoplastic cells in vitro. In: Storm FK (ed) Hyperthermia and cancer therapy. GK Hall, Boston, Mass, pp 55–62

    Google Scholar 

  • Givoanella BC, Morgan AC, Stehlin JA, Williams LJ (1973) Selective lethal effect of supranormal temperatures on mouse sarcoma cells. Cancer Res 33: 2568–2578

    Google Scholar 

  • Giovanella BC, Stehlin JS, Morgan AC (1976) Selective lethal effects of supranormal temperatures on human neoplastic cells. Cancer Res 36: 3944–3950

    PubMed  CAS  Google Scholar 

  • Guffy MM, Rosenberger JA, Simon J, Burns CP (1982) Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells. Cancer Res 42: 3625–3630

    PubMed  CAS  Google Scholar 

  • Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34: 3117–3123

    PubMed  CAS  Google Scholar 

  • Hahn GM (1980) Comparison of the malignant potential of 10T1/2 cells and transformants with their survival responses to hyperthermia and to amphotericin B. Cancer Res 40: 3763–3767

    PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum Press, New York

    Google Scholar 

  • Hahn GM, Shiu EC (1983) Effect of pH and elevated temperature on the cytotoxicity of some chemotherapeutic agents on Chinese hamster cells in vitro. Cancer Res 43: 5789–5791

    PubMed  CAS  Google Scholar 

  • Hahn GM, Shiu EC (1986) Adaptation to low pH modifies thermal and thermo-chemical response of mammalian cells. Int J Hyperthermia 2: 379–387

    PubMed  CAS  Google Scholar 

  • Hall E (1978) Radiobiology for the radiologist. Harper & Row, Hagestown, Md

    Google Scholar 

  • Harisiadis L, Hall EJ, Kraljevic U, Borek C (1975) Hyperthermia: biological studies at the cellular level. Radiology 117: 447–452

    PubMed  CAS  Google Scholar 

  • Harris M (1967) Temperature-resistant variants in clonal populations of pig kidney cells. Exp Cell Res 46:301–314

    PubMed  CAS  Google Scholar 

  • Harris M (1969) Growth and survival of mammalian cells under continuous thermal stress. Exp Cell Res 56: 382–386

    PubMed  CAS  Google Scholar 

  • Hayat H, Friedberg I (1986) Heat-induced alterations in cell membrane permeability and cell inactivation of transformed mouse fibroblasts. Int J Hyperthermia 2: 369–378

    PubMed  CAS  Google Scholar 

  • Henle KJ (1983) Arrhenius analysis of thermal responses. In: Storm FK (ed) Hyperthermia and cancer therapy. GK Hall, Boston, Mass, pp 47–53

    Google Scholar 

  • Henle KJ, Dethlefsen LA (1980) Time-temperature relationships for heat-induced cell killing of mammalian cells. Ann NY Acad Sci 335: 234–253

    PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1979) Effects of hyperthermia (45°C) on macromolecular synthesis in Chinese hamster ovary cells. Cancer Res 39: 2665–2674

    PubMed  CAS  Google Scholar 

  • Hume SP, Rogers MA, Field SB (1978) Two qualitatively different effects of hyperthermia on acid phosphatase staining in mouse spleen, dependent on the severity of the treatment. Int J Radiat Biol 34: 401–409

    CAS  Google Scholar 

  • Isbruch, C (1986) Untersuchungen zum Glukosestoffwechsel menschlicher Melanomzellen in vitro nach Hyperthermie, Bestrahlung und Glukosegabe. Inaugural-Dissertation, Universität-Gesamthochschule Essen

    Google Scholar 

  • Issa M (1985) Hyperthermie am Dünndarm der Maus. Eine elektronenmikroskopische Untersuchung. Dissertation, Essen

    Google Scholar 

  • Jähde E, Rajewsky MF (1982) Sensitization of clonogenic malignant cells to hyperthermia by glucose-mediated, tumour-selective pH reduction. J Cancer Res Clin Oncol 104: 23–30

    PubMed  Google Scholar 

  • Johnson FH, Eyring H, Polisar MJ (1954) The kinetic basis of molecular biology. John Wiley, New York

    Google Scholar 

  • Jorritsma JBM, Konings AWT (1984) The occurrence of DNA strand breaks after hyperthermic treatments of mammalian cells with and without radiation. Radiat Res 98: 198–208

    PubMed  CAS  Google Scholar 

  • Jorritsma JBM, Konings AWT (1986) DNA lesions in hyperthermic cell killing: effects of thermotolerance, procaine and erythritol. Radiat Res 106: 89–97

    PubMed  CAS  Google Scholar 

  • Jung H (1986) A generalized concept for cell killing by heat. Radiat Res 106: 56–72

    PubMed  CAS  Google Scholar 

  • Kachani ZFC, Sabin AB (1969) Reproductive capacity and viability at higher temperatures of various transformed hamster cell lines. J Natl Cancer Inst 43: 469–480

    PubMed  CAS  Google Scholar 

  • Kal HB, Hahn GM (1976) Kinetic responses of murine sarcoma cells to radiation and hyperthermia in vivo and in vitro. Cancer Res 36: 1923–1929

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Luppes JG, Konings AWT (1987) Heatinduced nuclear protein binding and its relation to thermal cytotoxicity. Int J Hyperthermia 3: 459–465

    PubMed  CAS  Google Scholar 

  • Kase K, Hahn GM (1975) Differential heat response of normal and transformed human cells in tissue culture. Nature 255: 228–230

    PubMed  CAS  Google Scholar 

  • Kellerer AM, Rossi HH (1971) RBE and the primary mechanism of radiation action. Radiat Res 47: 15–34

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1975) Enhanced killing of hypoxic tumor cells by hyperthermia. Br J Radiol 48: 872–874

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1976) The enhanced killing of irradiated HeLa cells in synchronous culture by hyperthermia. Radiat Res 66: 337–345

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW (1978) Selective potentiation of hyperthermia killing of hypoxic cells by 5-thio-D-glucose. Cancer Res 38: 2935–2938

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Hahn EW, Ensign NA (1980) Selective killing of glucose and oxygen-deprived HeLa cells by hyperthermia. Cancer Res 40: 3459–3462

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim SH, Alfieri A, Young CW (1984) Quercetin, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Cancer Res 44: 102–106

    PubMed  CAS  Google Scholar 

  • Konings AWT (1987) Effects of heat and radiation on mammalian cells. Radiat Phys Chem 30: 339–349

    CAS  Google Scholar 

  • Konings AWT, Penninga P (1985) On the importance of the level of glutathione and the activity of the pentose phosphate pathway in heat sensitivity and thermotolerance. Int J Radiat Biol 48: 409–422

    CAS  Google Scholar 

  • Konings AWT, Ruifrok ACC (1985) Role of membrane lipids and membrane fluidity and thermotolerance of mammalian cells. Radiat Res 102: 86–98

    PubMed  CAS  Google Scholar 

  • Kura S, Antoku S (1985) Time-lapse photographic studies of heated HeLa cells. In: Abe M, Takahashi M, Sugahara T (eds) Hyperthermic in cancer therapy. Nippon Hoshasen Kiki Kogyokai, Tokyo, pp 192–193

    Google Scholar 

  • Lambert RA (1912) Demonstration of the greater susceptibility to heat of sarcoma cells. JAMA 59: 2147–2148

    Google Scholar 

  • Landry J, Marceau N (1978) Rate-limiting events in hyperthermic cell killing. Radiat Res 75: 573–578

    PubMed  CAS  Google Scholar 

  • Lee SY, Ryn KH, Kang MS, Song CW (1986) Effect of hyperthermia on the lactic acid and beta-hydroxybutyric acid content in tumours. Int J Hyperthermia 2: 213–222

    PubMed  CAS  Google Scholar 

  • Leeper DB (1985) Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor & Francis, London, vol. 2, pp 9–40

    Google Scholar 

  • Lepock JR (1982) Involvement of membranes in cellular responses to hyperthermia. Radiat Res 92: 433–438

    PubMed  CAS  Google Scholar 

  • Lepock JR (1991) Protein denaturation: its role in thermal killing. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentiethcentury perspective. Academic Press, New York, pp 992–998

    Google Scholar 

  • Lepock JR, Kruuv J (1992) Mechanisms of thermal cyto-toxicity. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology Proceedings of the 6th International Congress on Hyperthermic Oncology, Tucson, Arizona, April 27–May 1, 1992. Arizona Board of Regents, pp 9–16

    Google Scholar 

  • Lepock JR, Cheng KH, Al-Qysi H, Kruuv J (1983) Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochem Cell Biol 61: 421–427

    PubMed  CAS  Google Scholar 

  • Li GC, Hahn GM (1980) Adaptation to different growth temperatures modifies some mammalian cell survival responses. Exp Cell Res 128: 475–485

    PubMed  CAS  Google Scholar 

  • Li GC, Shiu EC, Hahn GM (1980) Similarities in cellular inactivation by hyperthermia or by ethanol. Radiat Res 82: 257–268

    PubMed  CAS  Google Scholar 

  • Li GC, Petersen NS, Mitchell HK (1982) Induced thermal tolerance and heat shock protein synthesis in Chinese hamster ovary cells. Int J Radiat Oncol Biol Phys 8: 63–67

    PubMed  CAS  Google Scholar 

  • Lin PS, Turi A, Kwock L, Lu RC (1982) Hyperthermia effect on microtubule organization. Natl Cancer Inst Monogr 61: 57–60

    Google Scholar 

  • Lücke-Huhle C, Dertinger H (1977) Kinetic response of an in vitro“turmor model” (V99 spheroids) to 42°C hyperthermia. Eur J Cancer 13: 23–28

    PubMed  Google Scholar 

  • Lunec J, Cresswell SR (1983) Heat-induced thermotolerance expressed in the energy metabolism of mammalian cells. Radiat Res 93: 588–597

    PubMed  CAS  Google Scholar 

  • Mackey MA, Roti Roti JL (1992) A model of heat-induced clonogenic cell death. J Theor Biol 156: 133–146

    PubMed  CAS  Google Scholar 

  • Magun BE, Fennie CW (1981) Effects of hyperthermia on binding, internalization and degradation of epidermal growth factor. Radiat Res 86: 133–146

    PubMed  CAS  Google Scholar 

  • Massicotte-Nolan P, Glofcheski DJ, Kruuv J, Lepock JR (1981) Relationship between hyperthermic cell killing and protein denaturation by alcohols. Radiat Res 87: 284–299

    PubMed  CAS  Google Scholar 

  • McCormick W, Penman SH (1969) Regulation of protein synthesis in HeLa cells: translation at elevated temperatures. J Mol Biol 39: 315–333

    PubMed  CAS  Google Scholar 

  • Mehdi SQ, Recktenwald DJ, Smith LM, Li GC, Armour EP, Hahn GM (1984) Effect of hyperthermia on murine cell surface histocompatibility antigens. Cancer Res 44: 3394–3397

    PubMed  CAS  Google Scholar 

  • Meyer KR, Hopwood LE, Gillette EL (1979) The thermal response of mouse adenocarcinoma cells at low pH. Eur J Cancer 15: 1219–1222

    PubMed  CAS  Google Scholar 

  • Mirtsch Sch, Streffer C, van Beuningen D, Rebmann A (1984) ATP metabolism in human melanoma cells after treatment with hyperthermia (42°C). In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor & Francis, London, vol. 2, pp 19–22

    Google Scholar 

  • Mivechi NF, Dewey WC (1984) Effect of glycerol and low pH on heat-induced cell killing and loss of cellular DNA polymerase activities in Chinese hamster overy cells. Radiat Res 99: 352–362

    PubMed  CAS  Google Scholar 

  • Mondovi B, Strom R, Rotilio G et al. (1969) The biochemical mechanism of selective heat sensitivity of cancer cells. I. Studies on cellular respiration. Eur J Cancer 5: 129–136

    PubMed  CAS  Google Scholar 

  • Morris CC, Field SB (1985) The relationship between heating time and temperature for rat tail necrosis with and without occlusion of the blood supply. Int J Radiat Biol 47: 41–48

    CAS  Google Scholar 

  • Nagle WA, Moss AJ Jr (1983) Inhibitors of poly (ADP-ribose) synthetase enhance the cytotoxicity of 42°C and 45°C hyperthermia in cultured Chinese hamster cells. Int J Radiat Biol 44: 475–481

    CAS  Google Scholar 

  • Nagle WA, Moss AJ, Baker ML (1982) Increased lethality at 42°C for hypoxic Chinese hamster cells heated under conditions of energy deprivation. Natl Cancer Inst Monogr 61: 107–110

    CAS  Google Scholar 

  • Nielsen OS (1984) Franctionated hyperthermia and thermotolerance. Dan Med Bull 31: 376–390

    PubMed  CAS  Google Scholar 

  • Nielsen OS, Overgaard J (1982) Influence of time and temperature on the kinetics of thermotolerance in L1 A2 cells in vitro. Cancer Res 42: 4190–4196

    PubMed  CAS  Google Scholar 

  • Ohyama H, Yamada T (1980) Reduction of rat thymocyte interphase death by hyperthermia. Radiat Res 82: 342–351

    PubMed  CAS  Google Scholar 

  • Ossovski L, Sachs L (1967) Temperature sensitivity of polyoma virus: induction of cellular DNA synthesis and multiplication of transformed cells at high temperatures. Proc Natl Acad Sci USA 58: 1938–1945

    PubMed  CAS  Google Scholar 

  • Overgaard J (1976) Ultrastructure of a murine mammary carcinoma exposed to hyperthermia in vivo. Cancer Res 36: 983–995

    PubMed  CAS  Google Scholar 

  • Overgaard J, Suit H (1979) Time-temperature relationship in hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res 39: 3248–3253

    PubMed  CAS  Google Scholar 

  • Palzer R, Heidelberger C (1973) Influence of drugs and synchrony on the hyperthermic killing of HeLa cells. Cancer Res 33: 422–427

    PubMed  CAS  Google Scholar 

  • Panniers R, Henshaw EC (1984) Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich ascites tumour cells. Eur J Biochem 140: 209–214

    PubMed  CAS  Google Scholar 

  • Pincus G, Fischer A (1931) The growth and death of tissue cultures exposed to supranormal temperatures. J Exp Med 54: 323–332

    PubMed  CAS  Google Scholar 

  • Power J, Harris J (1977) Response of extremely hypoxic cells to hyperthermia: survival and oxygen enhancement ratios for exponential and plateau-phase cultures. Radiology 123: 767–770

    PubMed  CAS  Google Scholar 

  • Privalov PL (1979) Stability of proteins. Adv Protein Chem 33: 167–241

    PubMed  CAS  Google Scholar 

  • Raaphorst GP, Spiro IJ, Azzam EJ, Sargent M (1987) Normal cells and malignant cells transfected with the H-ras oncogene have the same heat sensitivity in culture. Int J Hyperthermia 3: 209–216

    PubMed  CAS  Google Scholar 

  • Reeves O (1982) Mechanism of acquired resistance to acute heat shock in cultured mammalian cells. J Cell Physiol 79: 157–159

    Google Scholar 

  • Reinhold HS, Wike-Hooley JL, van den Berg AP, van den Berg-Blok A (1985) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 2. Taylor & Francis, London, pp 41–52

    Google Scholar 

  • Rofstad EK, Brustad T (1986) Arrhenius analysis of the heat response in vivo and in vitro of human melanoma xenografts. Int J Hyperthermia 2: 359–368

    PubMed  CAS  Google Scholar 

  • Rofstad EK, Wahl A, Tveit KM, Monge OR, Brustad T (1985) Survival curves after X-ray and heat treatments for melanoma cells derived directly from surgical specimens of tumours in man. Radiother Oncol 4: 33–44

    PubMed  CAS  Google Scholar 

  • Roti Roti JL (1982) Heat-induced cell death and radiosensitization: molecular mechanisms. Natl Cancer Inst Monogr 61: 3–9

    PubMed  CAS  Google Scholar 

  • Roti Roti JL, Henle KJ (1979) Comparison of two mathematical models for describing heat-induced cell killing. Radiat Res 78: 522–531

    PubMed  CAS  Google Scholar 

  • Roti Roti JL, Türkei N, Laszlo A (1993) Heat-induced alterations which may play a role in radieseusitization of Hela cells. In: Hyperthermic Oncology, Gerner EW and Cetas Th.C (eds) Arizona Board of Regents, pp 99–101

    Google Scholar 

  • Roti Roti JL, Painter RB (1982) Effects of hyperthermia on the sedimentation of nucleoids from HeLa cells in sucrose gradients. Radiat Res 89: 166–175

    PubMed  CAS  Google Scholar 

  • Rowley R, Joyner DE, Stewart JR (1987) In vitro response to hyperthermia or X-irradiation of diploid and tetraploid RIF-1 cells separated by centrifugal elutriation. Int J Hyperthermia 3: 235–244

    PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Hulstaart CE, Konings AWT (1984) Permeability change of cells treated with hyperthermia alone and in combination with x-irradiation. In: Overgaard J (ed) Hyperthermic oncology, vol I. Taylor and Francis, London, pp 65–68

    Google Scholar 

  • Ruifrok ACC, Kanon B, Konings AWT (1985a) Correlation between cellular survival and potassium loss in mouse fibroblasts after hyperthermia alone and after a combined treatment with X-rays. Radiat Res 101: 326–331

    PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Konings AWT (1985b) Correlation of colony forming ability of mammalian cells with potassium content after hyperthermia under different experimental conditions. Radiat Res 103: 452–454

    PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Konings AWT (1986) Na+/K+ ATPase activity in mouse lung fibroblasts and HeLa S-3 cells during and after hyperthermia. Int J Hyperthermia 2: 51–59

    PubMed  CAS  Google Scholar 

  • Ruifrok ACC, Kanon B, Konings AWT (1987) Heatinduced K+ loss, trypan blue uptake, and cell lysis in different cell lines: effect of serum. Radiat Res 109: 303–309

    PubMed  CAS  Google Scholar 

  • Sapareto SA, Hopwood L, Dewey W, Raju M, Gray J (1978) Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res 38: 393–400

    PubMed  CAS  Google Scholar 

  • Schlag H, Lücke-Huhle C (1976) Cytokinetic studies on the effect of hyperthermia on Chinese hamster lung cells. Eur J Cancer 12: 827–831

    PubMed  CAS  Google Scholar 

  • Schubert B, Streffer C, Tamulevicius P (1982) Glucose metabolism in mice during and after whole-body hyperthermia. Natl Cancer Inst Monogr 61: 203–205

    CAS  Google Scholar 

  • Schulman N, Hall E (1974) Hyperthermia: its effect on proliferative and plateau phase cell cultures. Radiology 113: 207–209

    Google Scholar 

  • Shall S (1984) ADR-ribose in DNA repair: a new component of DNA excision repair. Adv Radiat Biol 11: 1–69

    CAS  Google Scholar 

  • Shenoy MA, Singh BB (1985) Temperature dependent modification of radiosensitivity following hypoxic cytocidal action of dechlorpromazine. Radiat Environ Biophys24: 113–117

    Google Scholar 

  • Simard R, Bernhard W (1967) A heat-sensitive cellular function located in the nucleolus. J Cell Biol 34: 61–76

    PubMed  CAS  Google Scholar 

  • Simpson ThA, La Russa PG, Mullins DW, Daugherty JP (1987) Restoration of hyperthermia-associated increased protein to DNA ratio of nucleoids. Int J Hyperthermia 3: 49–62

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GI (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731

    PubMed  CAS  Google Scholar 

  • Skibba JL, Collins FG (1978) Effect of temperature on biochemical functions in the isolated perfused rat liver. J Surg Res 24: 435–441

    PubMed  CAS  Google Scholar 

  • Song CW, Clement SS, Levitt SH (1977) Cytotoxic and radiosensitizing effects of 5-thio-d-glucose hypoxic cells. Radiology 123: 201–205

    PubMed  CAS  Google Scholar 

  • Spiro IJ, Denman DL, Dewey WC (1982) Effect of hyperthermia on CHO DNA polymerase-α and β. Radiat Res 89: 134–139

    PubMed  CAS  Google Scholar 

  • Stevenson MA, Minton KW, Hahn GM (1981) Survival and concanavalin-A-induced capping in CHO fibroblasts after exposure to hyperthermia, ethanol, and X-irradiation. Radiat Res 86: 467–478

    PubMed  CAS  Google Scholar 

  • Streffer C (1963) Reaktivität und Struktur von Aminosäuren und Proteinen (Cystein and y?-Galaktosidase). Dissertation, Universität Freiburg i.Br

    Google Scholar 

  • Streffer C (1982) Aspects of biochemical effects by hyperthermia. Natl Cancer Inst Monogr 61: 11–16

    PubMed  CAS  Google Scholar 

  • Streffer C (1985a) Mechanism of heat injury. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor & Francis, London, vol 2, pp 213–222

    Google Scholar 

  • Streffer C (1985b) Metabolic changes during and after hyperthermia. Int J Hyperthermia 1: 305–319

    PubMed  CAS  Google Scholar 

  • Streffer C (1987) Biological basis for the use of hyperthermia in tumour therapy. Strahlentherapie 163: 416–419

    CAS  Google Scholar 

  • Streffer C (1988) Aspects of metabolic changes of hyperthermia. Recent Results Cancer Res 107: 7–16

    PubMed  CAS  Google Scholar 

  • Streffer C (1990) Biological basis of thermotherapy (with special reference to oncology). In: Gautherie M (ed) Biological basis on oncologic thermotherapy. Springer, Berlin Heidelberg New York, pp 1–71

    Google Scholar 

  • Streffer C, van Beuningen D (1985) Zelluläre Strahlenbiologie und Strahlenpathologie (Ganz-und Teilkörperbestrahlung). In: Diethelm L, Heuck F, Olsson O, Strnad F, Vieten H, Zuppinger A (eds) Handbuch der medizinischen Radiologie, vol xx. Springer Berlin Heidelberg New York, pp 1–39

    Google Scholar 

  • Streffer C, Tamulevicius P, Schmidt K (1983a) Poly (ADPR) synthetase activity in melanoma cells after hyperthermia and radiation. Radiat Res 94: 589 (abstract)

    Google Scholar 

  • Streffer C, van Beuningen D, Bertholdt G, Zamboglou N (1983b) Some aspects of radiosensitization by hyperthermia: neutrons and x-rays. In: Kano E (ed) Fundamentals of cancer therapy by hyperthermia, radiation and chemicals. MAG Bros, Tokyo, pp 121–134

    Google Scholar 

  • Strom R, Crifo C, Rossi-Fanelli A, Mondovi B (1977) Biochemical aspects of heat sensitivity of tumor cells. In: Rossi-Fanelli A, Cavaliere R, Mondovi B, Morrica G (eds) Selective heat sensitivity of cancer cells. Springer, Berlin Heidelberg New York, pp 7–35

    Google Scholar 

  • Suit HD, Shwayder M (1974) Hyperthermia: potential as an anti-tumor agent. Cancer 34: 122–129

    PubMed  CAS  Google Scholar 

  • Takeda M, Majima H, Okada S, Suzuki N, Kubodera A (1987) Surviving fractions and cure-rate in spheroids by x-rays or heat. In: Onoyama, Y (ed) Hyperthermic oncology’ 86 in Japan. MAG Bros, Tokyo, pp 157–158

    Google Scholar 

  • Tamulevicius P, Streffer C (1983) Does hyperthermia produce increased lysosomal enzyme activity? Int J Radiat Biol 43: 321–327

    CAS  Google Scholar 

  • Tamulevicius P, Schmidt K, Streffer C (1984) The effects of X-irradiation, hyperthermia and combined modality treatment on poly (ADPR) synthetase activity in human melanoma cells. Radiat Res 100: 65–77

    PubMed  CAS  Google Scholar 

  • Terasima T, Tolmach LJ (1963a) Variations in several responses of HeLa cells to X-irradiation during the division cycle. Biophys J 3: 11–33

    PubMed  CAS  Google Scholar 

  • Terasima T, Tolmach LJ (1963b) X-ray sensitivity and DNA synthesis in synchronously dividing populations of HeLa cells. Science 140: 490–492

    PubMed  CAS  Google Scholar 

  • von Ardenne M (1982) Hyperthermia and cancer therapy Adv Pharmacol Chemother 10: 339

    Google Scholar 

  • von Ardenne M, Reitnauer P (1976) Verstärkung der mit Glukoseinfusion erzielbaren Tumorübersäuerung in vivo durch NAD. Arch Geschwulstforsch 30: 319–330

    Google Scholar 

  • von Ardenne M, Chaplain R, Reitnauer P (1969) Selektive Krebszellenschädigung durch eine Attackenkombination mit Übersäuerung, Hyperthermie, Vitamin A, Dimethylsulfoxid und weiteren die Freisetzung lysosomaler Enzyme fördernden Agenzien. Arch Geschwulstforsch 33: 331–344

    Google Scholar 

  • Vaupel P, Kallinowski F (1987) Physiological effects of hyperthermia. In: Streffer C (ed) Hyperthermia and the therapy of malignant tumors. Recent Results in Cancer Research, vol 104. Springer, Berlin Heidelberg New York, pp 71–109

    Google Scholar 

  • Vaupel P (1990) Pathophysiological mechanisms of hyperthermia in cancer therapy. In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin, Heidelberg New York, pp 73–134

    Google Scholar 

  • Verma SP, Wallach DFH (1976) Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: evidence from Raman spectroscopy. Proc Natl Acad Sci USA 73: pp 3558–3561

    PubMed  CAS  Google Scholar 

  • Vexler AM, Litinskaya LL (1986) Changes in intracellular pH induced by hyperthermia and hypoxia. Int J Hyperthermia 2: 75–81

    PubMed  CAS  Google Scholar 

  • Vidair CA, Dewey WC (1986) Evaluation of a role of Na+, K+, Ca2+, and Mg2+ in hyperthermic cell killing. Radiat Res 105: 187–200

    PubMed  CAS  Google Scholar 

  • Volk T, Jähde E, Fortmeyer HP, Glüsenkamp K-H, Rajewsky MF (1993) pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer 68: 492–500

    PubMed  CAS  Google Scholar 

  • van Beuningen D, Streffer C (1988) Importance of thermotolerance for radiothermotherapy as assessed using two human melanoma cell lines. Recent Results Cancer Res 109: 203–213

    PubMed  Google Scholar 

  • van Beuningen D, Molls M, Schulz S, Streffer C (1978) Effects of irradiation and hyperthermia on the development of preimplanted mouse embryos in vitro. In: Streffer C Cancer therapy by hyperthermia and radiation. Urban & Schwarzenberg, Baltimore, pp 151–153

    Google Scholar 

  • Wallach DHF (1977) Basic mechanisms in tumor thermotherapy. J Mol Med 2: 381–403

    CAS  Google Scholar 

  • Wallach DHF (1978) Action of hyperthermia and ionizing radiation on plasma membranes: In: Streffer C, van Beuningen D, Dietzel F et al. (eds) Cancer therapy by hyperthermia and radiation. Urban & Schwarzenberg, Munich, pp 19–28

    Google Scholar 

  • Wallenfels K, Streffer C (1964) Chemische Reaktivität von Proteinen. In: “14. Colloquium der Gesellschaft für Physiologische Chemie in Mosbach/Baden.” Springer, Berlin Göttingen Heidelberg, pp 6–40

    Google Scholar 

  • Wallenfels K, Streffer C (1966) Das Dissoziationsverhalten von Cystein und verwandten SH-Verbindungen. Biochem Z 346: 119–132

    CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1926) Über den Stoffwechsel von Tumoren im Körper Klin Wochenschr 5: 829–834

    CAS  Google Scholar 

  • Warocquier R, Scherrer K (1969) RNA metabolism in mammalian cells at elevated temperature. Eur J Biochem 10: 362–370

    PubMed  CAS  Google Scholar 

  • Warters RL, Roti Roti JL (1982) Hyperthermia and the cell nucleus. Radiat Res 92: 458–462

    PubMed  CAS  Google Scholar 

  • Warters RL, Stone OL (1983) Effects of hyperthermia on DNA replication in HeLa cells. Radiat Res 93: 71–84

    PubMed  CAS  Google Scholar 

  • Warters RL, Brizgys LM, Sharma R, Roti Roti JL (1986) Heat shock (45°C) results in an increase of nuclear matrix protein mass is HeLa cells. Int J Radiat Biol 50: 253–268

    CAS  Google Scholar 

  • Weber G (1983) Biochemical strategy of cancer cells and the design of chemotherapy: G.H. A. Glowes memorial lecture. Cancer Res 43: 3466–3492

    CAS  Google Scholar 

  • Westra A, Dewey WC (1971) Heat shock during the cell cycle of Chinese hamster cells in vitro. Int J Radiat Biol 19: 467–477

    CAS  Google Scholar 

  • Wiegant F, Karelaars A, Blok F, Linnemanns W (1984) Effects of extracellular Ca2+ concentrations upon hyperthermia induced cell death. In: Overgaard J (ed) Hyperthermie oncology, vol 1. Taylor & Fancis, London, pp 3–6

    Google Scholar 

  • Wong RSL, Dewey WC (1982) Molecular studies on the hyperthermie inhibition of DNA synthesis in Chinese hamster ovary cells. Radiat Res 92: 370–395

    PubMed  CAS  Google Scholar 

  • Wong RSL, Kapp LN, Dewey WC (1989) DNA fork displacement rate measurements in heated Chinese hamster ovary cells. Biochim Biophys Acta 1007: 224–227

    PubMed  CAS  Google Scholar 

  • Yatvin MB (1977) The influence of membrane lipid composition and procaine on hyperthermie death of cells. Int J Radiat Biol 32: 513–521

    CAS  Google Scholar 

  • Yatvin MB, Crée TC, Elson CE, Gipp JJ, Tegmo I-M, Vorpahl JW (1982) Probing the relationship of membrane “fluidity“ to heat killing of cells. Radiat Res 89: 644–646

    PubMed  CAS  Google Scholar 

  • Yatvin MB, Abuirmeileh NM, Vorphal JW, Elson CE (1983) Biological optimization of hyperthermia: modification of tumor membrane lipids. Eur J Cancer 19: 657–663

    CAS  Google Scholar 

  • Yi PN (1983) Hyperthermia-induced intracellular ionic level changes in tumor cells. Radiat Res 93: 534–544

    PubMed  CAS  Google Scholar 

  • Zölzer F, Streffer C, Pelzer T (1993a) Induction of quiescent S-phase cells by irradiation and/or hyperthermia. I. Time and dose dependence. Int J Radiat Biol 63: 69–76

    PubMed  Google Scholar 

  • Zölzer F, Streffer C, Pelzer T (1993b) Induction of quiescent S-phase cells by irradiation and/or hyperthermia. II. Correlation with colony forming ability. Int J Radiat Biol 63: 77–82

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Streffer, C. (1995). Molecular and Cellular Mechanisms of Hyperthermia. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics