Skip to main content

The Function of Nitric Oxide in the Immune System

  • Chapter
Nitric Oxide

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 143))

Abstract

Nitric oxide (NO) research in immunology started in 1985 when Stuehr and Marietta discovered that mouse macrophages produce nitrite and nitrate in a L-arginine-dependent manner after stimulation by lipopolysaccharide (LPS) and/or cytokines in vitro (STUEHR and MARLETTA 1985). Although the biochemistry of the underlying pathway was not known at that time, the critical role of inflammatory stimuli for its induction soon led immunologists, cancer researchers, and infectious-diseases specialists to search for functions of the newly discovered macrophage metabolites. In 1987, the Schistosoma mansoni schistosomula were the first parasites shown to be destroyed by mammalian macrophages only in the presence of L-arginine (MALKIN et al. 1987). The same was found to be true for the killing of some tumor cells (HIBBS et al. 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsohn IA, Coffman RL (1995) Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection. J Immunol 155:3955–3963

    PubMed  CAS  Google Scholar 

  • Adler H, Adler B, Peveri P, Werner ER, Wachter H, Peterhans E, Jungi TW (1996) Differential regulation of inducible nitric oxide synthase production in bovine and caprine macrophages. J Infect Dis 173:971–978

    PubMed  CAS  Google Scholar 

  • Adler H, Beland JL, Del-Pan NC, Kobzik L, Brewer JP, Martin JR, Rimm IJ (1997) Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J Exp Med 185:1533–1540

    PubMed  CAS  Google Scholar 

  • Ahvazi BC, Jacobs P, Stevenson MM (1995) Role of macrophage-derived nitric oxide in suppression of lymphocyte proliferation during blood-stage malaria. J Leukoc Biol 58:23–31

    PubMed  CAS  Google Scholar 

  • Ajizian SJ, English BK, Meals EA (1999) Specific inhibitors of p38 and extracellular signal-related kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-γ. J Infect Dis 179:939–944

    PubMed  CAS  Google Scholar 

  • Ajuebor MN, Virag L, Flower RJ, Perretti M, Szabo C (1998) Role of inducible nitric oxide synthase in the regulation of neutrophil migration in zymosan-induced inflammation. Immunology 95:625–630

    PubMed  CAS  Google Scholar 

  • Akaike T, Noguchi Y, Ijiri S, Setoguchi K, Suga M, Zheng YM, Dietzschold B, Maeda H (1996) Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 93:2448–2453

    PubMed  CAS  Google Scholar 

  • Albakri QA, Stuehr DJ (1996) Intracellular assembly of inducible NO synthase is limited by NO-mediated changes in heme insertion and availability. J Biol Chem 271:5414–5421

    PubMed  CAS  Google Scholar 

  • Alberati-Giani D, Malherbe P, Riccardi-Castagnoli P, Köhler C, Denis-Donini S, Cesura AM (1997) Differential regulation of indoleamine 2,3-dioxygenase expression by nitric oxide and inflammatory mediators in IFN-γ activated murine macrophages and microglial cells. J Immunol 159:419–426

    PubMed  CAS  Google Scholar 

  • Albina JE (1995) On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukoc Biol 58:643–649

    PubMed  CAS  Google Scholar 

  • Albina JE, Abate JA, Henry WL Jr (1991) Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-γ in the induction of the nitric oxide-synthesizing pathway. J Immunol 147:144–148

    PubMed  CAS  Google Scholar 

  • Albina JE, Cui S, Mateo RB, Reichner JS (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150:5080–5085

    PubMed  CAS  Google Scholar 

  • Albina JE, Henry WL, Mastrofrancesco B, Martin B-A, Reichner JS (1995) Macrophage activation by culture in an anoxic environment. J Immunol 155:4391–4396

    PubMed  CAS  Google Scholar 

  • Alleva DG, Burger CJ, Elgert KD (1994) Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-α production. Role of tumor-derived IL-10, TGF-β and prostaglandin E2. J Immunol 153:1674–1686

    PubMed  CAS  Google Scholar 

  • Allison AC (1978) Mechanisms by which activated macrophages inhibit lymphocyte responses. Immunological Rev 40:3–27

    CAS  Google Scholar 

  • Alonso A, Carvalho J, Alonso-Torre SR, Nunez L, Bosca L, Crespo MS (1995) Nitric oxide synthesis in rat peritoneal macrophages is induced by IgE/DNP complexes and cyclic AMP analogues. J Immunol 154:6475–6483

    PubMed  CAS  Google Scholar 

  • Ambs S, Merriam WG, Ogunfusika MO, Bennett WP, Ishibe N, Hussain P, Tzeng EE, Geller DA, Billiar TR, Harris CC (1998) p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Medicine 4:1371–1376

    CAS  Google Scholar 

  • Amin AR, Vyas P, Attur M, Leszczynska-Piziak J, Patel IR, Weissmann G, Abramson SB (1995) The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci USA 92:7926–7930

    PubMed  CAS  Google Scholar 

  • Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN, Patel IR, Abramson SB (1996) A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci USA 93:14014–14019

    PubMed  CAS  Google Scholar 

  • Andonegui G, Trevani AS, Gamberale R, Carreras MC, Poderoso JJ, Giordano M, Geffner JR (1999) Effect of nitric oxide donors on oxygen-dependent cytotoxic responses by neutrophils. J Immunol, in press

    Google Scholar 

  • Andrew PJ, Harant H, Lindley IJD (1999) Upregulation of interleukin-1β-stimulated interleukin-8 in human keratinocytes by nitric oxide. Biochem Pharmacol 57: 1423–1429

    PubMed  CAS  Google Scholar 

  • Andrew PJ, Harant H, Lindley IJ (1995) Nitric oxide regulates IL-8 expression in melanoma cells at the transcriptional level. Biochem Biophys Res Commun 214:949–956

    PubMed  CAS  Google Scholar 

  • Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Arnelle DR, Hollis D, McDonald MI, Granger DL (1996) Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184:557–567

    PubMed  CAS  Google Scholar 

  • Appelberg R (1995) Opposing effects of interleukin-10 on mouse macrophage functions. Scand J Immunol 41:539–544

    PubMed  CAS  Google Scholar 

  • Asano K, Chee CBE, Gaston B, Lilly CM, Gerard C, Drazen JM, Stamler JS (1994) Constitutive and inducible nitric oxide synthase gene expression, regulation, and activity in human lung epithelial cells. Proc Natl Acad Sci USA 91:10089–10093

    PubMed  CAS  Google Scholar 

  • Assreuy J, Cunha FQ, Liew FY, Moncada S (1993) Feedback inhibition of nitric oxide synthase by nitric oxide. Br J Pharmacol 108:833–837

    PubMed  CAS  Google Scholar 

  • Assreuy J, Cunha FQ, Epperlein M, Noronha-Dutra A, O’Donnell CA, Liew FY, Moncada S (1994) Production of nitric oxide and Superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol 24:672–676

    PubMed  CAS  Google Scholar 

  • Attur MG, Patel RN, Abramson SB, Amin SR (1997) Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. Arthritis Rheum 40: 1050–1053

    PubMed  CAS  Google Scholar 

  • Badger AM, Cook MN, Lark MW, Newman-Tarr TM, Swift BA, Nelson AH, Barone FC, Kumar S (1998) SB203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. J Immunol 161:467–473

    PubMed  CAS  Google Scholar 

  • Barna M, Komatsu T, Reiss CS (1996) Activation of type III nitric oxide synthase in astrocytes following a neurotropic viral infection. Virology 15:332–343

    Google Scholar 

  • Barnes PJ, Liew FY (1995) Nitric oxide and asthmatic inflammation. Immunol Today 3:128–130

    Google Scholar 

  • Bayon Y, Alonso A, Crespo MS (1997) Stimulation of Fcγreceptors in rat peritoneal macrophages induces the expression of nitric oxide synthase and chemokines by mechanisms showing different sensitivities to antioxidants and nitric oxide donors. J Immunol 159:887–894

    PubMed  CAS  Google Scholar 

  • Becherel P-A, Mossalayi MD, Quaaz F, Le Goff L, Dugas B, Paul-Eugene N, Frances C, Chosidow O, Kilchherr E, Guillosson J-J, Debre P, Arock M (1994) Involvement of cyclic AMP and nitric oxide in IgE-dependent activation of FcεRII/CD23+ normal human keratinocytes. J Clin Invest 93:2275–2279

    PubMed  CAS  Google Scholar 

  • Beck K-F, Sterzel RB (1996) Cloning and sequencing of the proximal promoter of the rat iNOS gene: activation of NFκB is not sufficient for transcription of the iNOS gene in rat mesangial cells. FEBS Letters 394:263–267

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  CAS  Google Scholar 

  • Berendji D, Kolb-Bachofen V, Zipfel PF, Skerka C, Carlberg C, Kröncke K-D (1999) Zinc finger transcription factor as molecular target for nitric oxide-mediated immunosuppression: inhibition of IL-2 gene expression in lymphocytes. Mol Med 5:721–730

    PubMed  CAS  Google Scholar 

  • Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R (1994) Purification, bioactivity and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry 33:14144–14155

    PubMed  CAS  Google Scholar 

  • Betz-Corradin S, Mauël J (1991) Phagocytosis of Leishmania enhances macrophage activation by IFN-γand lipopolysaccharide. J Immunol 146:279–285

    Google Scholar 

  • Betz-Corradin S, Fasel N, Buchmüller-Rouiller Y, Ransijn A, Smith J, Mauël J (1993a) Induction of macrophage nitric oxide production by interferon-γand tumor necrosis factor-α is enhanced by interleukin-10. Eur J Immunol 23:2045–2048

    Google Scholar 

  • Betz-Corradin S, Mauel J, Donini SD, Quattrochi E, Ricciardi-Castagnoli P (1993b) Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia 7:255–262

    Google Scholar 

  • Bidri M, Ktorza S, Vouldoukis I, Le Goff L, Debre P, Guillosson J-J, Arock M (1997) Nitric oxide pathway is induced by FcεRI and up-regulated by stem cell factor in mouse mast cells. Eur J Immunol 27:2907–2913

    PubMed  CAS  Google Scholar 

  • Billiar TR, Curran RD, Stuehr DJ, West MA, Bentz BG, Simmons RL (1989) An L-arginine-dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med 169:1467–1472

    PubMed  CAS  Google Scholar 

  • Bingisser RM, Tilbrook PA, Holt PG, Kees UR (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/Stat5 signaling pathway. J Immunol 160:5729–5734

    PubMed  CAS  Google Scholar 

  • Biron CA, Gazzinelli RT (1995) Effects of IL-12 in immune responses to microbial infections: a key mediator in regulating disease outcome. Curr Opin Immunol 7:485–496

    PubMed  CAS  Google Scholar 

  • Blank C, Bogdan C, Bauer C, Erb K, Moll H (1996) Murine epidermal Langerhans cells do not express inducible nitric oxide synthase. Eur J Immunol 26:792–796

    PubMed  CAS  Google Scholar 

  • Bocca AL, Hayashi EE, Pinheiro AG, Furlanetto AB, Campanelli AP, Cunha FQ, Figueiredo F (1998) Treatment of Paracoccidioides brasiliensis-infecttd mice with a nitric oxide inhibitor prevents the failure of cell-mediated immune response. J Immunol 161:3056–3063

    PubMed  CAS  Google Scholar 

  • Bogdan C (1997) Of microbes, macrophages and NO. Behring Inst Res Commun 99:58–72

    CAS  Google Scholar 

  • Bogdan C (1998) The multiplex function of nitric oxide in (auto)immunity. J Exp Med 9:1361–1365

    Google Scholar 

  • Bogdan C, Nathan C (1993) Modulation of macrophage function by transforming growth factor-β, interleukin 4 and interleukin 10. Ann New York Acad Sci 685:713–739

    CAS  Google Scholar 

  • Bogdan C, Röllinghoff M (1999) How do protozoan parasites survive inside macrophages? Parasitol Today 15:22–28

    PubMed  CAS  Google Scholar 

  • Bogdan C, Vodovotz Y, Xie Q-W, Nathan C, Röllinghoff M (1994) Regulation of inducible nitric oxide synthase in macrophages by cytokines and microbial products. In: Masihi N (eds) Immunotherapy of Infections. Marcel Dekker, New York, pp 37–54

    Google Scholar 

  • Bogdan C, Thüring H, Dlaska M, Röllinghoff M, Weiss G (1997) Mechanism of suppression of macrophage nitric oxide release by IL-13. J Immunol 159:4506–4513

    PubMed  CAS  Google Scholar 

  • Bonecini-Almeida MG, Chitale S, Boutsikakis I, Geng J, Doo H, He S, Ho JL (1998) Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity: requirement for IFN-γand primed lymphocytes. J Immunol 160:4490–4499

    PubMed  CAS  Google Scholar 

  • Bosca L, Lazo PA (1994) Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages. J Exp Med 179:1119–1126

    PubMed  CAS  Google Scholar 

  • Braun JS, Novak R, Gao G, Murray PJ, Shenep JL (1999) Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect Immun 67:3750–3756

    PubMed  CAS  Google Scholar 

  • Brightbill HD, Libraty DH, Krutzik SR, Yang R-B, Belisle JT, Bleharski Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–734

    PubMed  CAS  Google Scholar 

  • Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxinitrite-driven apoptotic death. J Immunol 162:3356–3366

    PubMed  CAS  Google Scholar 

  • Brockhaus F, Brune B (1998) U937 apoptotic cell death by nitric oxide: bcl-2 downregulation and caspase activation. Exp Cell Res 238:33–41

    PubMed  CAS  Google Scholar 

  • Bruch-Gerharz D, Fehsel K, Suschek C, Michel G, Ruzicka T, Kolb-Bachofen V (1996) A pro-inflammatory activity of interleukin 8 in human skin: expression of the inducible nitric oxide synthase in psoriatic lesions and cultured keratinocytes. J Exp Med 184:2007–2012

    PubMed  CAS  Google Scholar 

  • Bulut V, Severn A, Liew FY (1992) Nitric oxide production by murine macrophages is inhibited by prolonged elevation of cyclic AMP. Biochem Biophys Res Commun 195:1134–1138

    Google Scholar 

  • Burgner D, Xu W, Rockett K, Gravenor M, Charles IG, Hill AV, Kwiatkowski D (1998) Inducible nitric oxide synthase polymorphism and fatal cerebral malaria. Lancet 352:1193–1194

    PubMed  CAS  Google Scholar 

  • Calmels S, Hainaut P, Ohshima H (1997) Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res 57:3365–3369

    PubMed  CAS  Google Scholar 

  • Camargo MM, Andrade AC, Almeida IC, Travassos LR, Gazzinelli RT (1997) Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania species membranes trigger nitric oxide synthesis as well as microbicidal activity in IFN-γ-primed macrophages. J Immunol 159:6131–6139

    PubMed  CAS  Google Scholar 

  • Campbell IL, Samimi A, Chiang C-S (1994) Expression of the inducible nitric oxide synthase: correlation with neuropathology and clinical features in mice with lymphocytic choriomeningitis. J Immunol 153:3622–3629

    PubMed  CAS  Google Scholar 

  • Candolfi E, Hunter CA, Remington JS (1994) Mitogen-and antigen-specific proliferation of T cells in murine toxoplasmosis is inhibited by reactive nitrogen intermediates. Infect Immun 62:1995–2001

    PubMed  CAS  Google Scholar 

  • Chan ED, Winston BW, Uh S-T, Wynes MW, Rose DM, Riches DWH (1999) Evaluation of the role of mitogen-activated protein kinases in the expression of inducible nitric oxide synthase by IFN-α and TNF-α in mouse macrophages. J Immunol 162:415–422

    PubMed  CAS  Google Scholar 

  • Chang R-H, Lin Feng M-H, Liu W-H, Lai M-Z (1997) Nitric oxide increased interleukin-4 expression in T lymphocytes. Immunology 90:364–369

    PubMed  CAS  Google Scholar 

  • Chao CC, Anderson WR, Hu S, Gekker G, Martella A, Peterson PK (1993) Activated microglia inhibit multiplication of Toxoplasma gondii via a nitric oxide mechanism. Clin Immunol Immunopath 67:178–183

    CAS  Google Scholar 

  • Chao CC, Gekker G, Hu S, Peterson PK (1994) Human microglial cell defense against Toxoplasma gondii. The role of cytokines. J Immunol 152:1246–1252

    PubMed  CAS  Google Scholar 

  • Charles IG, Palmer RMJ, Hickery MS, Bayliss MT, Chubb AP, Hall VS, Moss DW, Moncada S (1993) Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc Natl Acad Sci (USA) 90:11419–11423

    CAS  Google Scholar 

  • Chen B-C, Chen Y-H, Lin W-W (1999) Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology 97:124–129

    PubMed  CAS  Google Scholar 

  • Chen L, Xie Q-W, Nathan C (1998a) Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1:795–805

    PubMed  CAS  Google Scholar 

  • Chen Y, Rosazza JP (1995) Purification and characterization of nitric oxide synthase (NOSNoc) from a Nocardia species. J Bacteriol 177:5122–5128

    PubMed  CAS  Google Scholar 

  • Chen Y-Q, Fisher JH, Wang M-H (1998b) Activation of the RON receptor tyrosine kinase inhibits inducible nitric oxide synthase (iNOS) expression by murine peritoneal exudate macrophages: phosphatidylinositol-3 kinase is required for RON-mediated inhibition of iNOS expression. J Immunol 161:4950–4959

    PubMed  CAS  Google Scholar 

  • Chin K, Kurashima Y, Ogura T, Tajiri H, Yoshida S, Esumi H (1997) Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 15:437–442

    PubMed  CAS  Google Scholar 

  • Chinen T, Qureshi MH, Koguchi Y, Kawakami K (1999) Candida albicans suppresses nitric oxide (NO) production by interferon (IFN)-γand lipopolysacchride (LPS)-stimulated murine peritoneal macrophages. Clin Exp Immunol 115:491–497

    PubMed  CAS  Google Scholar 

  • Chlichia K, Peter ME, Rocha M, Scaffidi C, Bucur M, Krammer PH, Schirrmacher V, Umansky V (1998) Caspase activation is required for nitric oxide-mediated, CD95 (APO-1/Fas)-dependent and independent apoptosis in human neoplastic lymphoid cells. Blood 91:4311–4320

    Google Scholar 

  • Choi SK, Choi HK, Kadono-Okuda K, Taniai K, Kato Y, Yamamoto M, Chowdhury S, Xu J, Miyanoshita A, Debnath NC (1995) Occurrence of novel types of nitric oxide synthase in the silkworm, Bombyx mori. Biochem Biophys Res Commun 207:452–459

    PubMed  CAS  Google Scholar 

  • Christen S, Woodall AA, Shigenaga MK, Sothwell-Keely PT, Duncan MW, Ames BN (1997) 7-Tocopherol traps mutagenic electrophiles such as NOX and complements α-tocopherol: physiological implications. Proc Natl Acad Sci USA 94:3217–3222

    PubMed  CAS  Google Scholar 

  • Cifone MG, D’Alo S, Parroni R, Millimaggi D, Biordi L, Martinotti S, Santoni A (1999) Interleukin-2 activated rat natural killer cells express inducible nitric oxide synthase that contributes to cytotoxic function and interferon-y production. Blood 93:3876–3884

    PubMed  CAS  Google Scholar 

  • Cifone MG, Festuccia C, Cironi L, Cavallo G, Chessa MA, Pensa V, Tubaro E, Santoni A (1994) Induction of the nitric oxide-synthesizing pathway in fresh and interleukin-2 cultured rat natural killer cells. Cell Immunol 157:181–194

    PubMed  CAS  Google Scholar 

  • Clancy RM, Leszczynska-Piziak J, Abramson SB (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil Superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 90:1116–1121

    PubMed  CAS  Google Scholar 

  • Colville-Nash PR, Qureshi SS, Willis D, Willoughby DA (1998) Inhibition of inducible nitric oxide synthase by peroxisome proliferator-activated receptor agonists: correlation with induction of heme oxygenase 1. J Immunol 161:978–984

    PubMed  CAS  Google Scholar 

  • Cooney RV, Franke AA, Harwood PJ, Hatch-Pigott V, Custer LJ, Mordan LJ (1993) y-Tocopherol detoxification of nitrogen dioxide: superiority to α-tocopherol. Proc Natl Acad Sci USA 90:1771–1775

    PubMed  CAS  Google Scholar 

  • Corbett JA, McDaniel ML (1995) Intraislet release of interleukin 1 inhibits β cell function by inducing β cell expression of inducible nitric oxide synthase. J Exp Med 181:559–568

    PubMed  CAS  Google Scholar 

  • Corriveau CC, Madara PJ, Van Dervort AL, Tropea MM, Wesley RA, Danner RL (1998) Effects of nitric oxide on chemotaxis and endotoxin-induced interleukin-8 production in human neutrophils. J Infect Dis 177:116–126

    PubMed  CAS  Google Scholar 

  • Coulson PS, Smythies LE, Betts C, Mabbott NA, Sternberg JM, Wei X-G, Liew FY (1998) Nitric oxide produced in the lungs of mice immunized with the radiationattenuated schistosome vaccine is not the major agent casuing challenge parasite elimination. Immunology 93:55–63

    PubMed  CAS  Google Scholar 

  • Cruz MT, Carmo A, Carvalho AP, Lopes MC (1998) Calcium-dependent nitric oxide synthase activity in rat thymocytes. Biochem Biophys Res Commun 248:98–103

    PubMed  CAS  Google Scholar 

  • D’Agostino P, La Rosa M, Barbera C, Arcoleo F, Di Bella G, Milano S, Cillari E (1998) Doxycycline reduces mortality to lethal endotoxemia by reducing nitric oxide synthesis via an interleukin 10-independent mechanism. J Infect Dis 177:489–492

    PubMed  Google Scholar 

  • Dai WJ, Gottstein B (1999) Nitric oxide-mediated immunosuppression following murine Echinococcus multilocularis infection. Immunology 97:107–116

    PubMed  CAS  Google Scholar 

  • Dai WJ, Bartens W, Köhler G, Hufnagel M, Kopf M, Brombacher F (1997) Impaired macrophage listericidal and cytokine activities are responsible for the rapid death of Listeria monocytogenes-infected IFN-γ receptor-deficient mice. J Immunol 158:5297–5304

    PubMed  CAS  Google Scholar 

  • Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA (1993) Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259:1739–1742

    PubMed  CAS  Google Scholar 

  • Däubener W, Hadding U (1997) Cellular immune reactions directed against Toxoplasma gondii with special emphasis on the central nervous system. Med Microbiol Immunol 185:195–206

    PubMed  Google Scholar 

  • Däubener W, Mackenzie CR, Posdziech V, Hadding U (1999) Inducible anti-parasitic effector mechanisms in human uroepithelial cells: tryptophan degradation vs NO production. Med Microbiol Immunol 187:143–147

    PubMed  Google Scholar 

  • De Caterina R, Libby P, Peng H-B, Thannickal VJ, Rajavashisth TB, Gimbrone MA, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and pro-inflammatory cytokines. J Clin Invest 96:60–68

    PubMed  Google Scholar 

  • De Maria R, Cifone MG, Trotta R, Rippo MR, Festuccia C, Santoni A, Testi R (1995) Triggering of human monocyte activation through CD69, a member of the natural killer cell gene complex family of signal transducing receptors. J Exp Med 180:1999–2004

    Google Scholar 

  • Deakin AM, Payne AN, Whittle BJR, Moncada S (1995) The modulation of IL-6 and TNF-α release by nitric oxide following stimulation of J774 cells with LPS and IFN-γ. Cytokine 7:408–416

    PubMed  CAS  Google Scholar 

  • Del Pozo V, de Arruda-Chaves E, De Andres B, Cardaba B, Lopez-Farre A, Gallardo S, Cortegano I, Vidarte L, Jurado A, Sastre J, Palomino P, Lahoz C (1997) Eosinophils transcribe and translate messenger RNA for inducible nitric oxide synthase. J Immunol 158:859–864

    PubMed  CAS  Google Scholar 

  • de la Torre A, Schroeder RA, Punzalan C, Kuo PC (1999) Endotoxin-mediated Snitrosylation of p50 alters NF-κB-dependent gene transcription in ANA-1 murine macrophages. J Immunol 162:4101–4108

    Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    PubMed  CAS  Google Scholar 

  • Denicola A, Rubbo H, Rodriguez D, Radi R (1993) Peroxinitrite-mediated cytotoxicity to Trypanosoma cruzi. Arch Biochem Biophys 304:279–286

    PubMed  CAS  Google Scholar 

  • Denlinger LC, Fisette PL, Garis KA, Kwon G, Vazquez-Torres A, Simon AD, Nguyen B, Proctor RA, Bertics PJ, Corbett JA (1996) Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J Biol Chem 271:337–342

    PubMed  CAS  Google Scholar 

  • Diaz-Guerra MJM, Castrillo A, Martin-Sanz P, Bosca L (1999a) Negative regulation by phosphatidyl-inositol 3-kinase of inducible nitric oxide synthase expression by macrophages. J Immunol 162:6184–6190

    PubMed  CAS  Google Scholar 

  • Diaz-Guerra MJM, Castrillo A, Martin-Sanz P, Bosca L (1999b) Negative regulation by protein tyrosine phosphatase of IFN-γ-dependent expression of inducible nitric oxide synthase. J Immunol 162:6776–6783

    PubMed  CAS  Google Scholar 

  • Diefenbach A, Schindler H, Donhauser N, Lorenz E, Laskay T, MacMicking J, Röllinghoff M, Gresser I, Bogdan C (1998) Type 1 interferon (IFN-α/β) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity 8:77–87

    PubMed  CAS  Google Scholar 

  • Diefenbach A, Schindler H, Röllinghoff M, Yokoyama W, Bogdan C (1999) Requirement for type 2 NO-synthase for IL-12 responsiveness in innate immunity. Science 284:951–955

    PubMed  CAS  Google Scholar 

  • Dimmeier S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1β-con verting enzyme (ICE)-like and cysteine protein (CPP)-32-like proteases. J Exp Med 185:601–607

    Google Scholar 

  • Dimmeler S, Haendeler J, Sause A, Zeiher AM (1998) Nitric oxide inhibits APO-1/Fasmediated cell death. Cell Growth Differ 9:415–422

    PubMed  CAS  Google Scholar 

  • Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412

    PubMed  CAS  Google Scholar 

  • Ding M, St. Pierre BA, Parkinson JF, Medberry P, Wong JL, Rogers NE, Ignarro LJ, Merrill JE (1997) Inducible nitric oxide synthase and nitric oxide production in human fetal astrocytes and microglia. A kinetic analysis. J Biol Chem 272:11327–11335

    PubMed  CAS  Google Scholar 

  • Doherty TM, Sher A (1997) Defects in cell-mediated immunity affect chronic, but not innate resistance of mice to Mycobacterium avium infection. J Immunol 158:4822–4831

    PubMed  CAS  Google Scholar 

  • Doherty TM, Sher A, Vogel SN (1998) Paclitaxel (taxol)-induced killing of Leishmania major in murine macrophages. Infect Immun 66:4553–4556

    PubMed  CAS  Google Scholar 

  • Dong Z, Yang X, Xie K, Juang S-H, Llansa N, Fidler IJ (1995) Activation of inducible nitric oxide synthase gene in murine macrophages requires protein phosphatases 1 and 2A. L Leukoc Biol 58:725–732

    CAS  Google Scholar 

  • Downing JEG, Virag L, Jones IW (1998) NADPH diaphorase-positive dendritic profiles in rat thymus are discrete from autofluorescent cells, immunoreactive for inducible nitric oxide synthase, and show strain-specific abundance differences. Immunology 95:148–155

    PubMed  CAS  Google Scholar 

  • Drapier J-C, Hibbs JB (1988) Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol 140:2829–2838

    PubMed  CAS  Google Scholar 

  • Dugas N, Vouldoukis I, Becherel P, Arock M, Debre P, Tardieu M, Mossalayi DM, Delfraissy JF, Kolb JP, Dugas B (1996) Triggering of CD23b antigen by anti-CD23 monoclonal antibodies induces interleukin-10 production by human macrophages. Eur J Immunol 26:1394–1398

    PubMed  CAS  Google Scholar 

  • Duhé RJ, Evans GA, Erwin RA, Kirken RA, Cox GW, Farrar WL (1998) Nitric oxide and thiol redox regulation of Janus kinase activity. Proc Natl Acad Sci USA 95:126–131

    PubMed  Google Scholar 

  • Durbin JE, Hackenmüller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Statl gene results in compromised innate immunity to viral disease. Cell 84:443–450

    PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic AMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    PubMed  CAS  Google Scholar 

  • Eastmond NC, Banks EMS, Coleman JW (1997) Nitric oxide inhibits IgE-mediated degranulation of mast cells and is the principal intermediate in IFN-γ-induced suppression of exocytosis. J Immunol 159:1444–1450

    PubMed  CAS  Google Scholar 

  • Ehlers S, Kutsch S, Benini J, Cooper A, Hahn C, Gerdes J, Orme I, Martin C, Rietschel ET (1999) NOS2-derived nitric oxide regulates the size, quantity and quality of granuloma formation in Mycobacterium avium-infected mice without affecting bacterial loads. Immunol 98:313–323

    CAS  Google Scholar 

  • Ehrt S, Shiloh MU, Ruan J, Choi M, Gunzburg S, Nathan C, Xie Q-W, Riley LW (1997) A novel antioxidant gene from Mycobacterium tuberculosis. J Exp Med 186:1885–1896

    PubMed  CAS  Google Scholar 

  • Eigler A, Sinha B, Endres S (1993) Nitric oxide-releasing agents enhance cytokineinduced tumor necrosis factor synthesis in human mononuclear cells. Biochem Biophys Res Commun 196:494–501

    PubMed  CAS  Google Scholar 

  • Eigler A, Moeller J, Endres S (1995) Exogenous and endogenous nitric oxide attenuates tumor necrosis factor synthesis in the murine macrophage cell line RAW 264.7. J Immunol 154:4048–4054

    PubMed  CAS  Google Scholar 

  • Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, Van der Vliet A (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    PubMed  CAS  Google Scholar 

  • Endoh M, Maiese K, Wagner J (1994) Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res 651:92–100

    PubMed  CAS  Google Scholar 

  • Evans TJ, Buttery LDK, Carpenter A, Springall DR, Polak JM, Cohen J (1996) Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci USA 93:9553–9558

    PubMed  CAS  Google Scholar 

  • Fang FC (1997) Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818–2825

    PubMed  CAS  Google Scholar 

  • Favre N, Ryffel B, Rudin W (1999) The development of murine cerebral malaria does not require nitric oxide production. Parasitology 118:135–138

    PubMed  CAS  Google Scholar 

  • Fehr T, Schoedon G, Odermatt B, Holtschke T, Schneemann M, Bachmann ME, Mak TW, Horak I, Zinkernagel RM (1997) Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J Exp Med 185:921–931

    PubMed  CAS  Google Scholar 

  • Fehsel K, Kröncke K-D, Meyer KL, Huber H, Wahn V, Kolb-Bachofen V (1995) Nitric oxide induces apoptosis in mouse thymocytes. J Immunol 155:2858–2865

    PubMed  CAS  Google Scholar 

  • Fernandez-Gomez R, Esteban S, Gomez-Corvera R, Zoulika K, Quaissi A (1998) Trypanosoma cruzi: Tc52 released protein-induced increased expression of nitric oxide synthase and nitric oxide production by macrophages. J Immunol 160:3471–3479

    PubMed  CAS  Google Scholar 

  • Flak TA, Goldman WE (1999) Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol 1:51–60

    PubMed  CAS  Google Scholar 

  • Fleming I, Gray GA, Schott C, Stoclet JC (1991) Inducible but not constitutive production of nitric oxide by vascular smooth muscle cells. Eur J Pharmacol 200:375–376

    PubMed  CAS  Google Scholar 

  • Florquin S, Amraoui Z, Dubois C, Decuyper J, Goldman M (1994) The protective role of endogenously synthesized nitric oxide in staphylococcal enterotoxin B-induced shock in mice. J Exp Med 180:1153–1158

    PubMed  CAS  Google Scholar 

  • Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, Felley-Bosco E, Wang XW, Geller DA, Tzeng E, Billiar TR, Harris CC (1996) Nitric oxideinduced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93:2442–2447

    PubMed  CAS  Google Scholar 

  • Förstermann U, Boissel JP, Kleinert H (1998) Expressional control of the “constitutive” isoforms of nitric oxide synthase (NOSI and NOSIII). Faseb J 12:773–790

    PubMed  Google Scholar 

  • Fujihara M, Connolly N, Ito N, Suzuki T (1994a) Properties of protein kinase C isoforms (βII, ε, and ξ) in a macrophage cell line (J774) and their roles in LPS-induced nitric oxide production. J Immunol 152:1898–1906

    PubMed  CAS  Google Scholar 

  • Fujihara M, Ito N, Pace JL, Watanabe Y, Russell SW, Suzuki T (1994b) Role of endogenous IFN-β in lipopolysaccharide-triggered activation of the inducible nitric oxide synthase gene in a mouse macrophage cell line, J774. J Biol Chem 269:12773–12778

    PubMed  CAS  Google Scholar 

  • Fujii H, Ichimori K, Hoshiai K, Nakazawa H (1997) Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem 272:32773–32778

    PubMed  CAS  Google Scholar 

  • Galea E, Feinstein DL, Reis DJ (1992) Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc Natl Acad Sci USA 89:10945–10949

    PubMed  CAS  Google Scholar 

  • Gao J, Morrison DC, Parmely TJ, Russell SW, Murphy WJ (1997) An interferon-γ-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-γ and lipopolysaccharide. J Biol Chem 272:1226–1230

    PubMed  CAS  Google Scholar 

  • Gao JJ, Filla MB, Fultz MJ, Vogel SN, Russell SW, Murphy WJ (1998) Autocrine/paracrine IFN-α/γ mediates the lipopolysaccharide-induced activation of transcription factor Statl α in mouse macrophages: pivotal role of Statl α in induction of the inducible nitric oxide synthase gene. J Immunol 161:4803–4810

    PubMed  CAS  Google Scholar 

  • Gao JJ, Zuvanich EG, Xue Q, Horn DL, Silverstein R, Morrison DC (1999) Cutting Edge: Bacterial DNA and LPS act in synergy in inducing nitric oxide production in RAW264.7 macrophages. J Immunol 163:4095–4099

    PubMed  CAS  Google Scholar 

  • Geller DA, de Vera ME, Russell DA, Shapiro RA, Nussler AK, Simmons RL, Billiar TR (1995) A central role for IL-1β in the in vitro and in vivo regulation of hepatic inducible nitric oxide synthase: IL-1β induces hepatic nitric oxide synthesis. J Immunol 155:4890–4898

    PubMed  CAS  Google Scholar 

  • Genaro AM, Hortelano S, Alvarez A, Martinez C, Bosca L (1995) Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J Clin Invest 95:1884–1890

    PubMed  CAS  Google Scholar 

  • Ghigo D, Todde R, Ginsburg H, Costamagna C, Gautret P, Bussolino F, Ulliers D, Giribaldi G, Deharo E, Gabrielli G, Pescarmona G, Bosia A (1995) Erythrocyte stages of Plasmodium falciparum exhibit a high Nitric oxide synthase (NOS) activity and release an NOS-inducing soluble factor. J Exp Med 182:677–688

    PubMed  CAS  Google Scholar 

  • Giese NA, Gabriele L, Doherty TM, Klinman DM, Tadesse-Heath L, Contursi C, Epstein SL, Morse HC (1997) Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J Exp Med 186:1535–1546

    PubMed  CAS  Google Scholar 

  • Gilkeson GS, Mudgett JS, Seldin MF, Ruiz P, Alexander AA, Misukonis MA, Pisetsky DS, Weinberg JB (1997) Clinical and serologie manifestations of autoimmune disease in MRL-lpr/lpr mice lacking nitric oxide synthase type 2. J Exp Med 186:365–373

    PubMed  CAS  Google Scholar 

  • Gold R, Zielasek J, Kiefer R, Toyka KV, Hartung H-P (1996) Secretion of nitrite by Schwann cells and its effect on T-cell activation in vitro. Cell Immunol 168:69–77

    PubMed  CAS  Google Scholar 

  • Gomes MS, Florido M, Pais TF, Appelberg R (1999) Improved clearance of Mycobacterium avium upon disruption of the inducible nitric oxide synthase gene. J Immunol 162:6734–6739

    PubMed  CAS  Google Scholar 

  • Goodrum KJ, Dierksheide J, Yoder BJ (1995) Tumor necrosis factor α acts as an autocrine second signal with γ interferon to induce nitric oxide in group B streptococcus-treated macrophages. Infect Immun 63:3715–3717

    PubMed  CAS  Google Scholar 

  • Gow AJ, Stamler JS (1998) Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391:169–173

    PubMed  CAS  Google Scholar 

  • Gregory SH, Wing EJ, Hoffman RA, Simmons RL (1993) Reactive nitrogen intermediates suppress the primary immunologic response to Listeria. J Immunol 150:2901–2909

    PubMed  CAS  Google Scholar 

  • Griscavage JM, Rogers NE, Sherman MP, Ignarro LJ (1993) Inducible nitric oxide synthase from a rat alveolar macrophage cell line is inhibited by nitric oxide. J Immunol 151:6329–6337

    PubMed  CAS  Google Scholar 

  • Gross SS, Jaffe EA, Levi R, Kilbourn RG (1991) Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterindependent, calmodulin-independent and inhibited by arginine analogs with a rank order of potency characteristic of activated macrophages. Biochem Biophys Res Commun 178:823–829

    PubMed  CAS  Google Scholar 

  • Guan Z, Baier LD, Morrison AR (1997) p38 Mitogen-activated protein kinase downregulates nitric oxide and up-regulates prostaglandin E2 biosynthesis stimulated by interleukin-1β. J Biol Chem 272:8083–8089

    PubMed  CAS  Google Scholar 

  • Guo FH, de Raeve HR, Rice TW, Stuehr DJ, Thunnissen FBJM, Erzurum SC (1995) Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci USA 92:7809–7813

    PubMed  CAS  Google Scholar 

  • Harbrecht BG, Billiar TR, Stadler J, Demetris AJ, Ochoa J, Curran RD, Simmons RL (1992) Inhibition of nitric oxide synthesis during endotoxemia promotes intrahepatic thrombosis and an oxygen radical-mediated hepatic injury. J Leukoc Biol 52:390–394

    PubMed  CAS  Google Scholar 

  • Hasko G, Szabo C, Nemeth ZH, Kvetan V, McCarthy Pastores S, Vizi ES (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-α, and nitric oxide production in RAW264.7 macrophages and in endotoxemic mice. J Immunol 157:4634–4640

    PubMed  CAS  Google Scholar 

  • Hatzigeorgiou DE, He S, Sobel J, Grabstein KH, Haffner A, Ho JL (1993) IL-6 downmodulates the cytokine-enhanced antileishmanial activity in human macrophages. J Immunol 151:3682–3692

    PubMed  CAS  Google Scholar 

  • Hauschildt S, Bessler WG, Scheipers P (1993) Engagement of major histocompatibility complex class II molecules leads to nitrite production in bone marrow-derived macrophages. Eur J Immunol 23:2988–2992

    PubMed  CAS  Google Scholar 

  • Häuselmann HJ, Stefanovic-Racic M, Michel BA, Evans CH (1998) Differences in nitric oxide production by superficial and deep human articular chondrocytes: implications for proteoglycan turnover in inflammatory joint diseases. J Immunol 160:1444–1448

    PubMed  Google Scholar 

  • Hausladen A, Stamler JS (1998) Nitric oxide in plant immunity. Proc Natl Acad Sci USA 95:10345–10347

    PubMed  CAS  Google Scholar 

  • Hebestreit H, Dibbert B, Balatti I, Braun D, Schapowal A, Blaser K, Simon H-U (1998) Disruption of Fas receptor signaling by nitric oxide in eosinophils. J Exp Med 187:415–425

    PubMed  CAS  Google Scholar 

  • Heck DE, Laskin DL, Gardner CR, Laskin JD (1992) Epidermal Growth Factor suppresses nitric oxide and hydrogen peroxide formation by keratinocytes. J Biol Chem 267:21277–21280

    PubMed  CAS  Google Scholar 

  • Heiss LN, Lancaster JR, Corbett JA, Goldman WE (1994) Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc Natl Acad Sci USA 91:267–270

    PubMed  CAS  Google Scholar 

  • Henson SE, Nichols TC, Holers VM, Karp DR (1999) The ectoenzyme g-glutamyl transpeptidase regulates antiproliferative effects of S-nitrosoglutathione on human T and B lymphocytes. J Immunol 163:1845–1852

    PubMed  CAS  Google Scholar 

  • Hertz CJ, Mansfield JM (1999) IFN-γ-dependent nitric oxide production is not linked to resistance in experimental african trypanosomiasis. Cell Immunol 192:24–32

    PubMed  CAS  Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role of L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476

    PubMed  CAS  Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157:87–94

    PubMed  CAS  Google Scholar 

  • Hibbs JB Jr, Westenfelder C, Taintor R, Vavrin Z, Kablitz C, Baranowski RL, Ward JH, Menlove RL, McMurry MP, Kushner JP, Samlowski WE (1992) Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J Clin Invest 89:867–877

    PubMed  Google Scholar 

  • Hierholzer C, Harbrecht B, Menezes J, Kane J, MacMicking J, Nathan CF, Peitzman A, Billiar TR, Tweardy DJ (1998) Essential role of induced nitric oxide in the initiation of the inflammatory response following hemorrhagic shock. J Exp Med 187:917–928

    PubMed  CAS  Google Scholar 

  • Hill JR, Corbett JA, Kwon G, Marshall CA, McDaniel ML (1996) Nitric oxide regulates IL-1 bioactivity released from murine macrophages. J Biol Chem 271:22672–22678

    PubMed  CAS  Google Scholar 

  • Hirji N, Lin T-J, Bissonnette E, Belosevic M, Befus AD (1998) Mechanisms of macrophage stimulation through CD8:macrophage CD8α and CD8β induce nitric oxide production and associated killing of the parasite Leishmania major. J Immunol 160:6004–6011

    PubMed  CAS  Google Scholar 

  • Hoffman RA, Langrehr JM, Billiar TR, Curran RD, Simmons RL (1990) Alloantigeninduced activation of rat splenocytes is regulated by the oxidative metabolism of L-arginine. J Immunol 145:2220–2226

    PubMed  CAS  Google Scholar 

  • Hoffman RA, Langrehr JM, Wren SM, Dull KE, Ildstad ST, McCarthy SA, Simmons RL (1993) Characterization of the immunosuppressive effects of nitric oxide in graft vs host disease. J Immunol 151:1508–1518

    PubMed  CAS  Google Scholar 

  • Hogaboam CM, Chensue SW, Steinhauser ML, Huffnagle GB, Lukacs NW, Strieter RM, Kunkel SL (1997) Alteration of the cytokine phenotype in an experimental lung granuloma model by inhibiting nitric oxide. J Immunol 159:5585–5593

    PubMed  CAS  Google Scholar 

  • Hölscher C, Köhler G, Möller U, Mossmann H, Schaub GA, Brombacher F (1998) Defective nitric oxide effector functions lead to extreme susceptibility of Trypanosoma crwzi-infected mice deficient in γ interferon receptor or inducible nitric oxide synthase. Infect Immun 66:1208–1215

    PubMed  Google Scholar 

  • Hooper DC, Bagasra O, Marini JC, Zborek A, Ohnishi ST, Kean R, Champion JM, Sarker AB, Bobroski L, Farber JL, Akaike T, Maeda H, Koprowski H (1997) Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxinitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci USA 94:2528–2533

    PubMed  CAS  Google Scholar 

  • Hortelano S, Genaro AM, Bosca L (1992) Phorbol esters induce nitric oxide synthase activity in rat hepatocytes. Antagonism with the induction elicited by lipopolysaccharide. J Biol Chem 267:24937–24940

    PubMed  CAS  Google Scholar 

  • Huang F-P, Niedbala W, Wei X-Q, Xu D, Feng G-J, Robinson JH, Lam C, Liew FY (1998a) Nitric oxide regulates Thl cell development through the inhibition of IL-12 synthesis by macrophages. Eur J Immunol 28:4062–4070

    PubMed  CAS  Google Scholar 

  • Huang F-P, Xu D, Esfandiari E-O, Sands W, Wei X-Q, Liew FY (1998b) Mice defective in Fas are highly susceptible to Leishmania major infection despite elevated IL-12 synthesis, strong Th responses, and enhanced nitric oxide production. J Immunol 160:4143–4147

    PubMed  CAS  Google Scholar 

  • Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M (1993) Immune response in mice that lack the interferon-y receptor. Science 259:1742–1744

    PubMed  CAS  Google Scholar 

  • Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4+ T cells in the antitumor immune response. J Exp Med 188:2357–2368

    PubMed  CAS  Google Scholar 

  • Ianaro A, O’Donnell CA, Di Rosa M, Liew FY (1994) A nitric oxide synthase inhibitor reduces inflammation, down-regulates inflammatory cytokines and enhances IL-10 production in carrageenin-induced oedema in mice. Immunology 82:370–375

    PubMed  CAS  Google Scholar 

  • Igietseme JU, Perry LL, Ananaba GA, Uriri IM, Ojior O, Kumar SN, Caldwell HD (1998) Chlamydial infection in inducible nitric oxide synthase knockout mice. Infect Immun 66:1282–1286

    PubMed  CAS  Google Scholar 

  • Iikura M, Takaishi T, Hirai K, Yamada H, Iida M, Koshino T, Morita Y (1998) Exogenous nitric oxide regulates the degranulation of human basophils and rat peritoneal mast cells. Int Arch Allergy Immunol 115:129–136

    PubMed  CAS  Google Scholar 

  • Imai T, Hirata Y, Kanno K, Marumo F (1994) Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells. J Clin Invest 93:543–549

    PubMed  CAS  Google Scholar 

  • Ito M, Watanabe M, Kamiya H, Sakurai M (1996) Inhibition of natural killer cell activity against cytomegalovirus-infected fibroblasts by nitric oxide-releasing agents. Cell Immunol 174:13–18

    PubMed  CAS  Google Scholar 

  • Jacobs F, Chaussabel D, Truyens C, Leclerq V, Carlier Y, Goldman M, Vray B (1998) IL-10 up-regulates NO synthesis by LPS-activated macrophages: improved control of Trypanosoma cruzi infection. Clin Exp Immunol 113:59–64

    PubMed  CAS  Google Scholar 

  • James SL, Cheever AW, Caspar P, Wynn TA (1998) Inducible nitric oxide synthasedeficient mice develop enhanced type 1 cytokine-associated cellular and humoral immune responses after vaccination with attenuated Schistosoma mansoni cercariae but display partially reduced resistance. Infect Immun 66:3510–3518

    PubMed  CAS  Google Scholar 

  • Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 92:4392–4396

    PubMed  CAS  Google Scholar 

  • Jones-Carson J, Vazquez-Torres A, Van der Heyde HC, Warner T, Wagner RD, Balish E (1995) γδ-T-cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat Med 1:552–557

    PubMed  CAS  Google Scholar 

  • Jungi TW, Pfister H, Sager H, Fatzer R, Vandevelde M, Zurbriggen A (1997) Comparison of inducible nitric oxide synthase expression in the brains of Listeria monocytogenes-infected cattle, sheep, and goats and in macrophages stimulated in vitro. Infect Immun 65:5279–5288

    PubMed  CAS  Google Scholar 

  • Jüttner S, Bernhagen J, Metz CN, Röllinghoff M, Bucala R, Gessner A (1998) Migration inhibitory factor induces killing of Leishmania major by macrophages: dependence on reactive nitrogen intermediates and endogenous TNF-α. J Immunol 161:2383–2390

    PubMed  Google Scholar 

  • Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ, Mak TW, Taniguchi T, Vilcek J (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263:1612–1615

    PubMed  CAS  Google Scholar 

  • Karupiah G, Chen J-H, Mahalingam S, Nathan CF, MacMicking JD (1998a) Rapid interferon γ-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide 2-deficient mice. J Exp Med 188:1541–1546

    PubMed  CAS  Google Scholar 

  • Karupiah G, Chen JH, Nathan CF, Mahalingam S, MacMicking JD (1998b) Identification of nitric oxide synthase 2 as an innate resistance locus against ectromelia virus infection. J Virol 72:7703–7706

    PubMed  CAS  Google Scholar 

  • Kawakami K, Zhang T, Qureshi MH, Saito A (1997) Cryptococcus neoformans inhibits nitric oxide production by murine peritoneal macrophages stimulated with interferon-γand lipopolysaccharide. Cell Immunol 180:47–54

    PubMed  CAS  Google Scholar 

  • Kengatharan KM, de Kimpe S, Robson C, Foster SJ, Thiermann C (1998) Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J Exp Med 188:305–315

    PubMed  CAS  Google Scholar 

  • Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 93:9114–9119

    PubMed  CAS  Google Scholar 

  • Khan IA, Schwartzman JD, Matsuura T, Kasper LH (1997) A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci USA 94:13955–13960

    PubMed  CAS  Google Scholar 

  • Khanolkar-Young S, Snowdon D, Lockwood DNJ (1998) Immunocytochemical localization of inducible nitric oxide synthase and transforming growth factor-β (TGF-β) in leprosy lesions. Clin Exp Immunol 113:438–442

    PubMed  CAS  Google Scholar 

  • Kim Y-M, Talanian RV, Li J, Billiar TR (1998) Nitric oxide prevents IL-1β and IFN-γ-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1β-converting enzyme). J Immunol 161:4122–4128

    PubMed  CAS  Google Scholar 

  • Kim YS, Täuber MG (1996) Neurotoxicity of glia activated by gram-positive bacterial products depends on nitric oxide production. Infect Immun 64:3148–3153

    PubMed  CAS  Google Scholar 

  • Klatt P, Molina EP, Lamas S (1999) Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation. J Biol Chem 274:15857–15864

    PubMed  CAS  Google Scholar 

  • Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WMF (1998) Immune suppression by recombinant IL-12 involves IFN-γ induction of NOS2 (iNOS) activity: inhibitors of NO generation reveal the extent or rIL-12 vaccine adjuvant effect. J Exp Med 188:1603–1610

    PubMed  CAS  Google Scholar 

  • Koide M, Kawahara Y, Nakayama I, Tsuda T, Yokoyama M (1993) Cyclic AMP-elevating agents induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. Synergism with the induction elicited by inflammatory cytokines. J Biol Chem 268:24959–24966

    PubMed  CAS  Google Scholar 

  • Kolb H, Kolb-Bachofen V (1998) Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator. Immunol Today 19:556–561

    PubMed  CAS  Google Scholar 

  • Komatsu T, Bi Z, Reiss CS (1996) IFN-γinduced type 1 nitric oxide synthase activity inhibits viral replication in neurons. J Neuroimmunol 68:101–108

    PubMed  CAS  Google Scholar 

  • Koprowski H, Zheng YM, Heber-Katz E, Fraser N, Rorke L, Fu ZF, Hanlon C, Dietzschold B (1993) In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci USA 90:3024–3027

    PubMed  CAS  Google Scholar 

  • Kröncke KD, Kolb-Bachofen V, Berschick B, Burkart V, Kolb H (1991) Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun 175:752–758

    PubMed  Google Scholar 

  • Kröncke KD, Fehsel K, Kolb-Bachofen V (1998) Inducible nitric oxide synthase in human diseases. Clin Exp Immunol 113:147–156

    PubMed  Google Scholar 

  • Kröncke K-D, Carlberg C (2000) Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J 14:166–173

    PubMed  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    PubMed  CAS  Google Scholar 

  • Kun JFJ, Mordmüller B, Lell B, Lehman LG, Luckner D, Kremsner PG (1998) Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet 351:265–266

    PubMed  CAS  Google Scholar 

  • Kunz D, Walker G, Eberhardt W, Pfeilschifter J (1996) Molecular mechanisms of dexamethasone inhibition of nitric oxide synthase expression in interleukin 1bstimulated mesangial cells: evidence for the involvement of transcriptional and post-transcriptional regulation. Proc Natl Acad Sci USA 93:255–259

    PubMed  CAS  Google Scholar 

  • Kuzin B, Roberts I, Peunova N, Enikolopov G (1996) Nitric oxide regulates cell proliferation during Drosophila development. Cell 87:639–649

    PubMed  CAS  Google Scholar 

  • Kwon G, Xu G, Marshall CA, McDaniel ML (1999) Tumor necrosis factor-a-induced pancreatic β-cell insulin resistance is mediated by nitric oxide and prevented by 15-deoxy-Δ12,14-prostaglandin J2 and aminoguanidine. J Biol Chem 274:18702–18708

    PubMed  CAS  Google Scholar 

  • Kwon NS, Stuehr DJ, Nathan CF (1991) Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med 174:761–767

    PubMed  CAS  Google Scholar 

  • Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–124

    PubMed  CAS  Google Scholar 

  • Lander HM, Sehajpal P, Levine DM, Novogrodsky A (1993) Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J Immunol 150:1509–1516

    PubMed  CAS  Google Scholar 

  • Larsen CM, Wadt KAW, Juhl LF, Andersen HU, Karlsen AE, Su MS-S, Seedorf K, Shapiro L, Dinarello CA, Mandrup-Poulsen T (1998) Interleukin-1βinduced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen activated protein kinases. J Biol Chem 273:15294–15300

    PubMed  CAS  Google Scholar 

  • Lavnikova N, Burdelya L, Lakhotia A, Patel N, Prokhorova S, Laskin DL (1997) Macrophage and interleukin-1 induced nitric oxide production and cytostasis in hamster tumor cells varying in malignant potential. J Leukoc Biol 61:452–458

    PubMed  CAS  Google Scholar 

  • Lee SC, Dickson DW, Brosnan CF, Casadevall A (1994) Human astrocytes inhibit Cryptococcus neoformans growth by a nitric oxide-mediated mechanism. J Exp Med 180:365–369

    PubMed  CAS  Google Scholar 

  • Lee SC, Kress Y, Dickson DW, Casadevall A (1995) Human microglia mediate anti-Cryptococcus neoformans activity in the presence of specific antibody. J Neuroimmunol 62:43–52

    PubMed  CAS  Google Scholar 

  • Lejeune P, Lagadec P, Onier N, Pinard D, Ohshima H, Jeannin J-F (1994) Nitric oxide involvement in tumor-induced immunosuppression. J Immunol 152:5077–5083

    PubMed  CAS  Google Scholar 

  • Lepoivre M, Chenais B, Yapo A, Lemaire G, Thelander L, J.-P. T (1990) Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem 265:14143–14149

    PubMed  CAS  Google Scholar 

  • Li J, Billiar TR, Talanian RV, Kim YM (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240:419–424

    PubMed  CAS  Google Scholar 

  • Liesenfeld O, Kang H, Park D, Nguyen TA, Parkhe CV, Watanabe H, Abo T, Sher A, Remington JS, Suzuki Y (1999) TNF-α, nitric oxide, and IFN-γ are all critical for the development of necrosis in the small intestine and early mortality in genetically susceptible mice infected perorally with Toxoplasma gondii. Parasite Immunol 21:365–376

    PubMed  CAS  Google Scholar 

  • Liew FY (1995) Regulation of lymphocyte functions by nitric oxide. Curr Opin Immunol 7:396–399

    PubMed  CAS  Google Scholar 

  • Lin T-J, Befus D (1997) Differential regulation of mast cell function by IL-10 and stem cell factor. J Immunol 159:4015–4023

    PubMed  CAS  Google Scholar 

  • Liu J, Zhao M-L, Brosnan CF, Lee SC (1996) Expression of type II nitric oxide synthase in primary human astrocytes and microglia. Role of IL-1β and IL-1 receptor antagonist. J Immunol 157:3569–3576

    PubMed  CAS  Google Scholar 

  • Lopez-Collazo E, Hortelano S, Rojas A, Bosca L (1998) Triggering of peritoneal macrophages with IFN-α/β attenuates the expression of inducible nitric oxide through a decrease in NF-κB activation. J Immunol 160:2889–2895

    PubMed  CAS  Google Scholar 

  • Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH (1992) Cloned and expressed macrophage nitric oxide synthase contrasts with the brain synthase. Proc Natl Acad Sci USA 89:6711–6715

    PubMed  CAS  Google Scholar 

  • Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon γ and lipopolysaccharide. Proc Natl Acad Sci USA 90:9730–9734

    PubMed  CAS  Google Scholar 

  • Lu L, Bonham CA, Chambers FG, Watkins SC, Hoffman RA, Simmons RL, Thomson AW (1996) Induction of nitric oxide synthase in mouse dendritic cells by IFN-γ, endotoxin, and interaction with allogeneic T cells. Nitric oxide production is associated with dendritic cell apoptosis. J Immunol 157:3577–3586

    PubMed  CAS  Google Scholar 

  • Luckhart S, Vodovotz Y, Cui L, Rosenberg R (1998) The mosquito Anopheles stephensi limits malaria parasite development with inducible nitric oxide synthesis. Proc Natl Acad Sci USA 95:5700–5705

    PubMed  CAS  Google Scholar 

  • Mabbott NA, Coulson PS, Smythies LE, Wilson RA, Sternberg JM (1998) African trypanosome infections in mice that lack the interferon-γ receptor gene: nitric oxide-dependent and-independent suppression of T-cell proliferative responses and the development of anemia. Immunol 94:476–480

    CAS  Google Scholar 

  • MacLean A, Wei X-Q, Huang FP, A1-Alem UA, Chan WL, Liew FY (1998) Mice lacking inducible nitric oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Thl cell responses. J Gen Virol 79:825–830

    PubMed  CAS  Google Scholar 

  • MacMicking JD, Nathan C, Horn G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie Q-W, Sokol K, Hutchinson N, Chen H, Mudgett JS (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641–650

    PubMed  CAS  Google Scholar 

  • MacMicking JD, Xie Q-W, Nathan C (1997a) Nitric oxide and macrophage function. Ann Rev Immunol 15:323–350

    CAS  Google Scholar 

  • MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997b) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94:5243–5248

    PubMed  CAS  Google Scholar 

  • Magrinat G, Mason SN, Shami PJ, Weinberg JB (1992) Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood 1992:1880–1884

    Google Scholar 

  • Majano PL, Garcia-Monzon C, Lopez-Cabrera M, Lara-Pezzi E, Fernandez-Ruiz E, Garcia-Iglesias C, Borque MJ, Moreno-Otero R (1998) Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene up-regulation. J Clin Invest 101:1343–1352

    PubMed  CAS  Google Scholar 

  • Malkin R, Flescher E, J. L, Keisari Y (1987) On the interactions between macrophages and the developmental stages of Schistosoma mansoni: the cytotoxic mechanism involved in macrophage-mediated killing of schistosomula in vitro. Immunobiology 176:63–72

    PubMed  CAS  Google Scholar 

  • Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79:1137–1146

    PubMed  CAS  Google Scholar 

  • Mannick JB, Miao XQ, Stamler JS (1997) Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem 272:24125–24128

    PubMed  CAS  Google Scholar 

  • Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284:651–654

    PubMed  CAS  Google Scholar 

  • Manthey CL, Perera P-Y, Salkowski CA, Vogel SN (1994) Taxol provides a second signal for murine macrophage tumoricidal activity. J Immunol 152:825–831

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J, Chain BM (1993) Differential regulation of cytokine production by nitric oxide. 1993 Immunology 80:146–150

    CAS  Google Scholar 

  • Marcinkiewicz J, Grabowska A, Chain B (1995) Nitric oxide up-regulates the release of inflammatory mediators by mouse macrophages. Eur J Immunol 25:947–951

    PubMed  CAS  Google Scholar 

  • Marks-Konczalik J, Chu SC, Moss J (1998) Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor KB-binding sites. J. Biol. Chem. 273:22201–22208

    PubMed  CAS  Google Scholar 

  • Marietta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711

    Google Scholar 

  • Marshall BG, Chambers MA, Wangoo A, Shaw RJ, Young DB (1997) Production of tumor necrosis factor and nitric oxide by macrophages infected with live and dead mycobacteria and their suppression by an interleukin-10-secreting recombinant. Infect Immun 65:1931–1935

    PubMed  CAS  Google Scholar 

  • Martin E, Nathan C, Xie Q-W (1994) Role of interferon regulatory factor-1 in induction of nitric oxide synthase. J Exp Med 180:977–984

    PubMed  CAS  Google Scholar 

  • Mateo RB, Reichner JS, Albina JS (1996) NO is not sufficient to explain maximal cytotoxicity of tumoricidal macrophages against an NO-sensitive cell line. J Leukoc Biol 60:245–252

    PubMed  CAS  Google Scholar 

  • Matsuno R, Aramaki Y, Arima H, Adachi Y, Ohno N, Yadomae T, Tsuchiya S (1998) Contribution of CR3 to nitric oxide production from macrophages stimulated with high-dose LPS. Biochem Biophys Res Commun 244:115–119

    PubMed  CAS  Google Scholar 

  • McCall TB, Palmer RMJ, Moncada S (1991) Induction of nitric oxide synthase in rat peritoneal neutrophils and its inhibition by dexamethasone. Eur J Immunol 21: 2523–2527

    PubMed  CAS  Google Scholar 

  • Mclnnes IB, Leung B, Wei X-Q, Gemmell CC, Liew FY (1998) Septic arthritis following Staphylococcus aureus infection in mice lacking inducible nitric oxide synthase. J Immunol 160:308–315

    Google Scholar 

  • Melillo G, Cox GW, Radzioch D, Varesio L (1993) Picolinic acid, a catabolite of L-tryptophan, is a co-stimulus for the induction of reactive nitrogen intermediate production in murine macrophages. J Immunol 150:4031–4040

    PubMed  CAS  Google Scholar 

  • Melillo G, Cox GW, Biragyn A, Sheffler LA, Varesio L (1994) Regulation of nitric oxide synthase mRNA expression by interferon-7 and picolinic acid. J Biol Chem 269:8128–8133

    PubMed  CAS  Google Scholar 

  • Melillo G, Taylor LS, Brooks A, Musso T, Cox GW, Varesio L (1997) Functional requirement of the hypoxia-responsive element in the activation of the inducible nitric oxide synthase promoter by the iron chelator desferrioxamine. J Biol Chem 272:12236–12243

    PubMed  CAS  Google Scholar 

  • Mellouk S, Hoffman SL, Liu Z-Z, de la Vega P, Billiar TR, Nüssler AK (1994) Nitric oxide-mediated antiplasmodial activity in human and murine hepatocytes induced by γ interferon and the parasite itself: enhancement by exogenous tetrahydrobiopterin. Infect Immun 62:4043–4046

    PubMed  CAS  Google Scholar 

  • Meraz MA, White JM, Sheehan KCF, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD (1996) Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the Jak-STAT signaling pathway. 84:431–442

    CAS  Google Scholar 

  • Merrill JE, Ognarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141

    PubMed  CAS  Google Scholar 

  • Millar AE, Sternberg J, McSharry C, Wei X-Q, Liew FY, Turner MR (1999) T cell responses during Trypanosoma brucei infections in mice deficient in inducible nitric oxide synthase. Infect Immun 67:3334–3338

    PubMed  CAS  Google Scholar 

  • Mills CD (1991) Molecular basis of “suppressor” macrophages. J Immunol 146:2719–2723

    PubMed  CAS  Google Scholar 

  • Minc-Golomb D, Yadid G, Tsarfaty I, Resau JH, Schwartz JP (1996) In vivo expression of inducible nitric oxide synthase in cerebellar neurons. J Neurochem 66:1504–1509

    PubMed  CAS  Google Scholar 

  • Mnaimneh S, Geffard M, Veyret B, Vincendeau P (1997) Albumin nitrosylated by activated macrophages possesses antiparasitic effects neutralized by anti-NO-acetylated-cysteine antibodies. J Immunol 158:308–314

    PubMed  CAS  Google Scholar 

  • Mohr S, Zech B, Lapetina EG, Brüne B (1997) Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun 238:387–391

    PubMed  CAS  Google Scholar 

  • Mossalayi MD, Pail-Eugéne N, Ouaaz F, Arock M, Kolb JP, Kilchherr E, Debré P, Dugas B (1994) Involvement of FcεRII/CD23 and L-arginine-dependent pathway in IgE-mediated stimulation of human monocyte functions. Int Immunol 6:931–934

    PubMed  CAS  Google Scholar 

  • Mozaffarian N, Berman JW, Casadevalli A (1995) Immune complexes increase nitric oxide production by interferon-γ-stimulated murine macrophage-like J774.16 cells. J Leukocyt Biol 57:657–662

    CAS  Google Scholar 

  • Mühl H, Dinarello C (1997) Macrophage inflammatory protein-la production in lipopolysaccharide-stimulated human adherent blood mononuclear cells is inhibited by the NO synthase inhibitor N G-monomethyl-L-arginine. J Immunol 159:5063–5069

    PubMed  Google Scholar 

  • Mullins DW, Burger CJ, Elgert KD (1999) Paclitaxel enhances macrophage IL-12 production in tumor-bearing hosts through nitric oxide. J Immunol 162:6811–6818

    PubMed  CAS  Google Scholar 

  • Munder M, Eichmann K, Modolell M (1998a) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Thl/Th2 phenotype. J Immunol 160:5347–5354

    PubMed  CAS  Google Scholar 

  • Munder M, Mallo M, Eichmann K, Modolell M (1998b) Murine macrophages secrete interferon-g upon combined stimulation with IL-12 and IL-18:a novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108

    PubMed  CAS  Google Scholar 

  • Murphy GM, Yang L, Cordell B (1998) Macrophage colony-stimulating factor augments b-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J Biol Chem 273:20967–20971

    PubMed  CAS  Google Scholar 

  • Murray HW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen vs. oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189:741–746

    PubMed  CAS  Google Scholar 

  • Murray HW, Teitelbaum RF (1992) L-arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J Infect Dis 165:513–517

    PubMed  CAS  Google Scholar 

  • Nathan C, Xie Q-W (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728

    PubMed  CAS  Google Scholar 

  • Nicholson S, Da Gloria Bonecini-Almeida M, Lapae Silva JR, Nathan C, Xie Q-W, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N, Linhares C, Rom W, Ho JL (1996) Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183:2293–2302

    PubMed  CAS  Google Scholar 

  • Niedbala W, Wei X-Q, Piedrafita D, Xu D, Liew FY (1999) Effects of nitric oxide on the induction and differentiation of Thl cells. Eur J Immunol 29:2498–2505

    PubMed  CAS  Google Scholar 

  • Nozaki Y, Hasegawa Y, Ichiyama S, Nakashima I, Shimokata K (1997) Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect Immun 65:3644–3647

    PubMed  CAS  Google Scholar 

  • Nüssler AK, Rénia L, Pasquetto V, Miltgen F, Matile H, Mazier D (1993) In vivo induction of the nitric oxide pathway in hepatocytes after injection with irradiated malaria sporozoites, malaria blood parasites or adjuvants. Eur J Immunol 23:882–887

    PubMed  Google Scholar 

  • Ogilvie AC, Hack E, Wagstaff J, Van Mierlo GJ, Eerenberg AJM, Thomsen LL, Hoekman K, Rankin EM (1996) IL-1β does not cause neutrophil degranulation but does lead to IL-6, IL-8 and nitrite/nitrate release when used in patients in cancer. J Immunol 156:389–394

    PubMed  CAS  Google Scholar 

  • Ohmori Y, Hamilton TA (1997) IL-4-induced STAT6 suppresses IFN-γ-stimulated STAT1-dependent transcription in mouse macrophages. J Immunol 159:5474–5482

    PubMed  CAS  Google Scholar 

  • Oliveira SHP, Fonseca SG, Romao PRT, Figueiredo F, Ferreira SH, Cunha FQ (1998) Microbicidal activity of eosinophils is associated with activation of the arginine-NO pathway. Parasite Immunol 20:405–412

    PubMed  CAS  Google Scholar 

  • Olivier M, Romero-Gallo B-J, Matte C, Blanchette J, Posner BI, Tremblay MJ, Faure R (1998) Modulation of interferon-γ-induced macrophage activation by phosphotyrosine phosphatases inhibition. Effect on murine leishmaniasis progression. J Biol Chem 273:13944–13949

    PubMed  CAS  Google Scholar 

  • Oswald IP, Eltoum I, Wynn TA, Schwartz B, Caspar P, Paulin D, Sher A, James SL (1994) Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide. Proc Natl Acad Sci USA 91:999–1003

    PubMed  CAS  Google Scholar 

  • Ouadrhiri Y, Sibille Y, Tulkens PM (1999) Modulation of intracellular growth of Listeria monocytogenes in human enterocyte Caco-2 cells by interferon-g and interleukin-6: role of nitric oxide and cooperation with antibiotics. J Infect Dis 180:1195–1204

    PubMed  CAS  Google Scholar 

  • Pacelli R, Wink DA, Cook JA, Krishna MC, W. D, Friedman N, Tsokos M, Samuni A, Mitchell JB (1995) Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J Exp Med 182:1469–1479

    PubMed  CAS  Google Scholar 

  • Padgett EL, Pruett SB (1995) Rat, mouse and human neutrophils stimulated by a variety of activating agents produce much less nitrite than rodent macrophages. Immunology 84:135–141

    PubMed  CAS  Google Scholar 

  • Pahan K, Sheikh FG, Namboodiri AM, Singh I (1998) Inhibitors of protein phosphatase 1 and 2 A differentially regulate the expression of inducible nitric oxide synthase in rat astrocytes and macrophages. J Biol Chem 273:12219–12226

    PubMed  CAS  Google Scholar 

  • Pahan K, Raymond JR, Singh I (1999) Inhibition of phosphatidylinositol 3-kinase induces niric oxide synthase in lipopolysaccharide-or cytokine-stimulated C6 glial cells. J Biol Chem 274:7528–7536

    PubMed  CAS  Google Scholar 

  • Panaro MA, Fasanella A, Lisi S, Mitolo V, Andriola A, Brandonisio O (1998) Evaluation of nitric oxide production by Leishmania infantum-infected dog macrophages. Immunopharmacol Immunotoxicol 20:147–158

    PubMed  CAS  Google Scholar 

  • Paveto C, Pereira C, Espinosa J, Montagna AE, Farber M, Esteva M, Flawia MM, Torres HN (1995) The nitric oxide transduction pathway in Trypanosoma cruzi. J Biol Chem 270:16576–16579

    PubMed  CAS  Google Scholar 

  • Peng H-B, Libby P, Liao JK (1995a) Induction and stabilization of IκBαby nitric oxide mediates inhibition of NF-κB. J Biol Chem 270:14214–14219

    PubMed  CAS  Google Scholar 

  • Peng H-P, Rajavashisth TB, Libby P, Liao JK (1995b) Nitric oxide inhibits macrophagecolony-stimulating factor gene transcription in vascular endothelial cells. J Biol Chem 270:17050–17055

    PubMed  CAS  Google Scholar 

  • Peng H-B, Spiecker M, Liao JK (1998) Inducible nitric oxide: an autoregulatory feedback inhibitor of vascular inflammation. J Immunol 161:1970–1976

    PubMed  CAS  Google Scholar 

  • Perry LL, Feilzer K, Caldwell HD (1998) Neither interleukin-6 nor inducible nitric oxide synthase is required for clearance of Chlamydia trachomatis from the mujrine genital-tract epithelium. Infect Immun 66:1265–1269

    PubMed  CAS  Google Scholar 

  • Persoons JH, Schornagel K, Tilders FF, De Vente J, Berkenbosch F, Kraal G (1996) Alveolar macrophages autoregulate IL-1 and IL-6 production by endogenous nitric oxide. Am J Resp Cell Mol Biol 14:272–278

    CAS  Google Scholar 

  • Peterson PK, Gekker G, Hu S, Chao CC (1995) Human astrocytes inhibit intracellular multiplication of Toxoplasma gondii by a nitric oxide-mediated mechanism. J Infect Dis 171:516

    PubMed  CAS  Google Scholar 

  • Petrova TV, Akama KT, van Eldik LJ (1999) Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric oxide synthase by 15-deoxy-Δ1214-prostaglandin J2. Proc Natl Acad Sci USA 96:4668–4673

    PubMed  CAS  Google Scholar 

  • Pfeilschifter J, Rob P, Mülsch A, Fandrey J, Vosbeck K, Busse R (1992) Interleukin-1β and tumor necrosis factor-α induce a macrophage type of nitric oxide synthase in rat renal mesangial cells. Eur J Biochem 203:251–255

    PubMed  CAS  Google Scholar 

  • Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E, Malorni W, Nicaise P, Wolf SF, Belardelli F, Gessani S (1997) IL-12 induces IFN-γexpression and secretion in mouse peritoneal macrophages. Infect Immun 159:3490–3497

    CAS  Google Scholar 

  • Qureshi AA, Hosoi J, Xu S, Takashima A, Granstein RD, Lerner EA (1996) Langerhans’ cells express inducible nitric oxide synthase and produce nitric oxide. J Invest Dermatol 107:815–821

    PubMed  CAS  Google Scholar 

  • Rajan AJ, Klein JDS, Brosnan CF (1998) The effect of γ/δT cell depletion on cytokine gene expression in experimental allergic encephalomyelitis. J Immunol 160:5955–5962

    PubMed  CAS  Google Scholar 

  • Ramsey KH, Miranpuri GS, Poulson CE, Marthakis NB, Braune LM, Byrne GI (1998) Inducible nitric oxide synthase does not affect resolution of murine chlamydial genital tract infections or eradication of chlamydiae in primary murine cell culture. Infect Immun 66:835–838

    PubMed  CAS  Google Scholar 

  • Regulski M, Tully T (1995) Molecular and biochemical characterization of dNOS: a Drosophila Ca20/calmodulin-dependent nitric oxide synthase. Proc Natl Acad Sci USA 92:9072–9076

    PubMed  CAS  Google Scholar 

  • Reiling N, Ulmer AJ, Duchrow M, Ernst M, Flad H-D, Hauschildt S (1994) Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/ macrophages. Eur J Immunol 24:1941–1944

    PubMed  CAS  Google Scholar 

  • Reiling N, Kröncke R, Ulmer AJ, Gerdes J, Flad H-D, Hauschildt S (1996) Nitric oxide synthase: expression of the endothelial, Ca2+/calmodulin-dependent isoform in human B and T lymphocytes. Eur J Immunol 26:511–516

    PubMed  CAS  Google Scholar 

  • Remick DG, Villarete L (1996) Regulation of cytokine gene expression by reactive oxygen and reactive nitrogen intermediates. J Leukoc Biol 59:471–475

    PubMed  CAS  Google Scholar 

  • Riches DW, Underwood GA (1991) Expression of interferon-β during the triggering phase of macrophage cytocidal activation. Evidence for an autocrine/paracrine role in the regulation of this state. J Biol Chem 266:24785–24792

    PubMed  CAS  Google Scholar 

  • Riches DWH, Chan ED, Zahradka EA, Winston BW, Remigio LK, Lake FR (1998) Cooperative signaling by tumor necrosis factor receptors CD120a (p55) and CD120b (p75) in the expression of nitric oxide and inducible nitric oxide synthase by mouse macrophages. J Biol Chem 273:22800–22806

    PubMed  CAS  Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferatoractivated receptor γ is a negative regulator of macrophage activation. Nature 391:79–82

    PubMed  CAS  Google Scholar 

  • Rockett KA, Brookes R, Udalova I, Vidal V, Hill AVS (1998) 1,25-dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 66:5314–5321

    PubMed  CAS  Google Scholar 

  • Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL, Sheehan KCF, Yin L, Pennica D, Johnson EM, Schreiber RD (1998) Disruption of the Jakl gene demonstrates obligatory and nonredundant roles of the Jaks in cytokineinduced biologic responses. Cell 93:373–383

    PubMed  CAS  Google Scholar 

  • Ross R, Gillitzer C, Kleinz R, Schwing J, Kleinert H, Förstermann U, Reske-Kunz A (1998) Involvement of NO in contact hypersensitivity. Int Immunol 10:61–69

    PubMed  CAS  Google Scholar 

  • Rothe H, Hartmann B, Geerlings P, Kolb H (1996) Interleukin-12 gene expression of macrophages is regulated by nitric oxide. Biochem Biophys Res Commun 224:159–163

    PubMed  CAS  Google Scholar 

  • Rottenberg ME, Rothfuchs ACG, Gigliotti D, Svanholm C, Bandholtz L, Wigzell H (1999) Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae, as analyzed in genetically modified mice. J Immunol 162:2829–2836

    PubMed  CAS  Google Scholar 

  • Ruan J, John GS, Ehrt S, Riley L, Nathan C (1999) noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella typhimurium from nitrosative and oxidative stress. Infect Immun 67:3276–3283

    PubMed  CAS  Google Scholar 

  • Salkowski CA, Barber SA, Detore GR, Vogel SN (1996) Differential dysregulation of nitric oxide production in macrophages with targeted disruptions in IFN regulatory factor-1 and-2 genes. J Immunol 156:3107–3110

    PubMed  CAS  Google Scholar 

  • Salkowski CA, Detore G, McNally R, Van Rooijen N, Vogel SN (1997) Regulation of inducible nitric oxide synthase messenger RNA expression and nitric oxide production by lipopolysaccharide in vivo: the roles of macrophages, endogenous IFN-γ, and TNF-receptor-1-mediated signaling. J Immunol 158:905–912

    PubMed  CAS  Google Scholar 

  • Salvucci O, Kolb JP, Dugas B, Dugas N, Chouaib S (1998) The induction of nitric oxide by interleukin-12 and tumor necrosis factor-α in human natural killer cells: relationship with the regulation of lytic activity. Blood 92:2093–2102

    PubMed  CAS  Google Scholar 

  • Salzman AL, Eaves-Pyles T, Linn SC, Denenberg AG, Szabo C (1998) Bacterial induction of inducible nitric oxide synthase in cultured human intestinal epithelial cells. Gastroenterology 114:93–102

    PubMed  CAS  Google Scholar 

  • Saura M, Lopez S, Puyol MR, Puyol DR, Lamas S (1995) Regulation of inducible nitric oxide synthase expression in rat mesangial cells and isolated glomeruli. Kidney Int 47:500–509

    PubMed  CAS  Google Scholar 

  • Saura M, Martinez-Dalmau R, Minty A, Pérez-Sala D, Lamas S (1996) Interleukin-13 inhibits inducible nitric oxide synthase expression in human mesangial cells. Biochem J 313:641–646

    PubMed  CAS  Google Scholar 

  • Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ (1999) An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 10:21–28

    PubMed  CAS  Google Scholar 

  • Sawada T, Falk LA, Rao P, Murphy WJ, Pluznik DV (1997) IL-6 induction of protein-DNA complexes via a novel regulatory region of the inducible nitric oxide synthase gene promoter. Role of octamer-binding proteins. J Immunol 158:5267–5276

    PubMed  CAS  Google Scholar 

  • Scharton-Kersten TM, Yap G, Magram J, Sher A (1997) Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 185:1261–1273

    PubMed  CAS  Google Scholar 

  • Schleifer KW, Mansfield JM (1993) Suppressor macrophages in african trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J Immunol 151:5492–5503

    PubMed  CAS  Google Scholar 

  • Schlüter D, Deckert-Schlüter M, Lorenz E, Meyer T, Röllinghoff M, Bogdan C (1999) Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii-resistant BALB/c mice. J Immunol 162:3512–3518

    PubMed  Google Scholar 

  • Schneemann M, Schoedon G, Hofer S, Blau N, Guerrero L, Schaffner A (1993) Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis 167:1358–1363

    PubMed  CAS  Google Scholar 

  • Schwacha MG, Eisenstein TK (1997) Interleukin-12 is critical for induction of nitric oxide-mediated immunosuppression following vaccination of mice with attenuated Salmonella typhimurium. Infect Immun 65:4897–4903

    PubMed  CAS  Google Scholar 

  • Schwacha MG, Meissler JJ, Eisenstein TK (1998) Salmonella typhimurium infection in mice induces nitric oxide-mediated immunosuppression through a natural killer cell-dependent pathway. Infect Immun 66:5862–5866

    PubMed  CAS  Google Scholar 

  • Segal BM, Dwyer BK, Shevach EM (1998) An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187:537–546

    PubMed  CAS  Google Scholar 

  • Severn A, Wakelam MJO, Liew FY (1992) The role of protein kinase C in the induction of nitric oxide synthesis by murine macrophages. Biochem Biophys Res Commun 188:997–1002

    PubMed  CAS  Google Scholar 

  • Shalom-Barak T, Quach J, Lotz M (1998) Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB. J Biol Chem 273:27467–27473

    PubMed  CAS  Google Scholar 

  • Sharara AI, Perkins DJ, Misukonis MA, Chan SU, Dominitz JA, Weinberg BJ (1997) Interferon-α activation of human blood mononuclear cells in vitro and in vivo for nitric oxide synthase (NOS) type 2 mRNA and protein expression: possible relationship of induced NOS2 to the anti-hepatitis C effects of IFN-α in vivo. J Exp Med 186:1495–1502

    PubMed  CAS  Google Scholar 

  • Sheffler LA, Wink DA, Melillo G, Cox GW (1995) Exogenous nitric oxide regulates IFN-yplus lipopolysaccharide-induced nitric oxide synthase expression in mouse expression. J Immunol 155:886–894

    PubMed  CAS  Google Scholar 

  • Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, and Nathan C (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:29–38

    PubMed  CAS  Google Scholar 

  • Shin WS, Hong Y-H, Peng H-B, de Caterina R, Libby P, Liao JK (1996) Nitric oxide attenuates vascular smooth muscle cell activation by interferon-κ. The role of constitutive NF-κB activity. J Biol Chem 271:11317–11324

    PubMed  CAS  Google Scholar 

  • Shiraishi A, Dudler J, Lotz M (1997) The role of IFN regulatory factor-1 in synovitis and nitric oxide production. J Immunol 159:3549–3554

    PubMed  CAS  Google Scholar 

  • Sicher SC, Chung GW, Vazquez MA, Lu CY (1995) Augmentation or inhibition of IFN-γ-induced MHC class II expression by lipopolysaccharides. The roles of TNF-α and nitric oxide and the importance of the sequence of signaling. J Immunol 155:5826–5834

    PubMed  CAS  Google Scholar 

  • Siedlar M, Mytar B, Krzeszowiak A, Baran J, Hyszko M, Ruggiero I, Wieckiewicz J, Stachura J, Zembala M (1999) Demonstration of iNOS mRNA and iNOS in human monocytes stimulated with cancer cells in vitro. J Leukoc Biol 65:597–604

    PubMed  CAS  Google Scholar 

  • Singh K, Balligand JL, Fischer TA, Smith TW, Kelly RA (1996) Regulation of cytokineinducible nitric oxide synthase in cardiac myocytes and microvascular endothelial cells. Role of extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) and Stat 1α. J Biol Chem 271:1111–1117

    PubMed  CAS  Google Scholar 

  • Sirsjo A, Karlsson M, Gidlöf A, Rollman O, Törmä H (1996) Increased expression of inducible nitric oxide synthase in psoriatic skin and cytokine-stimulated cultured keratinocytes. Brit J Dermatol 134:643–648

    CAS  Google Scholar 

  • Spink J, Cohen J, Evans TJ (1995) The cytokine-responsive vascular smooth-muscle cell enhancer of inducible nitric oxide synthase: activation by nuclear factor κB. J Biol Chem 270:29541–29546

    PubMed  CAS  Google Scholar 

  • Sriskandan S, Evans TJ, Cohen J (1996) Bacterial superantigen-induced human lymphocyte responses are nitric-oxide dependent and mediated by IL-12 and IFN-γ. J Immunol 156:2430–2435

    PubMed  CAS  Google Scholar 

  • Stadler J, Stefanovic-Racic M, Billiar TR, Curran RD, Mclntyre LA, Georgescu HI, Simmons RL, Evans CH (1991) Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol 147:3915–3920

    PubMed  CAS  Google Scholar 

  • Stadler J, Harbrecht BG, Di Silvio M, Curran RD, Jordan ML, Simmons RL, Billiar TR (1993) Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin 6 by rat Kupffer cells. J Leukocyte Biol 53:165–172

    PubMed  CAS  Google Scholar 

  • Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89:7674–7677

    PubMed  CAS  Google Scholar 

  • Stefani MMA, Müller I, Louis J (1994) Leishmania-major-specific CD8+ T cells are inducers and targets of nitric oxide produced by parasitized macrophages. Eur J Immunol 24:746–752

    PubMed  CAS  Google Scholar 

  • Stenger S, Donhauser N, Thüring H, Röllinghoff M, Bogdan C (1996) Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J Exp Med 183:1501–1514

    PubMed  CAS  Google Scholar 

  • Stout RD, Suttles J, Xu J, Grewal I, Flavell RA (1996) Impaired T-cell-mediated macrophage activation in CD40 ligand-deficient mice. J Immunol 156:8–11

    PubMed  CAS  Google Scholar 

  • Stuehr D, Marietta MA (1985) Mammalian nitrite biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82:7738–7742

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Marietta MA (1987) Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines or interferon-y. J Immunol 139:518–525

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Nathan CF (1989) Nitric oxide: a macrophage product responsible for cytostasis and respiratory inhibition in tumor cell growth. J Exp Med 169:1543–1555

    PubMed  CAS  Google Scholar 

  • Sunyer T, Rothe L, Jiang X, Osdoby P, Collin-Osdoby P (1996) Pro-inflammatory agents, IL-8 and IL-10, up-regulate inducible nitric oxide synthase expression and nitric oxide production in avian osteoclast-like cells. J Cell Biochem 60:469–483

    PubMed  CAS  Google Scholar 

  • Suschek C, Rothe H, Fehsel K, Enczmann J, Kolb-Bachofen V (1993) Induction of a macrophage-like nitric oxide synthase in cultured rat aortic endothelial cells. IL-1β-mediated induction regulated by tumor necrosis factor-α and IFN-γ. J Immunol 151:3283–3291

    PubMed  CAS  Google Scholar 

  • Sveinbjornsson B, Olsen R, Seternes OM, Seljelid R (1996) Macrophage cytotoxicity against murine Meth A sarcoma involves nitric-oxide-mediated apoptosis. Biochem Biophysic Res Commun 223:643–649

    CAS  Google Scholar 

  • Szabó C, Southan GJ, Thiemermann C (1994) Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA 91:12472–12476

    PubMed  Google Scholar 

  • Tada Y, Ho A, Matsuyama T, Mak TW (1997) Reduced incidence and severity of antigen-induced autoimmune diseases in mice lacking interferon-regulatoryfactor-1. J Exp Med 185:231–238

    PubMed  CAS  Google Scholar 

  • Tai X-G, Toyo-oka K, Yamamoto N, Yashiro Y, Mu J, Hamaoka T, Fujiwara H (1997) Expression of an inducible type of nitric oxide (NO) synthase in the thymus and involvement of NO in deletion of TCR-stimulated double-positive thymocytes. J Immunol 158:4696–4703

    PubMed  CAS  Google Scholar 

  • Takeda K, Kamanaka M, Tanaka T, Kishimoto T, Akira S (1996) Impaired IL-13-mediated functions of macrophages in Stat6-deficient mice. J Immunol 157:3220–3222

    PubMed  CAS  Google Scholar 

  • Tamaoki J, Kondo M, Kohri K, Aoshiba K, Tagaya E, Nagai A (1999) Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages. J Immunol 163:2909–2915

    PubMed  CAS  Google Scholar 

  • Tanaka K, Nakazawa H, Okada K, Umezawa K, Fukuyama N, Koga Y (1997) Nitric oxide mediates murine cytomegalovirus-associated pneumonitis in lungs that are free of the virus. J Clin Invest 100:1822–1830

    PubMed  CAS  Google Scholar 

  • Tanaka T, Akira S, Yoshida K, Umemoto M, Yoneda Y, Shirafuji N, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T (1995) Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80:353–361

    PubMed  CAS  Google Scholar 

  • Tao X, Stout RD (1993) T cell-mediated cognate signaling of nitric oxide production by macrophages. Requirements for macrophage activation by plasma membranes from T cells. Eur J Immunol 23:2916–2921

    PubMed  CAS  Google Scholar 

  • Tarrant TK, Silver PB, Wahlsten JL, Rizzo LV, Chan C-C, Wiggert B, Caspi RR (1999) Interleukin-12 protects from a Th1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving IFN-γ, NO and apoptosis. J Exp Med 189:219–230

    PubMed  CAS  Google Scholar 

  • Taub DD, Cox GW (1995) Murine Thl and Th2 cell clones differentially regulate macrophage nitric oxide production. J Leukoc Biol 58:80–89

    PubMed  CAS  Google Scholar 

  • Taylor AP, Murray HW (1997) Intracellular antimicrobial activity in the absence of interferon-γ. effect of interleukin-12 in experimental visceral leishmaniasis in interferon-γ gene-disrupted mice. J Exp Med 185:1231–1239

    PubMed  CAS  Google Scholar 

  • Taylor AW, Yee DG, Streilein JW (1998) Suppression of nitric oxide generated by inflammatory macrophages by calcitonin gene-related peptide in aequous humor. Invest Ophthalmol Vis Sci 39:1372–1378

    PubMed  CAS  Google Scholar 

  • Taylor BS, de Vera ME, Ganster RW, Wang Q, Shapiro RA, Morris SM, Billiar TR, Geller DA (1998) Multiple NF-kB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem 273:15148–15156

    PubMed  CAS  Google Scholar 

  • Taylor-Robinson AW, Liew FY, Severn A, Xu D, McScorley SJ, Garside P, Padron J, Phillips RS (1994) Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol 24:980–984

    PubMed  CAS  Google Scholar 

  • Thomas SR, Mohr D, Stocker R (1994) Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-γ-primed mononuclear phagocytes. J Biol Chem 269:14457–14464

    PubMed  CAS  Google Scholar 

  • Thomsen LL, Scott JM, Topley P, Knowles RG, Keerie AJ, Frend AJ (1997) Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel inhibitor. Cancer Res 57:3300–3304

    PubMed  CAS  Google Scholar 

  • Thüring H, Stenger S, Gmehling D, Röllinghoff M, Bogdan C (1995) Lack of inducible nitric oxide synthase activity in T cell-clones and T lymphocytes from naive and Leishmania mayor-infected mice. Eur J Immunol 25:3229–3234

    PubMed  Google Scholar 

  • Tian L, Noelle RJ, Lawrence DA (1995) Activated T cells enhance nitric oxide production by murine splenic macrophages through gp39 and LFA-1. Eur J Immunol 25:306–309

    PubMed  CAS  Google Scholar 

  • Trepicchio WL, Bozza M, Pedneault G, Dorner AJ (1996) Recombinant human IL-11 attenuates the inflammatory response through down-regulation of pro-inflammatory cytokine release and nitric oxide production. J Immunol 157:3627–3634

    PubMed  CAS  Google Scholar 

  • Trepicchio WL, Wang L, Bozza M, Dorner AJ (1997) IL-11 regulates macrophage effector function through the inhibition of nuclear factor-K. J Immunol 159:5661–5670

    PubMed  CAS  Google Scholar 

  • Trinchieri G, Gerosa F (1996) Immunoregulation by interleukin-12. J Leukoc Biol 59:505–511

    PubMed  CAS  Google Scholar 

  • Turco J, Liu H, Gottlieb SF, Winkler HH (1998) Nitric oxide-mediated inhibition of the ability of Rickettsia prowazekii to infect mouse fibroblasts and mouse macrophage-like cells. Infect Immun 66:558–566

    PubMed  CAS  Google Scholar 

  • Tzeng E, Billiar TR, Robbins PD, Loftus M, Stuehr DJ (1995) Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer. Proc Natl Acad Sci USA 92:11771–11775

    PubMed  CAS  Google Scholar 

  • Umansky V, Hehner SP, Dumont A, Hofmann TG, Schirrmacher V, Droge W, Schmitz ML (1998) Co-stimulatory effect of nitric oxide on endothelial NF-κB implies a physiological self-amplifying mechanism. Eur J Immunol 28:2276–2282

    PubMed  CAS  Google Scholar 

  • Vallette G, Jarry A, Branka J-E, Laboisse CL (1996) A redox-based mechanism for induction of IL-1 production by nitric oxide in a human colonic epithelial cell line (HT29-C1.16E). Biochem J 313:35–38

    PubMed  CAS  Google Scholar 

  • van der Veen RC, Dietlin TA, Pen L, Gray JD (1999) Nitric oxide inhibits the proliferation of T-helper 1 and 2 lymphocytes without reduction in cytokine secretion. Cell Immunol 193:194–201

    PubMed  Google Scholar 

  • Van Dervort AL, Yan L, Madara PJ, Cobb JP, Wesley RA, Corriveau CC, Tropea MM, Danner RL (1994) Nitric oxide regulates endotoxin-induced TNF-α production by human neutrophils. J Immunol 152:4102–4109

    PubMed  Google Scholar 

  • Vazquez-Torres A, Jones-Carson J, Balish E (1996) Peroxinitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect Immun 64:3127–3133

    PubMed  CAS  Google Scholar 

  • Villalta F, Zhang Y, Bibb KE, Kappes JC, Lima MF (1998) The cysteine-cysteine family of chemokines RANTES, MlP-1α, and MIP-1β induce trypanocidal activity in human macrophages via nitric oxide. Infect Immun 66:4690–4695

    PubMed  CAS  Google Scholar 

  • Virag L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL, Szabo C (1998) Peroxynitriteinduced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunol 94:345–355

    CAS  Google Scholar 

  • Vodovotz Y, Kwon NS, Pospischil M, Manning J, Paik J, Nathan C (1994) Inactivation of nitric oxide synthase following prolonged incubation of mouse macrophages with IFN-γ and bacterial lipopolysaccharide. J Immunol 152:4110–4118

    PubMed  CAS  Google Scholar 

  • Vodovotz Y, Bogdan C, Paik J, Xie Q-W, Nathan C (1993) Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor-β. J Exp Med 178:605–613

    PubMed  CAS  Google Scholar 

  • Vouldoukis I, Riveros-Moreno V, Dugas B, Quaaz F, Bécherel P, Debré P, Moncada S, Mossalayi MD (1995) The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the FcεRII/CD23 surface antigen. Proc Natl Acad Sci USA 92:7804–7808

    PubMed  CAS  Google Scholar 

  • Vouldoukis I, Bécherel P-A, Riveros-Moreno V, Arock M, da Silva O, Debré P, Mazier D, Mossalayi MD (1997) Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation. Eur J Immunol 27:860–865

    PubMed  CAS  Google Scholar 

  • Warwick-Davies J, Dhillon J, O’Brien L, Andrew PW, Lowrie DB (1994) Apparent killing of Mycobacterium tuberculosis by cytokine-activated human monocytes can be an artefact of a cytotoxic effect on the monocytes. Clin Exp Immunol 96:214–217

    PubMed  CAS  Google Scholar 

  • Way SS, Goldberg MB (1999) Clearance of Shigella flexneri infection occurs through a nitric oxide-independent mechanism. Infect Immun 66:3012–3016

    Google Scholar 

  • Wei X-Q, Charles IG, Smith A, Ure J, Feng G-J, Huang F-P, Xu D, Müller W, Moncada S, Liew FY (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375:408–411

    PubMed  CAS  Google Scholar 

  • Weiss G, Werner-Felmayer G, Werner ER, Grünewald K, Wachter H, Hentze MW (1994) Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 180:969–976

    PubMed  CAS  Google Scholar 

  • Werner ER, Werner-Felmayer G, Mayer B (1998) Minireview: tetrahydro-biopterin, cytokines and nitric oxide synthesis. Proc Soc Exp Biol Med 219:171–182

    PubMed  CAS  Google Scholar 

  • Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (1990) Tetrahydrobiopterin-dependent formation of nitrite and nitrate in murine fibroblasts. J Exp Med 172:1599–1607

    PubMed  CAS  Google Scholar 

  • Werner-Felmayer G, Golderer G, Werner ER, Gröbner P, Wachter H (1994) Pteridine biosynthesis and nitric oxide synthase in Physarum polycephalum. Biochem J 304:105–111

    PubMed  CAS  Google Scholar 

  • Wheeler MA, Smith SD, Garcia-Cardena G, Nathan CF, Weiss RM, Sessa WC (1997) Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest 99:110–116

    PubMed  CAS  Google Scholar 

  • Williams MS, Noguchi S, Henkart PS, Osawa Y (1998) Nitric oxide synthase plays a signalling role in TCR-triggered apoptotic death. J Immunol 161:6526–6531

    PubMed  CAS  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK (1991) DNA-deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003

    PubMed  CAS  Google Scholar 

  • Wong ML, Rettori V, al-Shekhlee A, Bongiorno PB, Canteros G, McCann SM, Gold PW, Licinio J (1996) Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat Med 2:581–584

    PubMed  CAS  Google Scholar 

  • Worrall NK, Lazenby WD, Misko TP, Lin T-S, Rodi CP, Manning PT, Tilton RG, Williamson JR, Ferguson TB (1995) Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J Exp Med 181:63–70

    PubMed  CAS  Google Scholar 

  • Wright K, Ward SG, Kolios G, Westwick J (1997) Activation of phosphatidylinositol 3-kinase by interleukin-13. An inhibitory signal for inducible nitric oxide synthase expression in the epithelial cell line HT-29. J Biol Chem 272:12626–12633

    PubMed  CAS  Google Scholar 

  • Wu-Hsieh BA, Chen W, Lee H-J (1998) Nitric oxide synthase expression in macrophages of Histoplasma capsulatum-intected mice is associated with splenocyte apoptosis and unresponsiveness. Infect Immun 66:5520–5526

    PubMed  CAS  Google Scholar 

  • Xaus J, Mirabet M, Lloberas J, Soler C, Lluis C, Franco R, Celada A (1999) IFN-γupregulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162:3607–3614

    PubMed  CAS  Google Scholar 

  • Xie K, Huang S, Dong Z, Juang S-H, Gutman M, Xie Q-W, Nathan C, Fidler IJ (1995) Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 181:1333–1343

    PubMed  CAS  Google Scholar 

  • Xie K, Dong Z, Fidler IJ (1996) Activation of nitric oxide gene for inhibition of cancer metastasis. J Leukoc Biol 797:797–803

    Google Scholar 

  • Xie Q-W, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256:225–228

    PubMed  CAS  Google Scholar 

  • Xie Q-W, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calciumindependent nitric oxide synthase confers inducibility by interferon-γ and bacterial lipopolysaccharide. J Exp Med 177:1779–1784

    PubMed  CAS  Google Scholar 

  • Xie Q-W, Kasshiwabara Y, Nathan C (1994) Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J Biol Chem 269:4705–4708

    PubMed  CAS  Google Scholar 

  • Xie L, Tume N, Ho G, Smith J, Lu M, Gross SS (1999) Evolution of a specific cysteine residue in mammalian argininosuccinate synthetases that confers reversible inactivation by S-nitrosation. Acta Physiologica Scandinavica 167:4 (abstract O-5, supplementum 645).

    Google Scholar 

  • Yim C-Y, McGregor JR, Kwon O-D, Bastian NR, Rees M, Mori M, Hibbs JB, Samlowski WE (1995) Nitric oxide synthesis contributes to IL-2-induced antitumor responses against intraperitoneal Meth-A tumor. J Immunol 155:4382–4390

    PubMed  CAS  Google Scholar 

  • Yoneto T, Yoshimoto T, Wang CR, Takahama Y, Tsuji M, Waki S, Nariuchi H (1999) Gamma interferon production is critical for protective immunity to infection with blood-stage Plasmodium berghei XAT but neither NO production nor NK cell activation is critical. Infect Immun. 67:2349–2356

    PubMed  CAS  Google Scholar 

  • Young MRI, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-β and nitric oxide. J Immunol 156:1916–1922

    PubMed  CAS  Google Scholar 

  • Yuda M, Hirai M, Miura K, Matsumura H, Ando K, Chinzei Y (1996) cDNA cloning, expression and characterization of nitric oxide synthase from the salivary glands of the blood-sucking insect Rhodnius prolixus. Eur J Biochem 242:807–812

    PubMed  CAS  Google Scholar 

  • Zanardo RCO, Costa E, Ferreira HHA, Antunes E, Martins AR, Murad F, de Nucci G (1997) Pharmacological and immunohistochemical evidence for a functional nitric oxide synthase system in rat peritoneal macrophages. Proc Natl Acad Sci USA 94:14111–14114

    PubMed  CAS  Google Scholar 

  • Zaragoza C, Ocampo C, Saura M, Leppo M, Wei X-Q, Quick R, Moncada S, Liew FY, Lowenstein CJ (1998) The role of inducible nitric oxide synthase in the host response to Coxsackievirus myocarditis. Proc Natl Acad Sci USA 95:2469–2474

    PubMed  CAS  Google Scholar 

  • Zaragoza C, Ocampo CJ, Saura M, Bao C, Leppo M, Lafond-Walker A, Thiemann DR, Hruban R, Lowenstein CJ (1999) Inducible nitric oxide synthase protection against Coxsackievirus pancreatitis. J Immunol 163:5497–5504

    PubMed  CAS  Google Scholar 

  • Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R (1995) Nitric oxide modulates the expression of MCP-1 in cultured human endothelial cells. Circ Res 76:980–986

    PubMed  CAS  Google Scholar 

  • Zettl UK, Mix E, Zielasek J, Stangel M, Hartung HP, Gold R (1997) Apoptosis of myelin-reactive T cells induced by reactive oxygen and nitrogen intermediates in vitro. Cell Imunol 178:1–8

    CAS  Google Scholar 

  • Zhang T, Kawakami K, Qureshi MH, Okamura H, Kurimoto M, Saito A (1997) IL-12 and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudate cells against Cryptococcus neoformans through production of γinterferon by natural killer cells. Infect Immun 65:3594–3599

    PubMed  CAS  Google Scholar 

  • Zheng YM, Schäfer MK-H, Weihe E, Sheng H, Corisdeo S, Fu ZF, Koprowski H, Dietzschold B (1993) Severity of neurological signs and degree of inflammatory lesions in the brains of rats with Borna disease correlate with the induction of nitric oxide synthase. J Virol 67:5786–5791

    PubMed  CAS  Google Scholar 

  • Zhuang JC, Lin C, Lin D, Wogan GN (1998) Mutagenesis associated with nitric oxide production in macrophages. Proc Natl Acad Sci USA 95:8286–8291

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogdan, C. (2000). The Function of Nitric Oxide in the Immune System. In: Mayer, B. (eds) Nitric Oxide. Handbook of Experimental Pharmacology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57077-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57077-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63026-2

  • Online ISBN: 978-3-642-57077-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics