Skip to main content

Model Analysis of Carbon and Nitrogen Cycling in Picea and Fagus Forests

  • Chapter
Carbon and Nitrogen Cycling in European Forest Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 142))

Abstract

The CANIF project experimentally investigates the carbon and nitrogen flows in Picea abies and Fagus sylvatica forest stands. The experimental subprojects encompass a large diversity of research subjects ranging from root studies for uptake of nutrients, root turnover, the diversity and the role of mycorrhizae, soil fauna and microorganisms, soil organic matter dynamics, tree growth and nutrient relations to measurements of leaching fluxes. Only by putting all these different aspects together is an overview of the functioning of the ecosystem possible. Process-based models that incorporate the carbon, nutrients and water flows of the ecosystem are very appropriate to use for this integrative function. Their great advantage is that such models with site-specific input data for climate and deposition levels can highlight the major differences between sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aber JD, Federer CA (1992) A generalised, lumped-parameter model of photosynthesis, evatranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92:463–474

    Article  Google Scholar 

  • Aber JD, Ollinger SV, Federer CA, Reich PB, Goulden ML, Kicklighter DW, Melillo JM, Lathrop RG Jr (1995) Predicting the effects of climate change on water yield and forest production in the northeastern United States. Clim Res 5:207–222

    Article  Google Scholar 

  • Ă…gren GI, Bosatta E (1987) Theoretical analysis of the long-term dynamics of carbon and nitrogen in soils. Ecology 68: 1181–1189

    Article  Google Scholar 

  • Ă…gren GI, Bosatta E (1996) Theoretical ecosystem ecology — understanding element cycles. Cambridge University Press, Cambridge

    Google Scholar 

  • Alcamo J, Kreileman E (1996) Emission scenarios and global climate protection. Global Environ Change 6:305–334

    Article  Google Scholar 

  • Arp WJ, Van Mierlo JEM, Berendse F, Snijders W (1998) Interactions between elevated CO2, nitrogen and water. Effects on growth and water use of six perennial plant species. Plant Cell Environ 21:1–11

    Article  CAS  Google Scholar 

  • Barrett K, Berge E (eds) (1996) Transboundary air pollution in Europe. MSC-W Status Report 1996. EMEP/MSC-W, Report 1/96, Norwegian Meteorological Institute, Oslo

    Google Scholar 

  • Berendse F (1990) Organic matter accumulation and nitrogen mineralisation during secondary succession in heathland ecosystems. J Ecol 78:413–427

    Article  Google Scholar 

  • Berendse F (1994) Litter decomposability — a neglected component of plant fitness. J Ecol 82:187–190

    Article  Google Scholar 

  • Berendse F (1998) Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry 42:73–88

    Article  Google Scholar 

  • Berendse F, Lammerts EJ, Olff H (1998) Soil organic matter accumulation and its implications for nitrogen mineralisation and plant species composition during succession in coastal dune slacks. Plant Ecol137:71–78

    Article  Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII. Can J Bot 69: 1449–1456

    Article  Google Scholar 

  • Berg B, Berg MP, Bottner P, Box E, Breymeyer AI, Calvo de Anta R, Couteaux M-M, Escudero A, Gallardo A, Kratz W, Madeira M, Malkonen E, McClaugherty CA, Meentemeyer V, Virzo de Santo A, Piussi P, Remacle J (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: SOM relationships with climate and litter quality. Biogeochemistry 20: 127–159

    Google Scholar 

  • Berge E (ed) (1997) Transboundary air pollution in Europe. MSC-W Status Report 1997. EMEP/MSC-W, Report 1/97, Norwegian Meteorological Institute, Oslo

    Google Scholar 

  • Bergh J, McMurthie R, Linder S (1998) Climatic factors controlling the productivity of Norway spruce: a model-based analysis. For Ecol Manag 110(1–3):127–139

    Article  Google Scholar 

  • Bloemhof HS (1992) Simulatie van de productie en nutrientenhuishouding van wegbermvegetaties. Centre for Agro-Biological Research, Agricultural Research Department, Report, Wageningen, The Netherlands

    Google Scholar 

  • Bosatta E, Ă…gren GI (1991) Theoretical analysis of carbon and nutrient interactions in soils under energy-limited conditions. Soil Sci Soc Am J 55:728–733

    Article  CAS  Google Scholar 

  • Bosatta E, Berendse F (1984) Energy or nutrient regulation of decomposition: implications for the mineralisation-immobilisation response to perturbations. Soil Biol Biochem 16:63–67

    Article  CAS  Google Scholar 

  • Bossel H (1996) TREEDYN3 forest simulation model. Ecol Model 90:187–227

    Article  Google Scholar 

  • Cannell MGR (1989) Physiological basis of wood production: a review. Scand J For Res 4:459–490

    Article  Google Scholar 

  • Cannell MGR, Milne R, Sheppard LJ, Unsworth MH (1987) Radiation interception and productivity of willow. J Appl Ecol 24:261–278

    Article  Google Scholar 

  • Chapin FS, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–391

    Article  CAS  Google Scholar 

  • Cienciala E, Lindroth A, Cermak J, Hallgren, Kucera J (1992) Assessment of transpiration estimates for Picea abies trees during a growing season. Trees 6:121–127

    Article  Google Scholar 

  • Cienciala E, Lindroth A Cermák J, Hällgren JE, Kucera J (1994) The effects of water availability on transpiration, water potential and growth of Picea abies during a growing season. J Hydrol155:57–71

    Article  Google Scholar 

  • Del Arco JM, Escudero A, Garrido MV (1991) Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72:701–708

    Google Scholar 

  • De Vries W, Posch M, Kämäri J (1989) Simulation of the long-term soil response to acid deposition in various buffer ranges. Water Air Soil Pollut 48:349–390

    Article  Google Scholar 

  • De Vries W, Hoi A, Tjalma S, Voogd JCH (1990) Literatuurstudie naar voorraden en verblijftijden van elementen in bosecosystemen. Staring Centrum Report 94, Wageningen, The Netherlands

    Google Scholar 

  • De Vries W, Posch M, Reinds GJ, Kämäri J (1993) Critical loads and their exceedance on forest soils in Europe. The Winand Staring Centre for Integrated Land, Soil and Water Research, Agricultural Research Department Report 58, Wageningen, The Netherlands

    Google Scholar 

  • Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional stage. Can J For Res 17:829–834

    Article  Google Scholar 

  • Goudriaan J, Unsworth MH (1990) Implications of increasing carbon dioxide and climate change for agricultural productivity and water resources. In: Kimball BA, Rosenberg NJ, Allen LH (eds) Impact of carbon dioxide, trace gases, and climate change on global agriculture. American Society of Agronomy, Spec Edn No 53, Madison, Wisconsin, pp 111–130

    Google Scholar 

  • Goudriaan J, Van Laar HH, Van Keulen H, Louwerse W (1985) Photosynthesis, CO2 and plant production. In: Day W, Atkin RK (eds) Wheat growth and modeling. Plenum Publishing, New York, pp 107–122

    Google Scholar 

  • Goulden ML, Munger J W, Fan S-M, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271:1576–1578

    Article  CAS  Google Scholar 

  • Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary production. Funct Ecol10:551–561

    Article  Google Scholar 

  • Hoffman F (1995) FAGUS, a model for growth and development of beech. Ecol Model 83: 327–348

    Article  Google Scholar 

  • Ingestad T (1982) Relative addition rate and external concentration; driving variables used in plant nutrition research. Plant Cell Environ 5:443–453

    Article  CAS  Google Scholar 

  • Ingestad T, Agren GI (1995) Plant nutrition and growth: basic principles. Plant Soil 168-169: 15–20

    Article  CAS  Google Scholar 

  • Ingestad T, Lund AB (1986) Theory and techniques for steady state mineral nutrition and growth of plants. Scand J For Res 1:439–453

    Article  Google Scholar 

  • Ivens W, Klein Tank A, Kauppi P, Alcamo J (1989) Atmospheric deposition of sulphur, nitrogen and basic cations onto European forests: observations and model calculations. In: Kiimiiri J, Brakke DF, Jenkins A, Norton SA, Wright RF (eds) Regional acidification models. Springer, Berlin Heidelberg New York, pp 103–112

    Chapter  Google Scholar 

  • Jackson RB, Canadell J, Ehrlinger JR, Mooney HA, Sala OE, Schulze E-D (1996) A global analysis of root distribution for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Article  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil BioI Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kramer K (1996) Phenology and growth of European trees in relation to climate change. PhD Thesis Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • Kropff MJ (1993) Mechanisms of competition for water. In: Kropff MJ, Van Laar HH (eds) Modelling crop-weed interactions. CAB International, Wallingford, UK, pp 63–76

    Google Scholar 

  • Lindroth A, Grelle A, Moren A-S (1998) Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol 4:443–450

    Article  Google Scholar 

  • Lohammer T, Larsson S, Linder S, Falk SO (1980) FAST-simulation models of gaseous exchange in Scots pine. In: Person T (ed) Structure and function of Northern coniferous forests-an ecosystem study. Ecol Bull 32:505–524

    Google Scholar 

  • Long SP, Hutchin PR (1991) Primary production in grasslands and coniferous forests with climate change: an overview. Ecol Appl1:139–156

    Article  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266–275

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Voros marty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond B 281:277–294

    Article  Google Scholar 

  • Monteith JL (1994) Validity of the correlation between intercepted radiation and biomass. Agric For Meteorol68:213–220

    Article  Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Edward Arnold, London

    Google Scholar 

  • Myeni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, HöP (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • O’Connell AM (1990) Microbial decomposition (respiration) of litter in eucalypt forests of South-western Australia: an empirical model based on laboratory incubations. Soil Biol Biochem 22:153–160

    Article  Google Scholar 

  • Parton WJ, Coughenour MB, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner TB, Menaut J-C, Seastedt TR, Garcia Moya E, Kamnalrut A, Kinyamario JI, Hall DO (1996) Global grassland ecosystem modelling: development and test of ecosystem models for grassland systems. In: Breymeyer AI, Hall DO, Melillo JM, Agren GI (eds) Global change: effects on coniferous forests and grasslands. John Wiley, Chichester, pp 229–269

    Google Scholar 

  • Persson H (1983) The distribution and productivity of fine roots in boreal forests. Plant Soil 71:87–101

    Article  Google Scholar 

  • Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B III, Vörösmarty CJ (1991) Potential net primary productivity in South America: application of a global model. Ecol Appl 1:399–429

    Article  Google Scholar 

  • Rastetter EB, Shaver GR (1992) A model of multiple-element limitation for acclimating vegetation. Ecology 73:1157–1174

    Article  Google Scholar 

  • Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KI, Hobbie JE, Aber JD (1991) A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in C02, climate, and N deposition. Tree Physiol9:101–126

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Koike T, Gower ST, Schoettle AW (1995) Causes and consequences of variation in conifer leaf life-span. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, San Diego, pp 225–254

    Google Scholar 

  • Reich PB, Grigal DF, Aber JD, Gower ST (1997) Nitrogen mineralisation and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78:335–347

    Article  Google Scholar 

  • Running SW, Gower ST (1991) FOREST-BGC, A general model of forest ecosystem processes for regional applications. II Dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–160

    Article  PubMed  CAS  Google Scholar 

  • Ryan MG, Hunt ER Jr, McMurtrie RE, Agren GI, Aber JD, Friend AD, Rastetter EB, Pulliam WM, Raison RJ, Linder S (1996) Comparing models of ecosystem function for temperate conifer forests. I. Model description and validation. In: Breymeyer AI, Hall DO, Melillo JM, Agren GI (eds) Global change: effects on coniferous forests and grasslands. John Wiley, Chichester, pp 313–362

    Google Scholar 

  • Sands PJ (1996) Modelling canopy production. III. Canopy light-utilisation efficiency and its sensitivity to physiological and environmental variables. Aust J Plant Physiol 23: 103–114

    Article  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol 1:77–91

    Article  Google Scholar 

  • Schulze E-D, Heimann M (1998) Carbon and water exchange of terrestrial systems. In: Galloway J, Melillo JM (eds) Asian change in the context of global climate change. Cambridge University Press, Cambridge, pp 145–161

    Google Scholar 

  • Schulze E-D, Leuning R, Kelliher FM (1995) Environmental regulation of surface conductance for evaporation from vegetation. Vegetatio 121:79–87

    Article  Google Scholar 

  • Schulze E-D, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Luhker B, Mund M, Knohl A, Milyukova IM, Schulze W, Ziegler W, Varlagin AB, Sogachev AF, Valentini R, Dore S, Grigoriev S, Kolle O, Panfyorov MI, Tchebakova N, Vygodskaya NN (1999) Productivity offorests in the Eurosiberian boreal region and their potential to act as a carbon sink-a synthesis. Global Change Bioi (in press)

    Google Scholar 

  • Seyferth U (1998) Effects of soil temperature and moisture on carbon and nitrogen mineralisation in coniferous forests. Licentiate thesis no. 1. Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Thornley JHM, Johnson IR (1990) Plant and crop modelling-a mathematical approach to plant and crop physiology. Clarendon Press, Oxford

    Google Scholar 

  • Valentini R, Matteucci G, Dolman AI, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer Ch, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ăś, Berbigier P, Lousteau D, Gudmundsson I, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) The carbon sink strength of forests in Europe: novel results from the flux observation network. Nature 404:861–865

    Article  PubMed  CAS  Google Scholar 

  • Van Laar HH, Goudriaan J, Van Keulen H (1992) Simulation of crop growth for potential and water-limited production situations: as applied to spring wheat. CABO-DLO Wageningen, The Netherlands

    Google Scholar 

  • Van Oene H, Berendse F, De Kovel CGF (1999a) Model analysis of the effects of historic CO2 levels and nitrogen inputs on vegetation succession. Ecol Appl 9(3):920–935

    Google Scholar 

  • Van Oene H, Van Deursen EJM, Berendse F (1999b) Plant-herbivore interaction and its consequences for succession in wetland ecosystems: a modeling approach. Ecosystems 2:122–138

    Article  Google Scholar 

  • Van Praag HJ, Sougnez-Remy S, Weissen F, Carlette G (1988) Root turnover in a beech and a spruce stand of the Belgian Ardennes. Plant Soil 105:87-103

    Google Scholar 

  • Ward RC (1975) Principles of hydrology. McGraw-Hill, London

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Oene, H. et al. (2000). Model Analysis of Carbon and Nitrogen Cycling in Picea and Fagus Forests. In: Schulze, ED. (eds) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57219-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57219-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67239-5

  • Online ISBN: 978-3-642-57219-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics