Skip to main content

Nicotinic Acetylcholine Receptors in Ganglionic Transmission

  • Chapter
Neuronal Nicotinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 144))

Abstract

For nearly a century autonomic ganglia have been strategic preparations for elucidating the principles of nicotinic transmission and the nature of nicotinic acetylcholine receptors (nAChRs) in the nervous system. The first evidence for neurotransmitters anywhere was the demonstration by LOEWI (1921) that a diffusible substance, later shown to be acetylcholine (ACh), was necessary to mediate the effects of parasympathetic innervation to the heart. Early biochemical studies examining ACh synthesis and release first made use of cat superior cervical ganglia (BIRKS and MACINTOSH 1961). Classical electrophysiological mapping of nicotinic ACh responses from frog autonomic ganglia by Kuffler and his colleagues first showed the clustering of functional postsynaptic nAChRs near presynaptic boutons (DENNIS et al. 1971; HARRIS et al. 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharm Exper Ther 265:1455–1473

    CAS  Google Scholar 

  • Anand R, Peng X, Lindstrom J (1993) Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex. FEBS Lett 327:241–246

    Article  PubMed  CAS  Google Scholar 

  • Arenella LS, Oliva JM, Jacob MH (1993) Reduced levels of acetylcholine receptor expression in chick ciliary ganglion neurons developing in the absence of innervation. J Neurosci 13:4525–4537

    PubMed  CAS  Google Scholar 

  • Baccaglini PI, Cooper E (1982) Influences on the expression of acetylcholine receptors on rat nodose neurones in cell culture. J Physiol (Lond) 324:441–451

    CAS  Google Scholar 

  • Bertrand D, Galzi JL, Devillers-Thiery A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proc Natl Acad Sci USA 90:6971–6975

    Article  PubMed  CAS  Google Scholar 

  • Birks R, Macintosh FC (1961) Acetylcholine metabolism of a sympathetic ganglion. J Biochem Physiol 39:787–827

    Article  CAS  Google Scholar 

  • Blumenthal EM, Shoop RD, Berg DK (1999) Developmental changes in the nicotinic responses of ciliary ganglion neurons. J Neurophysiol 81:111–120

    PubMed  CAS  Google Scholar 

  • Boyd RT, Jacob MH, McEachern AE, Caron S, Berg DK (1991) Nicotinic acetylcholine receptor mRNA in dorsal root ganglion neurons. J Neurobiol 22:1–14

    Article  PubMed  CAS  Google Scholar 

  • Brain KL, Bennett MR (1995) Calcium in the nerve terminals of chick ciliary ganglia during facilitation, augmentation and potentiation. J Physiol (Lond) 489:637–648

    CAS  Google Scholar 

  • Brenner HR, Martin AR (1976) Reduction in acetylcholine sensitivity of axotomized ciliary ganglion cells. J Physiol (Lond) 260:159–175

    CAS  Google Scholar 

  • Cetiner M, Bennett MR (1993) Nitric oxide modulation of calcium-activated potassium channels in postganglionic neurones of avian cultured ciliary ganglia. Br J Pharmac 110:995–1002

    Article  CAS  Google Scholar 

  • Chang K, Berg D (1999) Dependence of circuit function on nicotinic acetylcholine receptors containing α7 subunits. J Neurosci 19:3701–3710

    PubMed  CAS  Google Scholar 

  • Chiappinelli VA (1983) Kappa-bungarotoxin: a probe for the neuronal nicotinic receptor in the avian ciliary ganglion. Brain Res 277:9–21

    Article  PubMed  CAS  Google Scholar 

  • Chiappinelli VA, Cohen JB, Zigmond RE (1981) The effects of α-and β-neurotoxins from the venoms of various snakes on transmission in autonomic ganglia. Brain Res 211:107–126

    Article  PubMed  CAS  Google Scholar 

  • Chiappinelli VA, Giacobini E (1978) Time course of appearance of α-bungarotoxin binding sites during development of chick ciliary ganglion and iris. Neurochem Res 3:465–478

    Article  PubMed  CAS  Google Scholar 

  • Coggan JS, Paysan J, Conroy WG, Berg DK (1997) Direct recording of nicotinic responses in presynaptic nerve terminals. J Neurosci 17:5798–5806

    PubMed  CAS  Google Scholar 

  • Conroy WG, Berg DK (1995) Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. J Biol Chem 270:4424–431

    Article  PubMed  CAS  Google Scholar 

  • Conroy WG, Berg DK (1998) Nicotinic receptor subtypes in the developing chick brain: appearance of a species containing the α4, β2, and α5 gene products. Mol Pharmacol 53:392–401

    PubMed  CAS  Google Scholar 

  • Cooper E, Lau M (1986) Factors affecting the expression of acetylcholine receptors on rat sensory neurones in culture. J Physiol (Lond) 377:409–420

    CAS  Google Scholar 

  • Corriveau RA, Berg DK (1993) Co-expression of multiple acetylcholine receptor genes in neurons: quantification of transcripts during development. J Neurosci 13: 2662–2671

    PubMed  CAS  Google Scholar 

  • Corriveau RA, Berg DK (1994) Neurons in culture maintain acetylcholine receptor levels with far fewer transcripts than in vivo. J Neurobiol 25:1579–1592

    Article  PubMed  CAS  Google Scholar 

  • Couturier S, Bertrand D, Matter J-M, Hernandez M-C, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-Btx. Neuron 5:847–856

    Article  PubMed  CAS  Google Scholar 

  • Cuevas J, Berg, DK (1998) Mammalian nicotinic receptors with α7 subunits that slowly desensitize and rapidly recover from α-bungarotoxin blockade. J Neurosci 18:10335–10344

    Google Scholar 

  • Dennis MJ, Harris AJ, Kuffler SW (1971) Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proc Roy Soc Lond B 177:509–539

    Article  CAS  Google Scholar 

  • De Koninck P, Cooper E (1995) Differential regulation of neuronal nicotinic ACh receptor subunit genes in cultured neonatal rat sympathetic neurons: specific induction of α7 by membrane depolarization through a Ca2+calmodulin-dependent kinase pathway. J Neurosci 15:7966–7978

    PubMed  Google Scholar 

  • Devay P, Qu X, Role L (1994) Regulation of nAChR subunit gene expression relative to the development of pre-and postsynaptic projections of embryonic chick sympathetic neurons. Dev Biol 162:56–70

    Article  PubMed  CAS  Google Scholar 

  • Dryer S (1994) Functional development of the parasympathetic neurons of the avian ciliary ganglion: a classic model system for the study of neuronal differentiation and development. Prog Neurobiol 43:281–322

    Article  PubMed  CAS  Google Scholar 

  • Dryer SE, Dourado MM, Wisgirda ME (1991) Characteristics of multiple Ca2+-activated K+ channels in acutely dissociated chick ciliary ganglion neurones. J Physiol (Lond) 443:601–627

    CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    Article  PubMed  CAS  Google Scholar 

  • Engisch KL, Fischbach GD (1990) The development of ACh-and GABA-activated currents in normal and target-deprived embryonic chick ciliary ganglia. Dev Biol 139:417–426

    Article  PubMed  CAS  Google Scholar 

  • Engisch KL, Fischbach GD (1992) The development of ACh-and GABA-activated currents in embryonic chick ciliary ganglion neurons in the absence of innervation in vivo. J Neurosci 12:1115–1125

    PubMed  CAS  Google Scholar 

  • Fischbach GD, Rosen KM (1997) ARIA: a neuromuscular junction neuregulin. Annu Rev Neurosci 20:429–58

    Article  PubMed  CAS  Google Scholar 

  • Gardette R, Listerud M, Brussaard AB, Role LW (1991) Developmental changes in transmitter sensitivity and synaptic transmission in innervated embryonic chicken sympathetic neurons in vitro. Dev Biol 147:83–95

    Article  PubMed  CAS  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    Article  PubMed  CAS  Google Scholar 

  • Greene LA, Sytkowski AJ, Vogel Z, Nirenberg MW (1973) α-Bungaro toxin used as a probe for acetylcholine receptors of cultured neurones. Nature 243:163–166

    Article  PubMed  CAS  Google Scholar 

  • Halvorsen SW, Berg DK (1987) Affinity labeling of neuronal acetylcholine receptor subunits with an α-neurotoxin that blocks receptor function. J Neurosci 7: 2547–2555

    PubMed  CAS  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  PubMed  CAS  Google Scholar 

  • Harris AJ, Kuffler SW, Dennis MJ (1971) Differential chemosensitivity of synaptic and extrasynaptic areas on the neuronal surface membrane in parasympathetic neurons of the frog, tested by microapplication of acetylcholine. Proc Roy Soc Lond B 177:541–553

    Article  CAS  Google Scholar 

  • Jacob MH (1991) Acetylcholine receptor expression in developing chick ciliary ganglion neurons. J Neurosci 11:1701–1712

    PubMed  CAS  Google Scholar 

  • Jacob MH, Berg DK (1983) The ultrastructural localization of α-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J Neurosci 3:260–271

    PubMed  CAS  Google Scholar 

  • Jacob MH, Berg DK (1987) Effects of preganglionic denervation and postganglionic axotomy on acetylcholine receptors in the chick ciliary ganglion. J Cell Biol 105:1847–1854

    Article  PubMed  CAS  Google Scholar 

  • Jacob MH, Berg DK (1988) The distribution of acetylcholine receptors in chick ciliary ganglion neurons following disruption of ganglionic connections. J Neurosci 8:3838–3849

    PubMed  CAS  Google Scholar 

  • Jacob MH, Berg DK, Lindstrom JM (1984) Shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chicken ciliary ganglion neurons. Proc Natl Acad Sci USA 81:3223–3227

    Article  PubMed  CAS  Google Scholar 

  • Keyser KT, Britto LRG, Schoepfer R, Whiting P, Cooper J, Conroy W, Brozozowska-Prechtl A, Karten HJ, Lindstrom J (1993) Three subtypes of α-bungarotoxinsensitive nicotinic acetylcholine receptors are expressed in chick retina. J Neurosci 13:442–454

    PubMed  CAS  Google Scholar 

  • Landmesser L, Pilar G (1972) The onset and development of transmission in the chick ciliary ganglion. J Physiol (Lond) 222:691–713

    CAS  Google Scholar 

  • Levey MS, Brumwell CL, Dryer SE, Jacob MH (1995) Innervation and target tissue interactions differentially regulate acetylcholine receptor subunit mRNA levels in developing neurons in situ. Neuron 14:153–162

    Article  PubMed  CAS  Google Scholar 

  • Levey MS, Jacob MH (1996) Changes in the regulatory effects of cell-cell interactions on neuronal nAChR subunit transcript levels after synapse formation. J Neurosci 16:6878–6885

    PubMed  CAS  Google Scholar 

  • Lindstrom J (1996) Neuronal nicotinic acetylcholine receptors. In: Narahashi T (ed) Ion channels, vol. 4, Plenum Press, New York, pp 377–450

    Google Scholar 

  • Listerud M, Brussaard AB, Devay P, Colman DR, Role LW (1991) Functional contribution of neuronal nAChR subunits revealed by antisense oligonucleotides. Science 254:1518–1521

    Article  PubMed  CAS  Google Scholar 

  • Loewi O (1921) On the humoral propagation of cardiac nerve action. Pflugers Arch 189:239–242

    Article  Google Scholar 

  • Loring RH, Dahm LM, Zigmond RE (1985) Localization of a-bungarotoxin binding sites in the ciliary ganglion of the embryonic chick: an autoradiographic study at the light and electron microscopic level. Neurosci 14:645–660

    Article  CAS  Google Scholar 

  • Loring RH, Sah DWY, Landis SC, Zigmond RE (1988) The ultrastructural distribution of putative nicotinic receptors on cultured neurons from the rat superior cervical ganglion. Neurosci 24:1071–1080

    Article  CAS  Google Scholar 

  • Loring RH, Zigmond RE (1987) Ultrastructural distribution of 125I-toxin F binding sites on chick ciliary neurons: synaptic localization of a toxin that blocks ganglionic nicotinic receptors. J Neurosci 7:2153–2162

    PubMed  CAS  Google Scholar 

  • Mandelzys A, Cooper E (1992) Effects of ganglionic satellite cells and NGF on the expression of nicotinic acetylcholine currents by rat sensory neurons. J Neurophysiol 67:1213–1221

    PubMed  CAS  Google Scholar 

  • Mandelzys A, Cooper E, Verge VMK, Richardson PM (1990) Nerve growth factor induces functional nicotinic acetylcholine receptors on rat sensory neurons in culture. Neurosci 37:523–530

    Article  CAS  Google Scholar 

  • Mandelzys A, De Koninck P, Cooper E (1995) Agonist and toxin sensitivities of ACh-evoked currents on neurons expressing multiple nicotinic ACh receptor subunits. J Neurophysiol 74:1212–1221

    PubMed  CAS  Google Scholar 

  • Mandelzys A, Pie B, Deneris ES, Cooper E (1994) The developmental increase in ACh current densities on rat sympathetic neurons correlates with changes in nicotinic ACh receptor α-subunit gene expression and occurs independent of innervation. J Neurosci 14:2357–2364

    PubMed  CAS  Google Scholar 

  • Margiotta JF, Berg DK, Dionne VE (1987) Cyclic AMP regulates the proportion of functional acetylcholine receptors on chick ciliary ganglion neurons. Proc Natl Acad Sci (USA) 84:8155–8159

    Article  CAS  Google Scholar 

  • Margiotta JF, Gurantz D (1989) Changes in the number, function, and regulation of nicotinic acetylcholine receptors during neuronal development. Dev Biol 135:326–339

    Article  PubMed  CAS  Google Scholar 

  • Martin AR, Pilar G (1964) Presynaptic and post-synaptic events during post-tetanic potentiation and facilitation in the avian ciliary ganglion. J Physiol (Lond) 175:17–30

    CAS  Google Scholar 

  • McGehee D, Heath M, Gelber S, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–46

    Article  PubMed  CAS  Google Scholar 

  • Moss BL, Role LW (1993) Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo. J Neurosci 13:13–26

    PubMed  CAS  Google Scholar 

  • Moss BL, Schuetze SM, Role LW (1989) Functional properties and developmental regulation of nicotinic acetylcholine receptors on embryonic chicken sympathetic neurons. Neuron 3:597–607

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Gerzanich V, Anand R, Whiting PJ, Lindstrom J (1994) Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol Pharmacol 46:523–530

    PubMed  CAS  Google Scholar 

  • Poage RE, Zengel JE (1993) Kinetic and pharmacological examination of stimulation-induced increases in synaptic efficacy in the chick ciliary ganglion. Synapse 14:81–89

    Article  PubMed  CAS  Google Scholar 

  • Poth K, Nutter TJ, Cuevas J, Parker MJ, Adams DJ, Luetje CW (1997) Heterogeneity of nicotinic receptor class and subunit mRNA expression among individual parasympathetic neurones from rat intracardiac ganglia. J Neurosci 17:586–596

    PubMed  CAS  Google Scholar 

  • Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of α5 subunits to neuronal acetylcholine receptor channels. Nature 380:347–351

    Article  PubMed  CAS  Google Scholar 

  • Ravdin PM, Berg DK (1979) Inhibition of neuronal acetylcholine sensitivity by α-toxins from Bungarus multicinctus venom. Proc Nat Acad Sci (USA) 76:2072–2076

    Article  CAS  Google Scholar 

  • Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Rothhut BR, Romano SJ, Vijayaraghavan S, Berg DK (1996) Posttranslational regulation of neuronal acetylcholine receptors stably expressed in a mouse fibroblast cell line. J Neurobiol 29:115–125

    Article  PubMed  CAS  Google Scholar 

  • Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443

    Article  PubMed  CAS  Google Scholar 

  • Sargent PB, Garrett EN (1995) The characterization of α-bungarotoxin receptors on the surface of parasympathetic neurons in the frog heart. Brain Res 680:99–107

    Article  PubMed  CAS  Google Scholar 

  • Sargent PB, Bryan GK, Streichart LC, Garrett EN (1991) Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion. J Neurosci 11:3610–3623

    PubMed  CAS  Google Scholar 

  • Sargent PB, Pang DZ (1989) Acetylcholine receptor-like molecules are found in both synaptic and extrasynaptic clusters on the surface of neurons in the frog cardiac ganglion. J Neurosci 9:1062–1072

    PubMed  CAS  Google Scholar 

  • Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J (1990) Brain α-bungarotoxin binding protein cDNAs and mAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5:35–48

    Article  PubMed  CAS  Google Scholar 

  • Schwartz Levey M, Brumwell CL, Dryer SE, Jacob MH (1995) Innervation and target tissue interactions differentially regulate acetylcholine receptor subunit mRNA levels in developing neurons in situ. Neuron 14:153–162

    Article  Google Scholar 

  • Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Shoop RD, Martone ME, Yamada N, Ellisman, MH, Berg, DK (1999) Neuronal acetylcholine receptors with α7 subunits are concentrated on somatic spines for synaptic signaling in embryonic chick ciliary ganglia. J Neurosci 19:692–704

    Google Scholar 

  • Sivilotti LG, McNeil DK, Lewis TM, Nassar MA, Schoepfer R, Colquhoun D (1997) Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behavior. J Physiol 500:123–138

    PubMed  CAS  Google Scholar 

  • Smith MA, Stollberg J, Lindstrom JM, Berg DK (1985) Characterization of a component in chick ciliary ganglia that cross reacts with monoclonal antibodies in muscle and electric organ acetylcholine receptors. J Neurosci 5:2726–2731

    PubMed  CAS  Google Scholar 

  • Stanley EF, Goping G (1991) Characterization of a calcium current in a vertebrate cholinergic presynaptic nerve terminal. J Neurosci 11:985–993

    PubMed  CAS  Google Scholar 

  • Sun XP, Stanley EF (1996) An ATP-activated, ligand-gated ion channel on a cholinergic presynaptic nerve terminal. Proc Natl Acad Sci USA 93:1859–1863

    Article  PubMed  CAS  Google Scholar 

  • Ullian EM, Mclntosh JM, Sargent PB (1997) Rapid synaptic transmission in the avian CG is mediated by two distinct classes of nicotinic receptors. J Neurosci 17:7210–7219

    PubMed  CAS  Google Scholar 

  • Vernallis AB, Conroy WG, Berg DK (1993) Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 10:451–464

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Gerzanich V, Wells GB, Anand R, Peng X, Keyser K, Lindstrom J (1996) Assembly of human neuronal nicotinic receptor α5 subunits with α3, α2, and α4 subunits. J Biol Chem 271:17656–17665

    Article  PubMed  CAS  Google Scholar 

  • Wilson Horch HL, Sargent PB (1995) Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J Neurosci 15:7778–7795

    Google Scholar 

  • Wilson Horch HL, Sargent PB (1996a) Synaptic and extrasynaptic distribution of two distinct populations of nicotinic acetylcholine receptor clusters in the frog cardiac ganglion. J Neurocytol 25:67–77

    Article  PubMed  CAS  Google Scholar 

  • Wilson Horch HL, Sargent PB (1996b) Effects of denervation on acetylcholine receptor clusters on frog cardiac ganglion neurons as revealed by quantitative laser scanning confocal microscopy. J Neurosci 16:1720–1729

    Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. TINS 20:92–98

    PubMed  CAS  Google Scholar 

  • Yang X, Kuo Y, Devay P, Yu C, Role L (1998) A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron 20:255–270

    Article  PubMed  CAS  Google Scholar 

  • Yawo H, Momiyama A (1993) Re-evaluation of calcium currents in pre-and postsynaptic neurones of the chick ciliary ganglion. J Physiol (Lond) 460:153–172

    CAS  Google Scholar 

  • Yu CR, Role LW (1998a) Functional contribution of the α5 subunit to neuronal nicotinic channels expressed by chick sympathetic ganglion neurones. J Physiol (Lond) 509:667–681

    Article  CAS  Google Scholar 

  • Yu CR, Role LW (1998b) Functional contribution of the α7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurones. J Physiol (Lond) 509:651–665

    Article  CAS  Google Scholar 

  • Zhang Z-w, Coggan JS, Berg DK (1996) Synaptic currents generated by neuronal acetylcholine receptors sensitive to α-bungarotoxin. Neuron 17:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z-w, Vijayaraghavan S, Berg DK (1994) Neuronal acetylcholine receptors that bind α-bungarotoxin with high affinity function as ligand-gated ion channels. Neuron 12:167–177

    Article  PubMed  CAS  Google Scholar 

  • Zorumski CF, Thio LL, Isenberg KE, Clifford DB (1992) Nicotinic acetylcholine currents in cultured postnatal rat hippocampal neurons. Mol Pharm 41:931–936

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berg, D.K., Shoop, R.D., Chang, K.T., Cuevas, J. (2000). Nicotinic Acetylcholine Receptors in Ganglionic Transmission. In: Clementi, F., Fornasari, D., Gotti, C. (eds) Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57079-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57079-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63027-9

  • Online ISBN: 978-3-642-57079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics