Skip to main content

The Structures of Neuronal Nicotinic Receptors

  • Chapter
Neuronal Nicotinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 144))

Abstract

Nicotinic acetylcholine receptors (AChRs) from skeletal muscle and fish electric organs have the best characterized structural and functional properties of any neurotransmitter-gated ion channels. Subunit sequence homologies among families of receptors in the gene superfamily validate muscle AChRs as a model for the general structural features of glycine, γ-aminobutyric acid (GABA)-A, and serotonin 5-HT3 receptors that comprise this superfamily. The most elegant evidence for the structural homologies in this superfamily are experiments showing that it is possible to change the selectivity of the ion channel of a neuronal AChR from cations to anions by changing only three channel-lining amino acids to those characteristic of glycine and GABAA receptors (GALZI et al. 1992), and experiments showing that it is possible to form a chimera consisting of the extracellular domain of a neuronal AChR subunit and the remainder of a 5-HT3 receptor subunit and produce a receptor with the channel properties of a 5-HT3 receptor which is activated by ACh (EISELE et al. 1993). Actually, there are significant sequence differences between the subunits of the receptors in the superfamily, so in general it is not trivial to mix parts of them. Muscle AChRs are especially relevant as models for neuronal AChRs, to which they are most closely related by sequence homology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akabas M, Karlin A (1995) Identification of acetylcholine receptor channel-lining residues in the Ml segment of the α subunit. J Biochem 34:12496–12500

    Article  CAS  Google Scholar 

  • Akabas M, Kaufmann C, Archdeacon P, Karlin A (1994) Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the α subunit. Neuron 13:919–927

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque E, Alkondon M, Periera E, Castro N, Schrattenholz A, Barbosa T, Bonfante-Cabarcas R, Aracava Y, Eisenberg H, Maelicke A (1996) Properties of neuronal nicotinic receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280:1117–1136

    Google Scholar 

  • Albuquerque E, Periera E, Braga M, Alkondon M (1998) Contribution of nicotinic receptors to the function of synapses in the central nervous system: the action of choline as a selective agonist of α7 receptors. J Physiol Paris 92:309–316

    Article  PubMed  CAS  Google Scholar 

  • Alkondon M, Albuquerque E (1991) Initial characterization of the nicotinic acetylcholine receptors in rat hippocampal neurons. J Receptor Res 11:1101–1201

    Google Scholar 

  • Alkondon M, Periera E, Albuquerque E (1998) α-Bungarotoxin and methyllycaconi-tine-sensitive nicotinic receptors mediate fast synaptic transmission in interneurons of rat hippocampal slices. Brian Res 810:257–263

    Article  CAS  Google Scholar 

  • Alkondon M, Periera E, Eisenberg H, Albuquerque E (1999) Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. J Neuroscience 19:2693–2705

    CAS  Google Scholar 

  • Alkondon M, Rocha E, Maelicke A, Albuquerque E (1996) Diversity of nicotinic acetylcholine receptors in rat brain.V. α-Bungarotoxin-sensitive nicotinic receptors in olfactory bulb neurons and presynaptic modulation of glutamate release. J Pharmacol Exp Ther 278:1460–1471

    PubMed  CAS  Google Scholar 

  • Anand R, Bason L, Saedi M, Gerzanich V, Peng X, Lindstrom J (1993a) Reporter epitopes: a novel approach to examine transmembrane topology of integral membrane proteins applied to the cd subunit of the nicotinic acetylcholine receptor. Biochem 32:9975–9984

    Article  CAS  Google Scholar 

  • Anand R, Conroy WG, Schoepfer R, Whiting P, Lindstrom J (1991) Chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem 266:11192–11198

    PubMed  CAS  Google Scholar 

  • Anand R, Nelson M, Gerzanich V, Wells G, Lindstrom J (1998) Determinants of channel gating located in the N-terminal extracellular domain of nicotinic α7 receptor. J Pharmacol Exp Ther 287:469–479

    PubMed  CAS  Google Scholar 

  • Anand R, Peng X, Ballesta J, Lindstrom J (1993b) Pharmacological characterization of α-bungarotoxin sensitive AChRs immunoisolated from chick retina: contrasting properties of α7 and α8 subunit-containing subtypes. Mol Pharmacol 44:1046–1050

    PubMed  CAS  Google Scholar 

  • Anand R, Peng X, Lindstrom J (1993c) Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but nonidentical pharmacological properties suggesting that the native receptor is a heteromeric protein complex. FEBS Lett 327:241–246

    Article  PubMed  CAS  Google Scholar 

  • Anderson D, Blobel G, Tzartos S, Gullick W, Lindstrom J (1983) Transmembrane orientation of an early biosynthetic form of acetylcholine receptor δ subunit determined by proteolytic dissection in conjunction with monoclonal antibodies. J Neurosci 3:1773–1784

    PubMed  CAS  Google Scholar 

  • Apel E, Roberds S, Campbell K, Merlie J (1995) Rapsyn may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex. Neuron 15:115–126

    Article  PubMed  CAS  Google Scholar 

  • Aramakis V, Metherate R (1998) Nicotine selectively enhances NMDA receptormediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci 18:8485–8495

    PubMed  CAS  Google Scholar 

  • Baltaglioli E, Gotti C, Terzano S, Flora A, Clementi F, Fornasari D (1998) Expression and transcriptional regulation of the human α3 neuronal nicotinic receptor subunit in T lymphocyte cell lines. J Neurochem 71:1261–1270

    Article  Google Scholar 

  • Bargmann C (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033

    Article  PubMed  CAS  Google Scholar 

  • Benowitz N (1996) Pharmacology of nicotine addiction and therapeutics. Ann Rev Pharmacol Toxicol 36:597–613

    Article  CAS  Google Scholar 

  • Berger F, Gage F, Vjayaraghavan S (1998) Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. J Neurosci 18:6871–6881

    PubMed  CAS  Google Scholar 

  • Beroukhim R, Unwin N (1995) Three dimensional location of the main immunogenic region of the acetylcholine receptor. Neuron 15:323–331

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Ballivet M, Gomez M, Bertrand S, Phannavong B, Gundelfinger E (1994) Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila subunits. Euro J Neurosci 6:869–875

    Article  CAS  Google Scholar 

  • Bertrand S, Devillers-Thiery A, Palma E, Buisson B, Edelstein S, Corringer PJ, Changeux JP, Bertrand D (1997) Paradoxical allosteric effects of competitive inhibitors on neuronal α7 nicotinic receptor mutants. Neuroreport 8:3591–3596

    Article  PubMed  CAS  Google Scholar 

  • Bertrand D, Devillers-Thiery A, Revah F, Galzi JL, Hussy N, Mulle C, Bertrand S, Ballivet M, Changeux JP (1992) Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc Acad Sci USA 89:1261–1265

    Article  CAS  Google Scholar 

  • Bertrand D, Galzi JL, Devillers-Thiery A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proc Natl Acad Sci USA 90:6971–6975

    Article  PubMed  CAS  Google Scholar 

  • Birtwistle J (1996) The role of cigarettes and nicotine in the onset and treatment of ulcerative colitis. Postgrad Med J 72:714–718

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Merile J (1988) Native folding of an acetylcholine receptor α subunit expressed in the absence of other receptor subunits. J Biol Chem 262:4367–376

    Google Scholar 

  • Blount P, Merile JP (1989) Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron 3:349–357

    Article  PubMed  CAS  Google Scholar 

  • Blount P, Smith M, Merile J (1990) Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts. J Cell Biol 111: 2601–2611

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal E, Conroy B, Romano S, Kassner P, Berg D (1997) Detection of functional nicotinic receptors blocked by a-bungarotoxin on PC12 cells and dependence of their expression on post-translational events. J Neurosci 17:6094–6104

    PubMed  CAS  Google Scholar 

  • Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S, Patrick J (1986) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor a subunit, Nature 319:368–374

    Article  PubMed  CAS  Google Scholar 

  • Boulter J, O’Shea-Greenfield A, Duvoisin R, Connelly J, Wada E, Jensen A, Gardner P, Ballivet M, Deneris E, McKinnon D, Heinemann S, Patrick J (1990) α3, α5, α4: Three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem 265:4472–4482

    PubMed  CAS  Google Scholar 

  • Briggs C, McKenna D, Monteggia L, Tourna E, Roch JM, Arneric S, Gopalakrishman M, Sullivan J (1999) Gain of function mutation of the α7 nicotinic receptor: distinct pharmacology of the human of the human α7 V274T variant. Eur J Pharmacol 366:301–308

    Article  PubMed  CAS  Google Scholar 

  • Britto L, Hamassaki-Britto D, Ferro E, Keyser K, Karten H, Lindstrom J (1992) Neurons of the chick brain and retina expressing both α-bungarotoxin-sensitive and α-bungarotoxin insensitive nicotinic acetylcholine receptors: an immunohistochemical analysis. Brain Res 590:193–200

    Article  PubMed  CAS  Google Scholar 

  • Britto L, Keyser K, Lindstrom J, Karten H (1992b) Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and dien-cephalon of the chick (Gallus gallus). J Comp Neurol 317:325–340

    Article  PubMed  CAS  Google Scholar 

  • Britto LR, Torrao AS, Hamassaki-Britto DE, Mpodozis J, Keyser KT, Lindstrom JM, Karten HJ (1994) Effects of retinal lesions upon the distribution of nicotinic acetylcholine receptor subunits in the chick visual system. J Comp Neurol 350:473–484

    Article  PubMed  CAS  Google Scholar 

  • Burns A, Benson D, Howard M, Margiotta J (1997) Chick ciliary ganglion neurons contain transcripts coding for acetylcholine receptor-associated protein at synapses (rapsyn). J Neurosci 17:5016–5026

    PubMed  CAS  Google Scholar 

  • Campos-Caro A, Smillie F, Dominquez Del Toro E, Rovira J, Vicente-Agullo F, Chapuli J, Juiz J, Sala S, Sala F, Ballesta J, Criado M (1997) Neuronal nicotinic receptors on bovine chromaffin cells: cloning, expression, and genomic organization of receptor subunits. J Neurochem 68:488–497

    Article  PubMed  CAS  Google Scholar 

  • Cartier G, Yashikami D, Gray W, Luo S, Olivera B, McIntosh J (1996) A new a conotoxin which targets α3β2 nicotinic acetylcholine receptors. J Biol Chem 271:7522–7528

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Quik M (1993) A role for the nicotinic α-bungarotoxin receptor in neurite outgrowth in PC12 cells. Neurosci 56:441–451

    Article  CAS  Google Scholar 

  • Changeux JP (1990) Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. 1988-1989 Fidia Res Found: Neurosci Award Lect 4:21–168

    Google Scholar 

  • Chen D, Dang H, Patrick J (1998) Contributions of N-linked glycosylation to the expression of a functional α7-nicotinic receptor in Xenopus oocytes. J Neurochem 70:349–357

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Patrick J (1997) The α-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the α7 subunit. J Biol Chem 272:24024–24029

    Article  PubMed  CAS  Google Scholar 

  • Chini B, Clementi F, Hukovic N, Sher E (1992) Neuronal type α-bungarotoxin receptors and the α5 nicotinic receptor subunit gene are expressed in neuronal and nonneuronal human cell lines. Pro Natl Acad Sci USA 89:1572–1576

    Article  CAS  Google Scholar 

  • Clarke P (1995) Nicotinic receptors and cholinergic transmission in the central nervous system. Ann NY Acad Sci 757:73–83

    Article  PubMed  CAS  Google Scholar 

  • Clarke P, Schwartz R, Paul S, Pert C, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [1251] α-bungarotoxin. J Neurosci 5:1307–1315

    PubMed  CAS  Google Scholar 

  • Codignola A, Tarroni P, Cattaneo M, Vicentini L, Clementi F, Sher E (1994) Serotonin release and cell proliferation are under control of α-bungarotoxin-sensitive nicotinic receptors in small-cell lung carcinoma cell lines. FEBS Lett 342:286–290

    Article  PubMed  CAS  Google Scholar 

  • Coggan J, Paysan J, Conroy W, Berg D (1997) Direct recording of nicotinic responses in presynaptic nerve terminals. J Neurosci 17:5798–5806

    PubMed  CAS  Google Scholar 

  • Collins A, Marks M (1996) Are nicotinic receptors activated or inhibited following chronic nicotine treatment?. Drug Devel Res 38:231–242

    Article  CAS  Google Scholar 

  • Conroy W, Berg D (1995) Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. J Biol Chem 270:4424–431

    Article  PubMed  CAS  Google Scholar 

  • Conroy WG, Saedi M, Lindstrom J (1990) TE671 cells express an abundance of a partially mature acetylcholine receptor α subunit which has characteristics of an assembly intermediate. J Biol Chem 265:21642–21651

    PubMed  CAS  Google Scholar 

  • Conroy W, Vernallis A, Berg D (1992) The α5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron 9:1–20

    Article  Google Scholar 

  • Conti-Tronconi B, Dunn S, Barnard E, Dolly J, Lai F, Ray N, Raftery M (1985) Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins. Proc Natl Acad Sci USA 82:5208–5212

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi B, Gotti G, Hunkapiller M, Raftery M (1982) Mammalian muscle acetylcholine receptor: a supramolecular structure formed by four related proteins. Science 218:1227–1229

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi B, Tzartos S, Lindstrom J (1981) Monoclonal antibodies as probes of acetylcholine receptor structure. II: Binding to native receptor. Biochem 20:2181–2191

    Article  CAS  Google Scholar 

  • Cooper E, Couturier S, Ballivet M (1991) Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 350:235–238

    Article  PubMed  CAS  Google Scholar 

  • Cooper S, Millar N (1997) Host cell-specific folding and assembly of the neuronal nicotinic acetylcholine receptor α7 subunit. J Neurochem 68:2140–2151

    Article  PubMed  CAS  Google Scholar 

  • Cooper S, Millar N (1998) Host cell-specific folding of the neuronal nicotinic receptor α8 subunit. J Neurochem 70:2585–2593

    Article  PubMed  CAS  Google Scholar 

  • Corringer PV, Bertrand S, Bohler S, Edelstein S, Changeux JP, Bertrand D (1998) Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic receptors. J Neurosci 18:648–657

    PubMed  CAS  Google Scholar 

  • Corringer PV, Galzi VL, Eisele JL, Bertrand S, Changeux VP, Bertrand D (1995) Identification of a new component of the agonist binding site of the nicotinic α7 homoligomeric receptor. J Biol Chem 270:11, 749, 752

    Google Scholar 

  • Couturier S, Bertrand D, Matter J, Hernandez M, Bertrand S, Miller N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homomeric channel blocked by α-bungarotoxin. Neuron 5:847–856

    Article  PubMed  CAS  Google Scholar 

  • Criado M, Hochschwender S, Sarin V, Fox JL, Lindstrom J (1985) Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits. Proc Natl Acad Sci USA 82:2004–2008

    Article  PubMed  CAS  Google Scholar 

  • Criado M, Witzemann V, Koenen M, Sakmann B (1988) Nucleotide sequence of rat muscle acetylcholine receptor ε subunit. Nuc Acids Res 16:10920

    Article  CAS  Google Scholar 

  • Cuevas J, Berg D (1998) Mammalian nicotinic receptors with ε7 subunits that slowly desensitize and rapidly recover from abungarotoxin blockage. J Neurotics 18:10,335–10,344

    CAS  Google Scholar 

  • Czajkowski C, Karlin A (1995) Structure of the nicotinic receptor acetylcholine binding site. J Biol Chem 270:3160–3164

    Article  PubMed  CAS  Google Scholar 

  • Dani J, Heinermann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908

    Article  PubMed  CAS  Google Scholar 

  • Das M, Lindstrom J (1989) The main immunogenic region of the nicotinic acetylcholine receptor: interaction of monoclonal antibodies with synthetic peptides. Biochem Biophys Res Commun 165:865–871

    Article  PubMed  CAS  Google Scholar 

  • Das M, Lindstrom J (1991) Epitope mapping of antibodies to acetylcholine receptors. Biochem 30:2470–2477

    Article  CAS  Google Scholar 

  • Davies P, Pistis M, Hanna M, Peters J, Lambert J, Holes T, Kukness E (1999) The 5-HT3B subunit is a major determinant of serotoxin-receptor function. Nature 397:359–363

    Article  PubMed  CAS  Google Scholar 

  • DelTorro E, Juiz J, Peng X, Lindstrom J, Criado M (1994) Immunocytochemical localization of the ε7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system. J Comp Neurol 349:325–342

    Article  Google Scholar 

  • DelToro E, Juiz J, Simillie F, Lindstrom J, Criado M (1997) Expression of ε7 neuronal nicotinic receptors during postnatal development of the rat cerebellum. Devel Brain Res 98:125–133

    Article  CAS  Google Scholar 

  • Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S (1989) α3: A new member of nicotinic acetylcholine receptor gene family is expressed in brain. J Biol Chem 264:6268–6272

    PubMed  CAS  Google Scholar 

  • Deneris E, Connolly J, Boulter J, Wada E, Wada K, Swanson L, Patrick J, Heinemann S (1988) Primary structure and expression of ε2: A novel subunit of neuronal nicotinic receptors. Neuron 1:45–54

    Article  PubMed  CAS  Google Scholar 

  • Dursun S, Ravely M, Bird R, Stirton F (1994) Long lasting improvement of Tourette’s syndrome with transdermal nicotine. Lancet 344:1577

    Article  PubMed  CAS  Google Scholar 

  • Duvoisin R, Deneris E, Patrick J, Heinemann S (1989) The functional diversity of the neuronal nicotinic receptors is increased by a novel subunit: β4. Neuron 3:487–496

    Article  PubMed  CAS  Google Scholar 

  • Eilers H, Schaeffer E, Bickler P, Forsayeth J (1997) Functional deactivation of the major neuronal nicotinic receptor caused by nicotine and a protein kinase C-dependent mechanism. Mol Pharmacol 52:1105–1112

    PubMed  CAS  Google Scholar 

  • Eisele JL, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP, Bertrand D (1993) Chimeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366:479–483

    Article  PubMed  CAS  Google Scholar 

  • Elgoyhen A, Johnson D, Boulter J, Vetter D, Heinemann S (1994) α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    Article  PubMed  CAS  Google Scholar 

  • Engel A (1994) The neuromuscular junction, in: A. Engel and C. Franzini-Armstrong (eds) Myology, 2d edn, McGraw Hill, New York 1:261–302

    Google Scholar 

  • Engel A, Ohno K, Wang HL, Milone M, Sine S (1998) The molecular basis of congenital myasthenie syndromes: mutations in the acetylcholine receptor. Neuroscientist 4:185–194

    Article  CAS  Google Scholar 

  • Fairclough R, Twaddle G, Gudipati E, Lin M, Richman D (1998a) Differential surface accessibility of α (187-199) in the Torpedo acetylcholine receptor a subunits. J Mol Biol 282:317–330

    Article  PubMed  CAS  Google Scholar 

  • Fairclough R, Twaddle G, Gudipati E, Stone R, Richman D, Berkwell D, Josephs R (1998b) Mapping the mAb 33C epitope to α (187-199) of the Torpedo acetylcholine receptor on the three dimensional model. J Mol Biol 282:301–315

    Article  PubMed  CAS  Google Scholar 

  • Fenster C, Beckman M, Parker, Sheffield J, Whiteworth E, Quick M, Lester R (1999) Regulation of α4β2 nicotinic receptor desensitization by calcium and protein kinase C. Mol Pharmacol 55:432–443

    PubMed  CAS  Google Scholar 

  • Fenster C, Rains M, Noerager B, Quick M, Lester R (1997) Influence of subunit composition on desensitization of neuronal acetylcholine receptors by low concentrations of nicotine. J Neurosci 17:5747–5759

    PubMed  CAS  Google Scholar 

  • Figl A, Viseshakul N, Shafaee N, Forsayeth J, Cohen B (1998) Two mutations linked to neuronal frontal lobe epilepsy cause use-dependent potentiation of the nicotinic ACh response. J Physiol 513.3:655–670

    Article  Google Scholar 

  • Fletcher S, Lindstrom J, McKernan R, Barnes N (1998) Evidence that porcine native 5-HT3 receptors do not contain nicotinic acetylcholine receptor subunits. Neuropharmacology 37:397–399

    Article  PubMed  CAS  Google Scholar 

  • Flores C, Rogers S, Pabreza L, Wolfe B, Kellar K (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is upregulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  • Forsayeth J, Kobrin E (1997) Formation of oligomers containing the β3 and β4 subunits of the rat nicotinic receptor. J Neurosci 17:1531–1538

    PubMed  CAS  Google Scholar 

  • Frazier C, Buhler A, Weiner J, Dunwiddie T (1998) Synaptic potentials mediated via α-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci 18:8228–8235

    PubMed  CAS  Google Scholar 

  • Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A et al. (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 94:587–592

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Hall M, Adler L, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    Article  PubMed  CAS  Google Scholar 

  • Fuchs P (1996) Synaptic transmission at vertebrate hair cells. Neurobiology 6:514–519

    CAS  Google Scholar 

  • Fucile S, Barabino B, Palma E, Grassi F, Limatola, Mileo A, Alema S, Ballivet M, Eusebi F (1997) o6 subunit forms functional α3α4α5 nAChRs in transfected human cells. NeuroReport 8:2433–2436

    Article  PubMed  CAS  Google Scholar 

  • Fucile S, Matter JM, Erkman L, Ragozzino D, Barabino B, Grassi F, Alema S, Ballivet M, Eusebi F (1998) The neuronal α6 subunit forms functional heteromeric acetylcholine receptors in human transfected cells. Eur J Neurosci 10:172–178

    Article  PubMed  CAS  Google Scholar 

  • Furness J, Costa M (1987) The enteric nervous system. Churchill Livingstone, New York

    Google Scholar 

  • Galzi JL, Bertrand S, Corringer PJ, Changeux JP, Bertrand D (1996) Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. EMBO J 15:5824–5832

    PubMed  CAS  Google Scholar 

  • Galzi JL, Bertrand D, Devillers-Thiery A, Revah F, Bertrand S, Changeux JP (1991) Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by site directed mutagenesis. FEBS Letters 294:198–202

    Article  PubMed  CAS  Google Scholar 

  • Galzi JL, Devillers-Thiery A, Hussy N, Bertrand S, Changeux JP, Bertrand D (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–505

    Article  PubMed  CAS  Google Scholar 

  • Galzi JL, Revah F, Black D, Goeldner M, Hirth C, Changeux JP (1990) Identification of a novel amino acid a tyrosine 93 within the cholinergic ligands-binding sites of the acetylcholine receptor by photoaffinity labeling. J Biol Chem 265:10430–10437

    PubMed  CAS  Google Scholar 

  • Galzi VL, Changeux VP (1994) Neurotransmitter-gated ion channels as unconventional allosteric proteins. Curr Opin Struct Biol 4:554–565

    Article  CAS  Google Scholar 

  • Garcia-Guzman M, Sala F, Sala S, Campos-Caro A, Criado M (1994) Role of two acetylcholine receptor subunit domains in homomer formation and intersubunit recognition, are revealed by α3 and α7 subunit chimeras. J Biochem 33: 15198–15203

    Article  CAS  Google Scholar 

  • Gerzanich V, Anand R, Lindstrom J (1994) Homomers of aS subunits of nicotinic receptors functionally expressed in Xenopus oocytes exhibit similar channel but contrasting binding site properties compared to α7 homomers. Mol Pharmacol 45:212–220

    PubMed  CAS  Google Scholar 

  • Gerzanich V, Kuryatov A, Anand R, Lindstrom J (1997) “Orphan” a6 nicotinic AChR subunit can form a functional heteromeric acetylcholine receptor. Mol Pharmacol 51:320–327

    PubMed  CAS  Google Scholar 

  • Gerzanich V, Wang F, Kuryatov A, Lindstrom J (1998) α5 subunit alters desensitization, pharmacology, and Ca2+ modulation of human neuronal α3 nicotinic receptors, J Pharmacol Exp Ther 266:311–320

    Google Scholar 

  • Goldman D, Deneris E, Luyten W, Kochhar A, Patrick J, Heinemann S (1987) Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 48:965–973

    Article  PubMed  CAS  Google Scholar 

  • Goldner F, Dineley K, Patrick J (1997) Immunohistochemical localization of the nicotinic acetylcholine receptor subunit α6 to dopominergic neurons in the substantia nigra and ventral tegmental area. NeuroReport 8:2739–2742

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan M, Buisson B, Tourna E, Giordano T, Campbell J, Hu I, Donnelly-Roberts D, Arneric S, Bertrand D, Sullivan J (1995) Stable expression and pharmacological properties of the human α7 nicotinic acetylcholine receptor. Eur J Pharmacol 290:237–246

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan M, Monteggia L, Anderson D, Molinari E, Piattoni-Kaplan M, Donnelly-Roberts D, Arneric S, Sullivan J (1996) Stable expression, pharmacological properties and regulation of the human neuronal nicotinic acetylcholine α4β2 receptor. J Pharmacol Exp Ther 276:289–297

    PubMed  CAS  Google Scholar 

  • Gotti C, Briscini L, Verderio C, Oortgiesen M, Balestra B, Clementi F (1995) Native nicotinic acetylcholine receptors in human Imr32 neuroblastoma cells: functional, immunological, and pharmacological properties. Eur J Neurosci 7:2083–2092

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Hanke W, Maury K, Moretti M, Ballivet M, Clementi F, Bertrand D (1994) Pharmacological and biophysical properties of α7 and α7/8 α-bungarotoxin receptor subtypes immunopurified from the chick optic lobe. Eur J Neurosci 6:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Moretti M, Maggi R, Langhi R, Hanke W, Klinke N, Clementi F (1997) α7 and α8 nicotinic receptor subtypes immunopurified from chick retina have different immunological, pharmacological and functional properties. Eur J Neurosci 9:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Grando S, Horton R (1997) The keratinocyte cholinergic system with acetylcholine as an epidermal cytotransmitter. Current Opin Dermatol 4:262–268

    Google Scholar 

  • Gray R, Rajan A, Radcliffe K, Yakehiro M, Dani J (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    Article  PubMed  CAS  Google Scholar 

  • Green L, Sytkowski A, Vogel Z, Nirenberg M (1973) α-bungarotoxin used as a probe for acetylcholine receptors of cultured neurons. Nature 243:163–166

    Article  Google Scholar 

  • Green J, Thomas G, Rhodes J, Evans B, Russell M, Feyerabend C, Fuller G, Newcombe R, Sandborn W (1997) Pharmacokinetics of nicotine carbomer enemas: a new treatment for ulcerative colitis. Clin Pharmacol Ther 61:340–348

    Article  PubMed  CAS  Google Scholar 

  • Green W, Wanamaker C (1998) Formation of the nicotinic acetylcholine receptor binding sites. J Neurosci 18:5555–5564

    PubMed  CAS  Google Scholar 

  • Groot-Kormelink P, Luyten W, Colquhoun D, Silviotti L (1998) A reporter mutation approach shows incorporation of the “orphan” subunit β3 into a functional nicotinic receptor. J Biol Chem 273:15317–15320

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Camacho P, Gardner P, Hall Z (1991a) Identification of two amino acid residues in the ε subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells. Neuron 6:879–887

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Forsayeth J, Verrall S, Yu X, Hall Z (1991b) Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. J Cell Biol 114:799–807

    Article  PubMed  CAS  Google Scholar 

  • Haghigi A, Cooper E (1998) Neuronal nicotinic acetylcholine receptors are blocked by intracellular spermine in a voltage-dependent manner. J Neurosci 18:4050–4062

    Google Scholar 

  • Heinemann S, Boulter J, Connelly J, Deneris E, Duvoisin R, Hartley M, Hermans-Borgmeyer I, Hollmann m, O’Shea-Greenfield A, Papke R, Rogers S, Patrick J (1991) The nicotinic receptor genes. Clin Neuropharmacol 14:S45–S61

    Article  PubMed  Google Scholar 

  • Hamassaki-Britto D, Brzozowska-Prechtl A, Karten H, Lindstrom J (1994a) Bipolar cells of the chick retina containing α-bungarotoxin-sensitive nicotinic acetylcholine receptors. Vis Neurosci 11:63–70

    Article  PubMed  CAS  Google Scholar 

  • Hamassaki-Britto D, Gardino P, Hokoc J, Keyser K, Karten H, Lindstrom J, Britto L (1994b) Differential development of α-bungarotoxin and α bungaraotoxin-insensitive nicotinic acetylcholine receptors in the retina. J Comp Neurol 347: 161–170

    Article  PubMed  CAS  Google Scholar 

  • Helekar S, Char D, Neff S, Patrick J (1994) Prolyl-isomerase requirement for the expression of functional homo-oligomeric ligand-gated ion channels. Neuron 12:179–189

    Article  PubMed  CAS  Google Scholar 

  • Holladay M, Dart M, Lynch J (1997) Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J Med Chem 40:4169–4194

    Article  PubMed  CAS  Google Scholar 

  • Henley J, Lindstrom J, Oswald R (1986a) Acetylcholine receptor synthesis in retina and transport to the optic tectum in goldfish. Science 232:1627–1629

    Article  PubMed  CAS  Google Scholar 

  • Henley J, Lindstrom J, Oswald R (1998) Interaction of monoclonal antibodies with α-bungarotoxin and (-)-nicotine binding sites in goldfish brain. J Biol Chem 263(20):9686–9691

    Google Scholar 

  • Henley J, Mynlieff M, Lindstrom J, Oswald R (1986b) Interaction of monoclonal antibodies to electroplaque acetylcholine receptors with the a-bungarotoxin binding site of goldfish brain. Brain Res 364:405–408

    Article  PubMed  CAS  Google Scholar 

  • Horch H, Sargent P (1995) Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J Neurosci 15:7778–7795

    PubMed  CAS  Google Scholar 

  • Hsu Y, Amin J, Weiss D, Wecker L (1996) Sustained nicotine exposure differentially affects α3β2 and α4β2 neuronal nicotinic receptors expressed in Xenopus oocytes. J Neurochem 66:667–674

    Article  PubMed  CAS  Google Scholar 

  • Hsu, YN, Edwards D, Wecker L (1997) Nicotine enhances the cyclic AMP-dependent protein kinase-mediated phosphorylation of αA subunits of neuronal nicotinic receptors. J Neurochem 69:2427–2431

    Article  PubMed  CAS  Google Scholar 

  • Huganir R, Greengard P (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 5:555–567

    Article  PubMed  CAS  Google Scholar 

  • Hume R, Dingledine R, Heinemann S (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253:1028–1031

    Article  PubMed  CAS  Google Scholar 

  • Jackson M (1989) Perfection of a synaptic receptor: kinetics and energetics of the acetylcholine receptor. Proc Natl Acad Sci USA 86:2199–2203

    Article  PubMed  CAS  Google Scholar 

  • Jacob M, Berg D, Lindstrom J (1984) A shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chick ciliary ganglion neurons. Proc Natl Acad Sci USA 81:3223–32227

    Article  PubMed  CAS  Google Scholar 

  • Jacob M, Lindstrom J, Berg D (1986) Surface and intracellular distribution of a putative neuronal nicotinic acetylcholine receptor. J. Cell Biol 103:205–214

    Article  CAS  Google Scholar 

  • Kaneko W, Britto L, Lindstrom J, Karten H (1998) Distribution of the α7 nicotinic acetylcholine receptor in the developing chick cerebellum. Devel Brain Res 105:141–145

    Article  CAS  Google Scholar 

  • Kao P, Dwork A, Kaldany R, Silver M, Wideman J, Stein S, Karlin A (1984) Identification of the α subunit half cysteine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem 256:11662–11665

    Google Scholar 

  • Karlin A, Akabas M (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Kassner PD, Conroy WG, Berg DK (1998) Organizing effects of rapsyn on neuronal nicotinic receptors. Mol Cell Neurosci 10:258–270

    Article  CAS  Google Scholar 

  • Ke L, Eisenhour C, Bencherif M, Lukas R (1998) Effects of chronic nicotine treatment on expression of diverse nicotinic acetylcholine receptor subtypes, I. Dose-and time-dependent effects of nicotine treatment. J Pharmacol Exp Ther 286:825–840

    PubMed  CAS  Google Scholar 

  • Kehoe J, Mclntosh J (1998) Two distinct nicotinic receptors, one pharmacologically similar to the vertebrate a7-containing receptor, mediate a currents in Aplysia neurons. J Neurosci 18:8198–8213

    PubMed  CAS  Google Scholar 

  • Keyser K, Britto L, Schoepfer R, Whiting P, Cooper J, Conroy W, Brozozowska-Prechtl A, Karten H, Lindstrom J (1993) Three subtypes of α-bungarotoxin-sensitive nicotinic acetylcholine receptors are expressed in chick retina. J Neurosci 13:442–454

    PubMed  CAS  Google Scholar 

  • Keyser KT, Hughes TE, Whiting PJ, Lindstrom JM, Karten HJ (1988) Cholinoceptive neurons in the nicotinic acetylcholine receptor. Vis Neurosci 1:249–266

    Article  Google Scholar 

  • Khiroug L, Sokolova E, Giniatullin R, Afzalov R, Nistri A (1998) Recovery from desensitization of neuronal nicotinic acetylcholine receptors of rat chromaffin cells is modulated by intracellular calcium through distinct second messengers. J Neurosci 18:2458–2466

    PubMed  CAS  Google Scholar 

  • Kihara T, Shimohama S, Sawada H, Kimera J, Kume T, Kochiyama H, Maeda T, Akaike A (1997) Nicotinic receptor stimulation protects neurons against β-amyloid toxicity. Ann Neurol 42:159–163

    Article  PubMed  CAS  Google Scholar 

  • Kihara T, Shimohama S, Urushitani M, Sawada H, Kimura J, Kume T, Maeda T, Akaike A (1998) Stimulation of α4β2 nicotinic acetylcholine receptors inhibits α-amyloid toxicity. Brain Res 792:331–334

    Article  PubMed  CAS  Google Scholar 

  • Kirchgessner A, Liu MT (1998) Immunohistochemical localization of nicotinic acetylcholine receptors in the guinea pig bowel and pancreas. J Comp Neurol 390:497–514

    Article  PubMed  CAS  Google Scholar 

  • Krause R, Buisson B, Bertrand S, Corringer PJ, Galzi JL, Changeux JP, Bertrand D (1998) Ivermectin: a positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Pharmacol 53:283–294

    CAS  Google Scholar 

  • Kreinkamp HJ, Maeda R, Sine S, Taylor P (1995) Intersubunit contracts governing assembly of the mammalian nicotinic acetylcholine receptor. Neuron 14:635–644

    Article  Google Scholar 

  • Kulak J, Nguyen T, Olivera B, Mclntosh J (1997) α conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. J Nuerosci 17:5263–5270

    CAS  Google Scholar 

  • Kuryatov A, Gerzanich V, Nelson M, Olale F, Lindstrom J (1997) Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human α4α2 nicotinic acetylcholine receptors. J Neurosci 17:9035–9047

    PubMed  CAS  Google Scholar 

  • Laver W, Air G, Webster R, Smith-Gill S (1990) Epitopes on protein antigens: misconceptions and realities. Cell 61:553–556

    Article  PubMed  CAS  Google Scholar 

  • Lena C, Changeux JP (1997a) Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr Opin Neurobiol 7:674–682

    Article  PubMed  CAS  Google Scholar 

  • Lena C, Changeux JP (1997b) Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus. J Neurosci 17:576–586

    PubMed  CAS  Google Scholar 

  • LeNovere N, Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of a multigene family in excitable cells. J Mol Evol 40: 155–172

    Article  CAS  Google Scholar 

  • LeNovere N, Zoli M, Changeux JP (1996) Neuronal nicotinic receptor α6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 8:2428–2439

    Article  CAS  Google Scholar 

  • Lewis T, Harkness P, Sivilotti L, Colquhoun D, Millar D (1997) The ion channel properties of a rat recombinant neuronal nicotinic receptor are dependent on the host cell type. J Physiol 505:299–306

    Article  PubMed  CAS  Google Scholar 

  • Li X, Rainne D, McCarley R, Greene R (1998) Presynaptic receptors facilitate monoaminergic transmission. J Neurosci 18:1904–1912

    PubMed  CAS  Google Scholar 

  • Lindstrom J (1996) Neuronal nicotinic acetylcholine receptors. In: Toshio Narahashi (ed) Ion Channels, vol. IV. Plenum Press, New York, pp 377–50

    Google Scholar 

  • Lindstrom J, Shelton GD, Fujii Y (1988) Myasthenia gravis. Adv Immunol 42:233–284

    Article  PubMed  CAS  Google Scholar 

  • Lloyd G, Menzaghi F, Bontempi B, Suto C, Siegel R, Akong M, Staudermann K, Velicelebi G, Johnson E, Harpold M, Rao T, Sacaan A, Chavez-Noreiga L, Washburn M, Vernier J, Cosford N, McDonald L (1998) The potential of subtypeselective neuronal nicotinic acetylcholine receptor agonists as therapeutic agents. Life Sciences 62:1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Lukas R (1991) The effects of chronic nicotinic ligand exposure on functional activity of nicotinic acetylcholine receptors expressed by cells of the PC12 rat pheochromocytoma or the TE671/RD human clonal line. J Neurochem 56:1134–1145

    Article  PubMed  CAS  Google Scholar 

  • Luo S, Kulak J Cartier G, Jacobsen R, Yoshikami D, Olivera B, Mclntosh J (1998) α-conotoxin AuIB selectively blocks α3β4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J Neurosci 18:8571–8579

    PubMed  CAS  Google Scholar 

  • Luther M, Scoepfer R, Whiting P, Blatt Y, Montai MS, Montai M, Lindstrom (1989) A muscular acetylcholine receptor is expressed in the human cerebral line TE671. J Neurotics 9:1082–1096

    Google Scholar 

  • Maimone M, Merlie J (1993) Interaction of the 43kd postsynaptic protein with all subunits of the muscle nicotinic acetylcholine receptor. Neuron 11:53–66

    Article  PubMed  CAS  Google Scholar 

  • Marks M, Stetzel J, Collins A (1985) Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J Pharmacol Exp Ther 235:619–628

    PubMed  CAS  Google Scholar 

  • Martin E, Panickar K, King M, Deyrup M, Hunter B, Wang G, Meyer E (1994) Cytoprotective actions of 2,4-dimethoxybenzlidene anabaseine in differentiated PC12 cells and septal cholinergic neurons. Drug Devel Res 31:135–141

    Article  CAS  Google Scholar 

  • Martin M, Czajkowski C, Karlin A (1996a) The contributions of aspartyl residues in the acetylcholine receptor γ and δ subunits to the binding of agonists and competitive antagonists. J Biol Chem 271:13497–13503

    Article  PubMed  CAS  Google Scholar 

  • Maus A, Pereira E, Karachunski P, Horton R, Navanectham D, Macklin K, Cortes W, Albuquerque E, Conti-Fine B (1998) Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Mol Pharmacol 54:779–788

    PubMed  CAS  Google Scholar 

  • Martin M, Karlin A (1996b) Functional effects on the acetylcholine receptor of multiple mutations of γ Asp 174 and δ Asp 180. Biochemistry 36:10742–10750

    Article  Google Scholar 

  • McGehee D, Heath M, Gelber S, Devay P, Role L (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    Article  PubMed  CAS  Google Scholar 

  • McLane K, Wu X, Lindstrom J, Conti-Tronconi B (1992) Epitope mapping of polyclonal and monoclonal antibodies against two α-bungarotoxin binding subunits from neuronal nicotinic receptors. J Neuroimmunol 38:115–128

    Article  PubMed  CAS  Google Scholar 

  • Merlie JP, Lindstrom J (1983) Assembly in vivo of mouse muscle acetylcholine receptor: identification of an a subunit species which may be an assembly intermediate. Cell 34:747–757

    Article  PubMed  CAS  Google Scholar 

  • Messi M, Renganathan M, Grigorenko E, Delbono O (1997) Activation of α7 nicotinic α7 acetylcholine receptor promotes survival of spinal cord motorneurons. FEBS Letters 411:32–38

    Article  PubMed  CAS  Google Scholar 

  • Meyer E, Tay E, Zoltewicz J, Meyers C, King M, Papke R, DeFiebre C (1998) Neuro-protective and memory-related actions of novel α-7 nicotinic agents with different mixed agonist/antagonist properties. J Pharmacol Exp Ther 284:1026–1032

    PubMed  CAS  Google Scholar 

  • Morens D, Grandinetti A, Reed D, White L, Ross G (1995) Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue?. Neurology 45:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Moss S, McDonald B, Rudhard Y, Schopfer R (1996) Phosphorylation of the predicted major intracellular domains of the rat and chicken neuronal nicotinic acetylcholine receptor α7 subunit by cAMP-dependent protein kinase. Neuropharmacology 35:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Nakayama H, Okuda H, Nakashima T (1993) Phosphorylation of rat brain nicotinic acetylcholine receptor by cAMP-dependent protein kinase in vitro. Mol Brain Res 20:171–177

    Article  PubMed  CAS  Google Scholar 

  • Nelson M, Lindstrom J (1999) Single channel properties of human α3 AChRs: impact of α2, β4, and α5 subunits. J. Physiol 516:657–678

    Article  CAS  Google Scholar 

  • Nelson S, Shelton G, Lei S, Lindstrom J, Conti-Tronconi B (1992) Epitope mapping of monoclonal antibodies to Torpedo acetylcholine receptor γ subunits, which specifically recognize the ε subunit of mammalian muscle acetylcholine receptor. J Neuroimmunol 36:13–27

    Article  PubMed  CAS  Google Scholar 

  • Neves-Pereira M, Bassett A, Honer W, Lang D, King N, Kennedy J (1998) No evidence for linkage of the CHRNA7 gene region in Canadian schizophrenia families. Am J Med Genet 81:361–363

    Article  PubMed  CAS  Google Scholar 

  • Obaid A, Koyano T, Lindstrom J, Sakai T, Salzberg B (1999) Spatio-temporal patterns with single cell resolution: optical studies of nicotinic activity in an enteric plexus. J Neurosci 19:3073–3093

    PubMed  CAS  Google Scholar 

  • Ohno K, Brenginan J, Tsujino A, Engel A (1998) Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci USA 95:9654–9659

    Article  PubMed  CAS  Google Scholar 

  • Olale F, Gerzanich V, Kuryatov A, Wang F, Lindstrom J (1997) Chronic nicotine exposure differentially affects the function of human α3, α3, and α7 neuronal nicotinic receptor subtypes. J Pharmacol Exp Ther 283:675–683

    PubMed  CAS  Google Scholar 

  • Olivera B (1997) Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol Biol Cell 8:2101–2109

    PubMed  CAS  Google Scholar 

  • Orr-Urtreger A, Goldner F, Saeki M, Lorenzo I, Goldberg L, DeBiasi M, Dani J, Patrick J, Beaudet A (1997) Mice deficient in the α7 neuronal nicotinic acetylcholine receptor lack α-bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci 17:9165–9171

    PubMed  CAS  Google Scholar 

  • Palma E, Bertrand S, Binzoni T, Bertrand D (1996) Homomeric neuronal nicotinic α7 receptor presents five putative high affinity binding sites for the toxin MLA. J Physiol 491.1:151–161

    Google Scholar 

  • Palma E, Maggi L, Miledi R, Eusebi F (1998) Effects of Zn2+ on wild and mutant neuronal α7 nicotinic receptors. Proc Natl Acad Sci USA 95:10246–10250

    Article  PubMed  CAS  Google Scholar 

  • Papke R (1993) The kinetic properties of neuronal nicotinic receptor: genetic basis of functional diversity. Prog Neurobiol 41:509–531

    Article  PubMed  CAS  Google Scholar 

  • Papke R, Bencheif M, Lippiello P (1996) An evaluation of nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the α7 subtype. Neurosci Lett 213:201–204

    PubMed  CAS  Google Scholar 

  • Patrick J, Stallcup W (1977) α-bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line-J Biol Chem 252:8629–8633

    PubMed  CAS  Google Scholar 

  • Paylor R, Nguyen M, Crawley J, Patrick J, Beaudet A, Orr-Urtreger A (1998) α7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra 7-deficient mice. Learning and Memory 5:302–316

    PubMed  CAS  Google Scholar 

  • Peng X, Anand R, Whiting P, Lindstrom J (1994a) Nicotine-induced upregulation of neuronal nicotinic receptors results from a decrease in the rate of turnover. Mol Pharmacol 46:523–530

    PubMed  CAS  Google Scholar 

  • Peng X, Gerzanich V, Anand R, Wang F, Lindstrom J (1997) Chronic nicotine treatment upregulates α3 and α7 acetylcholine receptor subtypes expressed by the human neuroblastoma cell line SH-SY5Y. Mol Pharmacol 51:776–784

    PubMed  CAS  Google Scholar 

  • Peng X, Katz M, Gerzanich V, Anand R, Lindstrom J (1994b) Human α7 acetylcholine receptor: cloning of the α7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional α7 homomers expressed. Mol Pharmacol 45:546–554

    PubMed  CAS  Google Scholar 

  • Periera E, Alkondon M, McIntosh J, Albuquerque E (1996) α-conotoxin Iml: a competitive antagonist at α-bungarotoxin-sensitive neuronal nicotinic receptors in hippocampal neurons. J Pharmacol Exp Ther 278:1472–1483

    Google Scholar 

  • Picciotto M, Zoli M, Rimondini R, Lena C, Marubio L, Pich E, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Picciotto M, Zoli M, Lena C, Bessis A, Lallemand Y, LeNovere N, Vincent P, Pich M, Brulet P, Changeux JP (1995) Abnormal avoidance learning in mice lacking functional high affinity nicotine receptor in the brain. Nature 374:65–67

    Article  PubMed  CAS  Google Scholar 

  • Prince R, Sine S (1998) Epibatidine activates muscle acetylcholine receptors with unique site selectivity. Biophysical J 75:1817–1827

    Article  CAS  Google Scholar 

  • Puchacz E, Buisson B, Bertrand D, Lukas R (1994) Functional expression of nicotinic acetylcholine receptors containing rat α7 subunits in human SH-SY5Y neuroblastoma cells. FEBS Lett 354:155–159

    Article  PubMed  CAS  Google Scholar 

  • Pugh P, Berg D (1994) Neuronal acetylcholine receptors that bind α-bungarotoxin mediate neurite retraction in a calcium-dependent manner. J Neurosci 14:889–896

    PubMed  CAS  Google Scholar 

  • Quick M, Chan J, Patrick J (1994) α-bungarotoxin blocks the nicotinic receptor mediated increase in cell number in a neuroendocrine line. Brain Res 655:161–167

    Article  Google Scholar 

  • Quick M, Choremis J, Komourian J, Lukas R, Puchacz E (1996) Similarity between rat brain nicotinic a-bungarotoxin receptors and stably expressed α-bungarotoxin binding sites. J Neurochem 67:145–154

    Article  Google Scholar 

  • Quick M, Philie J, Choremis J (1997) Modulation of α7 nicotinic receptor-mediated calcium influx by nicotinic agonists. Mol Pharmacol 51:499–506

    CAS  Google Scholar 

  • Ramirez-Latorre J, Yu C, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of α5 subunit to neuronal acetylcholine receptor channels. Nature 380:347–351

    Article  PubMed  CAS  Google Scholar 

  • Raftery M, Hunkapillar M, Strader C, Hood L (1980) Acetylcholine receptor: complex of homologous subunits. Science 208:1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Ratnam M, LeNguyen D, Rivier J, Sargent PB, Lindstrom J (1986a) Transmembrane topography of nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based hydrophobicity profiles. Biochem 25:2633–2643

    Article  CAS  Google Scholar 

  • Ratnam M, Sargent PB, Sarin V, Fox JL, LeNguyen D, Rivier J, Criado M, Lindstrom J (1986b) Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochem 25:2621–2632

    Article  CAS  Google Scholar 

  • Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desen-sitization of a neuronal nicotinic receptor. Nature 353:846–849

    Article  PubMed  CAS  Google Scholar 

  • Rogers S, Andrews J, Gahring L, Whisemand T, Caulay K, Crain B, Hughes T, Heinemann S, McNamara J (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 265:648–651

    Article  PubMed  CAS  Google Scholar 

  • Rogers S, Twyman R, Gahring L (1996) The role of autoimmunity to glutamate receptors in neurological disease. Mol Med Today 2:76–81

    Article  PubMed  CAS  Google Scholar 

  • Romano S, Corriveau R, Schwarz R, Berg D (1997a) Expression of the nicotinic receptor α7 gene in tendon and periosteum during early development. J Neurochem 68:640–648

    Article  PubMed  CAS  Google Scholar 

  • Romano S, Pugh P, Mclntosh J, Berg D (1997b) Neuronal-type acetylcholine receptors and regulation of α7 gene expression in vertebrate skeletal muscle. J Neurobiol 32:69–80

    Article  PubMed  CAS  Google Scholar 

  • Rothhut B, Romano S, Vijayaraghaven S, Berg D (1996) Post-translational regulation of neuronal acetylcholine receptors stably expressed in a mouse fibroblast line. J Neurobiol 29:115–125

    Article  PubMed  CAS  Google Scholar 

  • Rothlin C, Katz E, Verbitsky M, Elgoyhen, B (1999) The α9 nicotinic acetylcholine receptor shares pharmacological properties with type A γ-aminobutyric acid, glycine, and type 3 serotonin receptors. Mol Pharmacol 55:248–254

    Google Scholar 

  • Roztocil T, Matter-Sadzinski L, Gomez M, Ballivet M, Matter JL (1998) Functional properties of the neuronal nicotinic acetylcholine receptor β3 promoter in the developing central nervous system. J Biol Chem 273:15131–15137

    Article  PubMed  CAS  Google Scholar 

  • Saedi M, Anand R, Conroy WG, Lindstrom J (1990) Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis. FEBS Lett 267:55–59

    Article  PubMed  CAS  Google Scholar 

  • Saedi M, Conroy WG, Lindstrom J (1991) Assembly of Torpedo acetylcholine receptor in Xenopus oocytes. J Cell Biol 112:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Sanberg P, Shytle R, Silver A (1998) Treatment of Tourette’s syndrome with mecamylamine. Lancet 352:705–706

    Article  PubMed  CAS  Google Scholar 

  • Sanberg P, Silver R, Shytle R, Philipp M, Cahill D, Fogelson H, McConville B (1997) Nicotine for the treatment of Tourette’s syndrome. Pharmacol Ther 74:21–25

    Article  PubMed  CAS  Google Scholar 

  • Sargent P, Hedges B, Tsavaler L, Clemmons L, Tzartos S, Lindstrom J (1984) The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscles revealed by crossreacting monoclonal antibodies. J Cell Biol 98: 609–618

    Article  PubMed  CAS  Google Scholar 

  • Sargent PB, Pike SH, Nadel SB, Lindstrom JM (1989) Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. J Neurosci 9:569–573

    Google Scholar 

  • Schmidt J (1988) Biochemistry of nicotinic acetylcholine receptors in the vertebrate brain. Int Rev Neurobiol 30:1–38

    Article  PubMed  CAS  Google Scholar 

  • Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J (1990) Brain α-bungarotoxin-binding protein cDNAs and mAbs reveal subtypes of this branch of the ligand-gated ion channel superfamily. Neuron 5:35–48

    Article  PubMed  CAS  Google Scholar 

  • Schoepfer R, Whiting P, Esch F, Blacher R, Shimasaki S, Lindstrom J (1988) cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor. Neuron 1:241–248

    Article  PubMed  CAS  Google Scholar 

  • Schoepfer R, Halvorsen S, Conroy WG, Whiting P, Lindstrom J (1989) Antisera against an α3 fusion protein bind to ganglionic but not to brain nicotinic acetylcholine receptors. FEBS Lett 257(2):393–399

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Wadiche J, Dinelly-Miller K, Dani J, Patrick J (1993) Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Sekhon H, Jia Y, Raab R, Kuryatov A, Pankow J, Whitsett, J, Lindstrom J, Spindel E. (1999) Prenatal nicotine exposure increases α7 nicotinic acetylcholine receptor expression in pulmonary cells and alters fetal lung development in monkeys. J Clin Invest 103:437–647

    Article  Google Scholar 

  • Shimohama S, Greenwald D, Shafron D, Akaika A, Maeda T, Kaneko S, Kimura J, Simpkins C, Day A, Meyer E (1997) Nicotinic α7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage. Brain Res 779:359–363

    Article  Google Scholar 

  • Shoop R, Martone M, Yamada N, Ellisman M, Berg D (1999) Neuronal acetylcholine receptors with α7 subunits are concentrated on somatic spines for synaptic signaling in embryonic chick ciliary ganglia. J Neurosci 19:692–704

    PubMed  CAS  Google Scholar 

  • Sivilotti L, McNeil D, Lewis T, Nassar M, Schoepfer R, Colquhoun D (1997) Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behavior. J Physiol 500.1:123–138

    Google Scholar 

  • Smith M, Lindstrom J, Merlie JP (1987) Formation of the α-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum. J Biol Chem 262:4367–4376

    PubMed  CAS  Google Scholar 

  • Staurderman K, Mahaffy S, Akong M, Velicelibe G, Chavez-Noriega L, Crona J, Johnson E, Elliott K, Gillespie A, Reid R, Adams P, Harpold M, Corey-Noveve J (1998) Characterization of human recombinant neuronal nicotinic acetylcholine receptor subunit combinations α2β4, α3δ and α4β4 stably expressed in HEK293 cells. J Pharmacol Exp Ther 284:777–789

    Google Scholar 

  • Steinlein O, Magnusson A, Stoodt J, Bertrand S, Weiland S, Berkovic S, Nakken K, Propping P, Bertrand D (1997) An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Human Mol Gene 6:943–947

    Article  CAS  Google Scholar 

  • Steinlein O, Mulley J, Propping P, Wallace R, Phillips H, Sutherland G, Scheffer I, Berkovic S (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genet 11:201–203

    Article  PubMed  CAS  Google Scholar 

  • Stetzer E, Ebbinghaus V, Storch A, Poteur L, Schrattenholz A, Kramer G, Methfessel C, Maelicke A (1996) Stable expression in HEK-293 cells of the rat α3/β4 subtype of neuronal nicotinic acetylcholine receptor. FEBS Lett 397:39–44

    Article  PubMed  CAS  Google Scholar 

  • Surgeon General (1988) Nicotine addiction. A report of the Surgeon General. US Dept. of Health and Human Services, Washington DC

    Google Scholar 

  • Sussman J, Harel, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine binding protein. Science 253:872–879

    Article  PubMed  CAS  Google Scholar 

  • Swanson L, Lindstrom J, Tzartos S, Schmued L, O’Leary D, Cowan W (1983) Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chick. Proc Natl Acad Sci USA 80:4532–536

    Article  PubMed  CAS  Google Scholar 

  • Swanson L, Simmons D, Whiting P, Lindstrom J (1987) Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J Neurosci 7:3334–3342

    PubMed  CAS  Google Scholar 

  • Tarroni P, Rubboli F, Chini B, Zwart R, Oortgiesen M, Sher E, Clementi F (1992) Neuronal-type nicotinic receptors in human neuroblastoma and small cell carcinoma cell lines. FEBS Lett 312:66–70

    Article  PubMed  CAS  Google Scholar 

  • Thomas G and Rhodes J (1995) Relationship between smoking, nicotine, and ulcerative colitis in Effects of Nicotine on Biological Systems II Advances in Pharmacological Sciences, ed P. Clarke, M. Quick, F. Adlkofer, and K. Thurau, Birkhauser, Boston pp 287–291

    Google Scholar 

  • Trienen M, Chalfie M (1995) A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron 14:871–877

    Article  Google Scholar 

  • Tsantili P, Tzartos S, Mamalaki A, (1999) High affinity single-chain Fv antibody fragments protecting the human nicotinic acetylcholine receptor. J Neuroimmuno 94:15–27

    Article  CAS  Google Scholar 

  • Tzartos S, Cung M, Demange P, Loutrari H, Mamalaki A, Marraud M, Papadouli I, Sakarellos C, Tsikaris V (1991) The main immunogenic region (MIR) of the nicotinic acetylcholine receptor and the anti-MIR antibodies. Mol Neurobiol 5:1–29

    Article  PubMed  CAS  Google Scholar 

  • Tzartos S, Hochschwender S, Langeberg L, Lindstrom J (1983) Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett 158:116–118

    Article  PubMed  CAS  Google Scholar 

  • Tzartos S, Hochschwender S, Vasquez P, Lindstrom J (1987) Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 15:185–194

    Article  PubMed  CAS  Google Scholar 

  • Tzartos S, Langeberg L, Hochschwender S, Swanson L, Lindstrom J (1986) Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: species, subunit, and region specificity. J Neuroimmunol 10:235–253

    Article  PubMed  CAS  Google Scholar 

  • Tzartos S, Lindstrom J (1980) Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA 77:755–759

    Article  PubMed  CAS  Google Scholar 

  • Tzartos S, Rand D, Einarson B, Lindstrom J (1981) Mapping of surface structures on Electrophorus acetylcholine receptor using monoclonal antibodies. J Biol Chem 256:8635–8645

    PubMed  CAS  Google Scholar 

  • Tzartos S, Seybold M, Lindstrom J (1982) Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc Natl Acad Sci USA 79:188–192

    Article  PubMed  CAS  Google Scholar 

  • Tzartos S, Sophianos D, Efthimiadis A (1985) Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis: an Fab monoclonal antibody protects against antigenic modulation by human sera. J Immunol 134:2343–2349

    PubMed  CAS  Google Scholar 

  • Ullian E, Mclntosh J, Sargent P (1997) Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors. J Neurosci 17:7210–7219

    PubMed  CAS  Google Scholar 

  • Unwin N (1993) Nicotinic acetylcholine receptor at 9 Å resolution. J Mol Biol 229:1101–1124

    Article  PubMed  CAS  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    Article  PubMed  CAS  Google Scholar 

  • Unwin N, Toyoshima C, Kubalek E (1988) Arrangement of the acetylcholine receptor subunits in the resting and desensitized states determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J Cell Biol 107: 1123–1138

    Article  PubMed  CAS  Google Scholar 

  • vanHooft J, Spier A, Yakel J, Lummis S, Vijverberg H (1998) Promiscuous co-assembly of serotonin 5-HT3 and nicotinic α4 receptor subunits into Ca2+ permeable ion channels. Proc Natl Acad Sci USA 95:11456–11461

    Article  CAS  Google Scholar 

  • Vasquez R, Oswald R (1999) Identification of a new amino acid residue capable of modulating agonist efficacy at the homomeric nicotinic acetylcholine receptor, α7. Mol Pharmacol 55:1–7

    Google Scholar 

  • Vernallis A, Conroy W, Berg D (1993) Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 10:451–164

    Article  PubMed  CAS  Google Scholar 

  • Vernino S, Adamski J, Kryzer T, Fealey R, Lennon V (1998) Neuronal nicotinic ACh receptor antibody in subacute autonomie neuropathy and cancer related syndromes. Neurology 50:1806–1813

    Article  PubMed  CAS  Google Scholar 

  • Vernino S, Amador M, Luetje C, Patrick J Dani J (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8:127–134

    Article  PubMed  CAS  Google Scholar 

  • Verrall S, Hall Z (1992) The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly. Cell 68:23–31

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Agullo F, Rovira J, Campos-Caro A, Rodriguez-Ferrer C, Ballesta J, Sala S, Sala F, Criado M (1996) Acetylcholine receptor subunit homomer formation requires compatibility between amino acid residues of the Ml and M2 transmembrane segments. FEBS Lett 399:83–86

    Article  PubMed  CAS  Google Scholar 

  • Vrjayaraghavan S, Pugh P, Zhang ZW, Rathouz M, Berg D (1992) Nicotinic receptors that bind α-bungarotoxin on neurons raise intracellular free Ca2+. Neuron 8:353–362

    Article  Google Scholar 

  • Vrjayaraghavan S, Schmid H, Halvorsen S, Berg D (1990) Cyclic AMP-dependent phosphorylation of a neuronal acetylcholine receptor alpha-type subunit. J Neurosci 10:3255–3262

    Google Scholar 

  • Viseshakul N, Figl A, Lytle C, Cohen B (1998) The aA subunit of rat α4α2 nicotinic receptors is phosphorylated in vivo. Mol Brain Res 59:100–104

    Article  PubMed  CAS  Google Scholar 

  • Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris E, Swanson L, Heinemann S, Patrick J (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Abood L (1996) Expression and characterization of the rat α4β2 neuronal nicotinic cholinergic receptor in baculovirus-infected insect cells. J Neurosci Res 44:350–354

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Gerzanich V, Wells G, Anand R, Peng X, Keyser K, Lindstrom J (1996) Assembly of human neuronal nicotinic receptor α5 subunits with α3, β2, and α4 subunits. J Biol Chem 271:17656–17665

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Nelson M, Kuryatov A, Keyser K, Lindstrom J (1998) Chronic nicotine treatment upregulates human α3β2, but not α3β4 AChRs stably transfected in human embryonic kidney cells. J Biol Chem 273:28721–28732

    Article  PubMed  CAS  Google Scholar 

  • Webster J, Francis M, Forter J, Robinson G, Stokes C, Horenstein B, Papke R (1999) Antagonist activities of mecamylamine and nicotine show reciprocal dependence on beta subunit sequence in the second transmembrane domain. Brit J Pharmacol 127:1337–1348

    Article  CAS  Google Scholar 

  • Weiland S, Weitzmann V, Villarroel A, Propping P, Steinlein O (1996) An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS Lett 398:91–96

    Article  PubMed  CAS  Google Scholar 

  • Wells G, Anand R, Wang F, Lindstrom J (1998) Water soluble nicotinic acetylcholine receptor formed by α7 subunit extracellular domains. J Biol Chem 273:964–973

    Article  PubMed  CAS  Google Scholar 

  • Wenger B, Bryant D, Boyd T, McKay D (1997) Evidence for spare nicotinic acetylholine receptors and a β4 subunit in bovine adrenal chromaffin cells: studies using bromoacetylcholine, epibatidine, cytosine and m Ab 35. J Pharmacol Exp Ther 281:905–913

    PubMed  CAS  Google Scholar 

  • Wheeler S, Dane S, Crass K, Chad J, Foreman R (1994) Membrane clustering and bungarotoxin binding by the nicotinic acetylcholine receptor: role of the β subunit. J Neurochem 63:1891–1899

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse P, Martino A, Marcus K, Zweig R, Singer H, Price D, Kellar K (1988) Reductions in acetylcholine and nicotine binding in several degenerative diseases. Arch Neurol 45:722–724

    Article  PubMed  CAS  Google Scholar 

  • Whiting P, Esch F, Shimasaki S, Lindstrom J (1987a) Neuronal nicotinic acetylcholine receptor β subunit is coded for by the cDNA clone α4. FEBS Lett 219(2): 459–463

    Article  PubMed  CAS  Google Scholar 

  • Whiting P, Lindstrom J (1986b) Pharmacological properties of immunoisolated neuronal nicotinic receptors. J Neurosci 6:3061–3069

    PubMed  CAS  Google Scholar 

  • Whiting PJ, Lindstrom JM (1986) Purification and characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry 25:2082–2093

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ, Lindstrom JM (1987) Purification and characterization of a nicotinic acetylcholine receptor from rat brain. Proc Natl Acad Sci USA 84:595–599

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ, Lindstrom JM (1988) Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J Neurosci 8:3395–3404

    PubMed  CAS  Google Scholar 

  • Whiting P, Liu R, Morley BJ, Lindstrom J (1987b) Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies. J Neurosci 7:4005–4016

    PubMed  CAS  Google Scholar 

  • Whiting P, Scoepfer R, Conroy WG, Gore MJ, Keyser K, Shimasaki S, Esch F, Lindstrom J (1991a) Expression of nicotinic acetylcholine receptor subtypes in brain and retina. Mol Brain Res 10:61–70

    Article  PubMed  CAS  Google Scholar 

  • Whiting P, Schoepfer R, Lindstrom J, Priestly (1991b) Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts. Mol Pharmacol 40:463–72

    Google Scholar 

  • Whiting P, Schoepfer R, Swanson L, Simmons D, Lindstrom J (1987c) Functional acetylcholine receptor in PC12 cells reacts with a monoclonal antibody to brain nicotinic receptors. Nature 327:515–518

    Article  PubMed  CAS  Google Scholar 

  • Williams B, Temburni, Levy M, Bertrand S, Bertrand D, Jacob M (1998) The long internal loop of the α3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nature Neurosci 1:557–562

    Article  PubMed  CAS  Google Scholar 

  • Wilson G, Karlin A (1998) The location of the gate of the acetylcholine receptor channel. Neuron 20:1269–1281

    Article  PubMed  CAS  Google Scholar 

  • Witzemann V, Barg B, Nishikawa Y, Sakmann B, Numa S (1987) Differential regulation of muscle acetylcholine receptor γand ε subunit mRNAs. FEBS Lett 223:104–112

    Article  PubMed  CAS  Google Scholar 

  • Witzemann V, Stein E, Barg B, Konno T, Koenen M, Kues W, Criado M, Hofmann M, Sakmann B (1990) Primary structure and functional expression of the α, β, γ, δ,ε subunits of the acetylcholine receptor from rat muscle. Eur J Biochem 194:437–448

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Meyer E, Thompson J, Surin A, Wroblewski J, Kellar K (1998) Rat α3/β4 subtype of neuronal nicotinic acetylcholine receptor stably expressed in a transfected cell line: pharmacology of ligand binding and function. Mol Pharmacol 54:322–333

    PubMed  CAS  Google Scholar 

  • Xu M, Akabas M (1996) Identification of channel-lining residues in the M2 membranespanning segment of the GABAA receptor a1 subunit. J Gen Physiol 107:195–205

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Zhang L, Eisele JL, Bertrand D, Changeux JP (1996) Ethanol inhibition of nicotinic acetylcholine type α7 receptors involves the amino-terminal domain of the receptor. Mol Pharmacol 50:1010–1016

    PubMed  CAS  Google Scholar 

  • Yu XM, Hall Z (1991) Extracellular domains mediating e subunit interactions of muscle acetylcholine receptor. Nature 352:64–67

    Article  PubMed  CAS  Google Scholar 

  • Yu XM, Hall Z (1994) A sequence in the main cytoplasmic loop of the α subunit is required for assembly of mouse muscle nicotinic acetylcholine receptor. Neuron 13:247–255

    Article  PubMed  CAS  Google Scholar 

  • Zarei M, Radcliffe K, Chen D, Patrick J, Dani J (1999) Distributions of nicotinic acetylcholine receptor α7 and α7 subunits on cultured hippocampal neurons. Neurosci 88:755–764

    Article  CAS  Google Scholar 

  • Zhang H, Karlin A (1997) Identification of acetylcholine receptor channel-lining residues in the Ml segment of the α subunit, Biochemistry 36:15856–15864

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Oz M, Stewart R, Peoples R, Weight F (1997) Volatile general anesthetic actions on recombinant nACh α7, 5-HT3 and chimeric nACh α7 5-HT3 receptors expressed in Xenopus oocytes. Brit J Pharmacol 120:353–355

    Article  CAS  Google Scholar 

  • Zhang ZW, Coggan J, Berg D (1996) Synaptic currents generated by neuronal acetylcholine receptors sensitive to α-bungarotoxin. Neuron 17:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZW, Vijayaraghavan S, Berg D (1994) Neuronal acetylcholine receptors that bind α-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 12:167–177

    Article  PubMed  CAS  Google Scholar 

  • Zia S, Ndoye A, Nguyen V, Grando S (1997) Nicotine enhances expression of the α3, α4, α5, and α7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res Commun Pathol Pharmacol 97:243–262

    CAS  Google Scholar 

  • Zoli M, Picciotto M, Ferrari R, Cocchi D, Changeux JP (1999) Increased neurodegeneration during aging in mice lacking high-affinity nicotine receptors. EMBO J 18:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Zwart R, Abraham D, Oortgiesen M, Vijverberg H (1994) α4β2 subunit combination specific pharmacology of neuronal nicotinic acetylcholine receptors in NIE-115 neuroblastoma cells. Brain Res 654:312–318

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindstrom, J. (2000). The Structures of Neuronal Nicotinic Receptors. In: Clementi, F., Fornasari, D., Gotti, C. (eds) Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57079-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57079-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63027-9

  • Online ISBN: 978-3-642-57079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics