Skip to main content

Electromagnetic Deep Heating Technology

  • Chapter
Thermoradiotherapy and Thermochemotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Deep heating represents an attempt to achieve effective temperatures in and around large extended tumors of the pelvis and abdomen. The term regional hyperthermia is used for heat treatments of such extensive volumes. It is important to realize that tumor lesions considered for regional hyperthermia are typically nonresectable, i.e., they infiltrate surrounding tissues, are not clearly delimited, and are adherent to neighboring tissues and organs such as bone and bladder wall. Consequently, an effective heat treatment should generously cover a larger volume (known as the biological or clinical target volume in radiotherapy) containing a macroscopic tumor and tumor boundaries as well as parts of the suspicious vicinity. The target volume can also include different types of tissues, e.g., tumor, infiltrated fatty tissue, and infiltrated bone. Typical depths of tumors (absorption lengths) as derived from human cross-sections are in the range of 10-15 cm. Disagreement persists as to whether electromagnetic radiation is suitable for heating deep-seated tumors. Several issues will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker JC, Dewhirst MW, Honoré GM, Samulski TV, Tucker JA, Oleson JR (1990) Blood perfusion measurements in human tumors: evaluation of laser Doppler methods. Int J Hyperthermia 6: 287–304

    Article  PubMed  CAS  Google Scholar 

  • Allen S, Kantor G, Bässen H, Ruggera P (1988) CDRH RF phantom for hyperthermia systems evaluations. Int J Hyperthermia 4: 17–23

    Article  PubMed  CAS  Google Scholar 

  • Bach Andersen JB (1985) Theoretical limitations on radiation into muscle tissue. Int J Hyperthermia 1: 45–55

    Article  Google Scholar 

  • Bässen HI, Smith GS (1983) Electric field probes — a review. IEEE Trans Ant Prop 31: 710–718

    Article  Google Scholar 

  • Ben-Yosef R, Sullivan DM, Kapp DS (1992) Peripheral neuropathy and myonecrosis following hyperthermia and radiation therapy for recurrent prostatic cancer: correlation of damage with predicted SAR pattern. Int J Hyperthermia 8: 175–185

    Google Scholar 

  • Bolomey JC, Hawley MS (1990) Noninvasive control of hyperthermia. In: Gautherie M (ed) Methods of hyperthermia control. Springer, Berlin Heidelberg New York, pp 35–111

    Chapter  Google Scholar 

  • Bornemann F (1991) An adaptive multilevel approach to parabolic equations. Part II. variable-order time discretization based on a multiplicative error correction. IMPACT Comput Sci Eng 3: 93–122

    Google Scholar 

  • Bornemann F (1992) An adaptive multilevel approach to parabolic equations. Part III. 2D-error estimation and multilevel preconditioning. IMPACT Comput Sci Eng 4: 1–45

    Article  Google Scholar 

  • Brezovich IA, Young JH, Atkinson WJ, Wang M (1982) Hyperthermia considerations for a conducting cylinder heated by an oscillating electric field applied parallel to the cylinder axis. Med Phys 9: 746–748

    Article  PubMed  CAS  Google Scholar 

  • Brezovich IA, Atkinson WJ, Chakraborty DP (1984) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Corry PM, Barlogie B (1982) Clinical application of high frequency methods for local tumor hyperthermia. In: Nussbaum GH (ed) Physical aspects of hyperthermia. Medical Physics Monograph No. 8. Published for the American Association of Physicists in Medicine by the American Institute of Physics, pp 307–328

    Google Scholar 

  • Corry PM, Jabboury K, Kong JS, Armour EP, McGraw FJ, LeDuc T (1988) Evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 53–74

    Article  PubMed  CAS  Google Scholar 

  • Deuflhard P, Leinen P, Yserentant H (1989) Concepts of an adaptive hierarchical finite element code. IMPACT Comput Sci Eng 1: 3–35

    Article  Google Scholar 

  • De Leeuw AAC, Lagendijk JJW (1987) Design of a clinical deep-body hyperthermia system based on the ‘coaxial TEM’ applicator. Int J Hyperthermia 3:413–421

    Article  PubMed  Google Scholar 

  • De Leeuw AAC, Lagendijk JJW, van den Berg PM (1990) SAR distribution of the “coaxial TEM“ system with variable aperture width: measurements and model computations. Int J Hyperthermia 6: 445–451

    Article  PubMed  Google Scholar 

  • De Leeuw AAC, Mooibroek J, Lagendijk JJW (1991) Specific absorption rate steering by patient positioning in the “coaxial TEM” system: phantom investigation. Int J Hyperthermia 7: 605–611

    Article  PubMed  Google Scholar 

  • Dohlus M (1992) Ein Beitrag zur Berechnung elektromagnetischer Felder im Zeitbereich. Dissertation, Inst. f. HF-Technik, Fachgebiet Theorie elektromagnetischer Felder, Technische Hochschule Darmstadt

    Google Scholar 

  • Feldmann HJ, Molls M, Adler S, Sack H (1991) Hyperthermia in eccentrically located pelvic tumors: excessive heating of the perineal fat and normal tissue temperatures. Int J Radiat Oncol Biol Phys 20: 1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Feldmann HJ, Molls M, Höderath A, Krümpelmann F, Sack H (1992) Blood flow and steady state temperatures in deep seated tumors and normal tissues. Int J Radiat Oncol Biol Phys 23: 1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Feldmann HJ, Molls M, Heinemann H-G, Romanowski R, Stuschke M, Sack H (1993) Thermo-radiotherapy in locally advanced deep seated tumors — thermal parameters and treatment results. Radiother Oncol 26: 38–44

    Article  PubMed  CAS  Google Scholar 

  • Field SB, Franconi C (eds) (1987) Physics and technology of hyperthermia. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Gibbs FA (1987) Regional hyperthermia in the treatment of cancer. In: Paliwal BR, Hetzel FW, Dewhirst MW (eds) Biological, physical and clinical aspects of hyperthermia. AAPM Medical Physics Monograph 16: 330–344

    Google Scholar 

  • Gibbs FA, Sapozink MD, Gates KS, Stewart JR (1984) Regional hyperthermia with an annular phased array in the experimental treatment of cancer: report of work in progress with a technical emphasis. IEEE Trans Biomed Eng 31: 115–119

    Article  PubMed  Google Scholar 

  • Gonzalez Gonzalez D, van Dijk JDP, Oldenburger F, Hulshof MCCM, Schneider C, Blank LECM (1992) Results of combined treatment with radiation and hyperthermia in 111 patients with large or deep seated tumors. Hyperthermic oncology 1992, vol 1, Summary papers, Berner EW (ed) Avizona Board of Regents, p 415b

    Google Scholar 

  • Grant JP, Clarke RN, Symm GT, Spyrou NM (1989) A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements. J Phys E Sci Instrum 22: 757–770

    Article  CAS  Google Scholar 

  • Haacke EM, Petropoulos LS, Nilges EW, Wu DH (1991) Extraction of conductivity and permittivity using magnetic resonance imaging. Phys Med Biol 36: 723–734

    Article  Google Scholar 

  • Hand JW (1990) Biophysics and technology of electromagnetic hyperthermia. In: Gautherie M (ed) Methods of External Hyperthermic Heating. Springer Berlin Heidelberg New York, pp 1–59

    Chapter  Google Scholar 

  • Hand JW, James JR (eds) (1986) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Herts., England

    Google Scholar 

  • Hand JW, Vernon CC, Prior MV (1992) Early experience of a commercial scanned focussed ultrasound hyperthermia system. Int J Hyperthermia 8: 587–607

    Article  PubMed  CAS  Google Scholar 

  • Harari PM, Hynynen KH, Roemer RB, Anhalt DP, Shimm DS, Stea B, Cassady JR (1991) Development of scanned focussed ultrasound hyperthermia: clinical response evaluation. Int J Radiat Oncol Biol Phys 21: 831–840

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka M, Jo S, Akuta K, Nishimura Y, Takahashi M, Abe M (1987) Radiofrequency capacitive hyperthermia for deep-seated tumors. Cancer 60: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Hornsleth SN (1993) The finite difference time domain method and its application to hyperthermia simulations, Hyperthermic oncology 1992, vol 2, Gerner EG, Cetas TC (eds) Arizona Board of Regents, pp 271–273

    Google Scholar 

  • Howard GCW, Sathiaseelan V, King A, Dixon K, Anderson A, Bleehen NM (1986) Regional hyperthermia for extensive pelvic tumours using an annular phased array applicator: a feasibility study. Br J Radiol 59: 1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Issels RD, Prenninger SW, Nagele A et al. (1990) Ifosfamide plus etoposide combined with regional hyperthermia in patients with locally advanced sarcomas: a phase II study. J Clin Oncol 8: 1818–1829

    PubMed  CAS  Google Scholar 

  • Issels RD, Mittermüller J, Gerl A et al. (1991) Improvement of local control by regional hyperthermia combined with systemic chemotherapy (ifosfamide plus etoposide) in advanced sarcomas: updated report on 65 patients. J Cancer Res Clin Oncol 117 (Suppl IV): S141–S147

    Article  PubMed  Google Scholar 

  • James BJ, Sullivan DM (1992a) Direct use of CT scans for hyperthermia treatment planning. IEEE Trans Biomed Eng 39: 845–851

    Article  PubMed  CAS  Google Scholar 

  • James BJ, Sullivan DM (1992b) Creation of threedimensional patient models for hyperthermia treatment planning. IEEE Trans Biomed Eng 39: 238–242

    Article  PubMed  CAS  Google Scholar 

  • Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R (1993) Inductive heating of ferromagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 9: 51–68

    Article  PubMed  CAS  Google Scholar 

  • Kapp DS, Fessenden P, Samulski TV et al. (1988) Stanford University Institutional Report. Phase I evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 75–115

    Article  PubMed  CAS  Google Scholar 

  • Klodt H (1990) Nahfeldantennen für die Hyperthermiebehandlung von Hirntumoren. Diplomarbeit, Institut f. Hochfrequenztechnik, Technische Universität Berlin

    Google Scholar 

  • Lagendijk JJW, Hofman P, Schipper J (1988) Perfusion analysis in advanced breast carcinoma during hyperthermia. Int J Hyperthermia 4: 479–495

    Article  PubMed  CAS  Google Scholar 

  • Lynch DA, Paulsen KD, Strohbehn JW (1985) Finite element solution of Maxwell’s equations for hyperthermia treatment planning. J Comput Phys 58: 246–269

    Article  Google Scholar 

  • Leybovich LB, Myerson RJ, Emami B, Sträube WL (1991) Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters. Int J Hyperthermia 7: 917–935

    Article  PubMed  CAS  Google Scholar 

  • Marsland TP, Evans S (1987) Dielectric measurements with an open-ended coaxial probe. IEEE Proc 134: 341–349

    Google Scholar 

  • Meier T, Kostrzewa C, Schüppert B, Petermann K (1992) Electro-optical E-field sensor with optimized electrode structure. Electronics Letters 28: 1327–1328

    Article  CAS  Google Scholar 

  • Meier T, Kostrzewa C, Petermann K, Schüppert B (1995) Integrated optical E-field probes with segmented modulator electrodes. J Lightwave Technology

    Google Scholar 

  • Müller C (1969) Foundations of the mathematical theory of electromagnetic waves. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Myerson RL, Leybovich L, Emami B, Grigsby PW, Sträube W, von Gerichten D (1991) Phantom studies and preliminary clinical experience with the BSD-2000. Int J Hyperthermia 7: 937–951

    Article  PubMed  CAS  Google Scholar 

  • Nadobny J (1993) Berechnung und Optimierung elektromagnetischer Felder im Patienten bei regionalen Hyperthermie-Anwendungen. Dissertation, Fachbereich Elektrotechnik, Technische Universität Berlin

    Google Scholar 

  • Nadobny J, Seebass M, Wust P, Felix R (1992) The essential importance of appropriate definition and 3D-modeling of E-M-sources for clinical 3D-hyperthermia planning. 6th International Congress on Hyperthermic Oncology. Hyperthermic oncology 1992, Gerner EW (ed) Arizona Board of Regents vol 1 (Summary Papers), p 226

    Google Scholar 

  • Nishimura Y, Hiraoka M, Akuta K et al. (1992) Hyperthermia combined with radiation therapy for primarily unresectable and recurrent colorectal cancer. Int J Radial Oncol Biol Phys 23: 759–768

    Article  CAS  Google Scholar 

  • Nussbaum GH (ed) (1982) Physical aspects of hyperthermia. Medical Physics Monograph No. 8, Published for the American Association of Physicists in Medicine by the American Institute of Physics

    Google Scholar 

  • Oleson JR, Heusenkveld RS, Manning MR (1983) Hyperthermia by magnetic induction: clinical experience with concentric electrodes. Int J Radiat Oncol Biol Phys 9: 549–556

    Article  PubMed  CAS  Google Scholar 

  • Oleson JR, Sim DA, Conrad J, Fletcher AM, Gross EJ (1986) Results of a phase I regional hyperthermia device evaluation: microwave annular array versus radiofrequency induction coil. Int J Hyperthermia 2: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Oleson JR, Dewhirst MW, Harrelson JM, Leopold KA, Samulski TV, Tso CY (1989) Tumor temperature distributions predict hyperthermia effects. Int J Radiat Oncol Biol Phys 16: 559–570

    Article  PubMed  CAS  Google Scholar 

  • Oleson JR, Samulski TV, Leopold KA, Clegg ST, Dewhirst MW, Dodge RK, George SL (1993) Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25: 289–297

    Article  PubMed  CAS  Google Scholar 

  • Paulsen KD (1990) Calculation of power deposition patterns in hyperthermia. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 57–118

    Chapter  Google Scholar 

  • Paulsen KD, Ross MP (1990) Comparison of numerical calculations with phantom experiments and clinical measurements. Int J Hyperthermia 6: 333–349

    Article  PubMed  CAS  Google Scholar 

  • Paulsen KD, Lynch DR, Strohbehn JW (1988a) Threedimensional finite boundary and hybrid element solutions of the Maxwell equations for lossy dielectric media. IEEE Trans Microwave Theor Tech 36: 682–693

    Article  Google Scholar 

  • Paulsen KD, Strohbehn JW, Lynch DR (1988b) Theoretical electric field distributions produced by three types of regional hyperthermia devices in a three-dimensional homogeneous model of man. IEEE Trans Biomed Eng 35: 36–45

    Article  PubMed  CAS  Google Scholar 

  • Petrovich Z, Langholz B, Gibbs FA et al. (1989) Regional hyperthermia for advanced tumors: a clinical study of 353 patients. Int J Radiat Oncol Biol Phys 16: 601–607

    Article  PubMed  CAS  Google Scholar 

  • Pilepich MV, Myerson RJ, Emami BN, Perez CA, Leybovich L, von Gerichten D (1987) Regional hyperthermia: a feasibility analysis. Int J Hyperthermia 3: 347–351

    Article  PubMed  CAS  Google Scholar 

  • Raskmark P, Larsen T, Hornsleth SN (1994) Multiapplicator hyperthermia system description using scattering parameters. Int J Hyperthermia 10: 143–151

    Article  PubMed  CAS  Google Scholar 

  • Roemer RB (1990a) Thermal dosimetry. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer Berlin Heidelberg New York, pp 119–214

    Chapter  Google Scholar 

  • Roemer RB (1990b) The local tissue cooling coefficient: a unified approach to thermal washout and steady-state “perfusion” calculations. Int J Hyperthermia 6: 421–430

    Article  PubMed  CAS  Google Scholar 

  • Roemer RB, Fletcher AM, Cetas TC (1985) Obtaining local SAR and blood perfusion data from temperature measurements: steady state and transient techniques compared. Int J Radiat Oncol Biol Phys 11: 1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Kapp DS, Fessenden P, Lohrbach A (1987a) Heating deep seated eccentrically located tumors with an annular phased array system: a comparative clinical study using two annular array operating configurations. Int J Radiat Oncol Biol Phys 13: 83–94

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Fessenden P, Valdagni R, Kapp DS (1987b) Correlations of thermal washout rate, steady state temperatures, and tissue type in deep seated recurrent or metastatic tumors. Int J Radiat Oncol Biol Phys 13: 907–916

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Cox RS, Lyons BE, Fessenden P (1989) Heat loss and blood flow during hyperthermia in normal canine brain. II. Mathematical model. Int J Hyperthermia 5: 249–263

    Article  PubMed  CAS  Google Scholar 

  • Sapozink MD, Gibbs FA, Egger MJ, Stewart JR (1986) Regional hyperthermia for clinically advanced deepseated pelvic malignancy. Am J Clin Oncol 9: 162–169

    Article  PubMed  CAS  Google Scholar 

  • Sapozink MD, Gibbs FA, Gibbs P, Stewart JR (1988) Phase I evaluation of hyperthermia equipment: University of Utah Institutional Report. Int J Hyperthermia 4: 117–132

    Article  PubMed  CAS  Google Scholar 

  • Sapozink MD, Joszef G, Astrahan MA, Gibbs FA, Petrovich Z, Stewart JR (1990) Adjuvant pelvic hyperthermia in advanced cervical carcinoma. I. Feasibility, thermometry and device comparison. Int J Hyperthermia 6: 985–996

    Article  PubMed  CAS  Google Scholar 

  • Schneider CJ, van Dijk JDP (1991) Visualization by a matrix of light-emitting diodes of interference effects from a radiative four-applicator hyperthermia system. Int J Hyperthermia 7: 355–366

    Article  PubMed  CAS  Google Scholar 

  • Schneider CJ, De Leeuw AAC, van Dijk JDP (1992) Quantitative determination of SAR profiles from photographs of the light-emitting diode matrix. Int J Hyperthermia 8: 609–619

    Article  PubMed  CAS  Google Scholar 

  • Schneider CJ, van Dijk JDP, De Leeuw AAC, Wust P, Baumhoer W (1994) Quality assurance in various radiative hyperthermia systems applying a phantom with LED-matrix. Int J Hyperthermia 10: 143–151

    Article  Google Scholar 

  • Seebass M (1990) 3D-Computersimulation der interstitiellen Mikrowellen-Hyperthermie von Hirntumoren, Bericht Nr.CVR 1/90, Institut für Radiologie und Pathophysiologie, Deutsches Krebsforschungszentrum, Heidelberg

    Google Scholar 

  • Seebass M, Nadobny J, Wust P, Felix R (1992) 2D and 3D finite elements mesh generation for hyperthermia generation, 6th International Congress on Hyperthermic Oncology (ICHO), Hyperthermic Oncology 1992, vol 1 (Summary Papers). Gerner EW (ed) Avizona Board of Regents, p 229

    Google Scholar 

  • Seebass M, Schlegel W, Wust P, Nadobny J (1993a) Thermal modeling for brain tumors. In: Seegenschmiedt HM, Sauer R (eds) Interstitial and intracavitary hyperthermia in oncology. Springer, Berlin Heidelberg New York, pp 143–146

    Chapter  Google Scholar 

  • Seebass M, Sullivan D, Wust P, Deuflhard P, Felix R (1993b) The Berlin Extension of the Stanford hyperthermia treatment planning program, Konrad-Zuse-Zentrum, Preprint SC93-35

    Google Scholar 

  • Shimm DS, Cetas TC, Oleson JR, Gross ER, Buechler DN, Fletcher AM, Dean SE (1988) Regional hyperthermia for deep-seated malignancies using the BSD annular array. Int J Hyperthermia 4: 159–170

    Article  PubMed  CAS  Google Scholar 

  • Storm FK, Harrison WH, Elliott RS, Kaiser LR, Silberman AW, Morton DL (1981) Clinical radiofrequency hyperthermia by magnetic-loop induction. J Microw Power Electromagn Energy 16: 179–184

    CAS  Google Scholar 

  • Strohbehn JW, Paulsen KD, Lynch DR (1986) Use of the finite element Method in computerized thermal dosimetry. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth Herts England, pp 383–451

    Google Scholar 

  • Strohbehn JW, Curtis EH, Paulsen KD, Lynch DR (1989) Optimization of the absorbed power distribution for an annular phased array hyperthermia system. Int J Radiat Oncol Biol Phys 16: 589–599

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DM (1990) Three-dimensional computer simulation in deep regional hyperthermia using the FDTD method. IEEE Trans Microwave Theor Tech 38:204–211

    Article  Google Scholar 

  • Sullivan DM (1991) Mathematical methods for treatment planning in deep regional hyperthermia. IEEE Trans Microwave Theor Tech 39: 864–872

    Article  Google Scholar 

  • Sullivan DM, Borup DT, Gandhi OP (1987) Use of the finite-difference time-domain method in calculating EM absorption in human tissues. IEEE Biomed Eng 34: 148–157

    Article  CAS  Google Scholar 

  • Sullivan DM, Buechler D, Gibbs FA (1992) Comparison of measured and simulated data in an annular phased array using an inhomogeneous phantom. IEEE Trans Microwave Theor Tech 40: 600–604

    Article  Google Scholar 

  • Sullivan DM, Ben-Yosef R, Kapp DS (1993) The Stanford 3-D hyperthermia treatment planning-technical review and clinical summary. Int J Hyperthermia 9: 627–643

    Article  PubMed  CAS  Google Scholar 

  • Turner PF (1984a) Hyperthermia and inhomogeneous tissue effects using an annular phased array. IEEE Trans Microwave Theor Tech 32: 874–882

    Article  Google Scholar 

  • Turner PF (1984b) Regional hyperthermia with an annular phased array. IEEE Trans Biomed Eng 31: 106–114

    Article  PubMed  CAS  Google Scholar 

  • Turner PF, Schaefermeyer T (1989) BSD-2000 approach for deep local and regional hyperthermia: clinical utility. Strahlenther Onkol 165: 700–704

    PubMed  CAS  Google Scholar 

  • van der Ploeg SK, Broekmeyer-Reurink MP, Rietveld PJM, van Rhoon GC, Verloop-van’t Hof EM, van der Zee J (1993) Temperature distribution during deep hyperthermia. 13th ESHO Conference, June 16-19, Brussels, Book of Abstracts, p 56

    Google Scholar 

  • van Dijk JDP, Gonzalez-Gonzalez D, Blank LECM (1989) Deep local hyperthermia with a four aperture array system of large waveguide radiators. Results of simulation and clinical applicatoin. In: Sugahara T, Saito M (eds) Hyperthermic oncology 1988, vol I: Summary papers. Taylor & Francis, London, pp573-575

    Google Scholar 

  • van Rhoon GC, Visser AG, van den Berg PM, Reinhold HS (1988) Evaluation of ring capacitor plates for regional deep heating. Int J Hyperthermia 4: 133–142

    Article  PubMed  Google Scholar 

  • van Rhoon GC, Raskmark P, Hornsleth SN, van den Berg PM (1994) Radiofrequency ring applicator: energy distributions measured in the CDRH phantom. Med Biol Eng Comput

    Google Scholar 

  • Wang J, Takagi T (1991) Iterative determination of complex permittivity and SAR distribution of two-dimensional biologiclal body. Electronics Letters 27: 112–113

    Article  Google Scholar 

  • Waterman FM (1987) Measurement of perfusion in human tumors. In: Paliwal BR, Hetzel FW, Dewhirst MW (eds) Biological, physical and clinical aspects of hyperthermia. AAPM, Medical Physics Monograph 16: pp 182–207

    Google Scholar 

  • Waterman FM, Nerlinger RE, Moylan DJ, Leeper DB (1987) Response of human tumor blood flow to local hyperthermia. Int J Radiat Oncol Biol Phys 13: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Weiland T (1984) On the numerical solution of Maxwell’s equations and applications in the field of accelerator physics. Particle Accelerators 15: 245–292

    Google Scholar 

  • Weiland T (1986) Die Diskretisierung der Maxwell-Gleichungen. Phys Bl 42: 191–201

    Google Scholar 

  • Wong TZ, Mechling JA, Jones EL, Strohbehn JW (1988) Transient finite element analysis of thermal methods used to estimate SAR and blood flow in homogeneously and nonhomogeneously perfused tumor models. Int J Hyperthermia 4: 571–592

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Nadobny J, Fähling H, Riess H, Koch K, John W, Felix R (1990) Einflußfaktoren und Störeffekte bei der Steuerung von Leistungsverteilungen mit dem Hyperthermie-Ringsystem BSD-2000. I. Klinische Observablen und Phantommessungen. Strahlenther Onkol 166: 822–830

    PubMed  CAS  Google Scholar 

  • Wust P, Nadobny J, Felix R, Deuflhard P, Louis A, John W (1991a) Strategies for optimized application of annular-phased-array systems in clinical hyperthermia. Int J Hyperthermia 7: 157–173

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Nadobny J, Fähling H, Riess H, Koch K, John W, Felix R (1991b) Einflußfaktoren und Störeffekte bei der Steuerung von Leistungsverteilungen mit dem Hyperthermie-Ringsystem BSD-2000. II. Meßtechnische Analyse. Strahlenther Onkol 167: 172–180

    PubMed  CAS  Google Scholar 

  • Wust P, Nadobny J, Seebass M, Dohlus M, John W, Felix R (1993a) 3D-computation of E-fields by the Volume-surface integral equation (VSIE) method in comparison to the Finite-integration theory (FIT) method. IEEE Trans Biomed Eng 40: 745–759

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Nadobny J, Seebass M, Fähling H, Felix R (1993b) Potentials of radiofrequency hyperthermia: planning, optimization, technological development. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. University of Arizona

    Google Scholar 

  • Wust P, Fähling H, Jordan A, Nadobny J, Seebass M, Felix R (1994a) Development and testing of SAR-visualizing phantoms for quality control in RF hyperthermia. Int J Hyperthermia 10: 127–142

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Stahl H, Löffel J, Seebass M, Riess H, Felix R (1995a) Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia 11: 151–167

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Meier T, Seebass M, Fähling H, Petermann K, Felix R (1995b) Noninvasive prediction of SAR distributions with an electro-optical E field sensor. Int J Hyperthermia 11: 295–310

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Fähling H, Felix R, Rahman S, Issels RD, Feldmann H, van Rhoon G, van der Zee (1995c) Quality control of the SIGMA applicator using a lamp phantom: a four-center comparison. Int J Hyperthermia 11: in press

    Google Scholar 

  • Zwamborn APM, van den Berg PM (1991) A weak form of the Conjugate Gradient FFT method for 2-D TE scattering problems. IEEE Trans Microwave Theor Tech 39: 953–960

    Article  Google Scholar 

  • Zwamborn APM, van den Berg PM (1992) The threedimensional weak form of the Conjugate Gradient FFT method for solving scattering problems. IEEE Trans Microwave Theor Tech 40: 1757–1766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wust, P., Seebass, M., Nadobny, J., Felix, R. (1995). Electromagnetic Deep Heating Technology. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics