Skip to main content

Application of the Self-Organizing Mapping and Fuzzy Clustering to Microsatellite Data: How to Detect Genetic Structure in Brown Trout (Salmo trutta) Populations

  • Chapter
Artificial Neuronal Networks

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Artificial Neuronal Networks (ANNs) are now currently used for various purposes, from physical and chemical studies to biological ones. Even if they are less used in ecology and populations genetics, recent studies have shown that they can be very efficient for such problems (Cornuet et al. 1996; Foody 1997; Mastrorillo et al. 1997; Guégan et al. 1998). ANNs have several advantages: they can be applied to various data, from environmental variables to genotypes, and are usually more efficient than classical statistical techniques (FDA, for example; see Cornuet et al. 1996). In order to classify biological objects (individuals or populations, for example) using ANNs, two main types of methods can be applied: supervised and unsupervised learning. Supervised learning can be applied to the classification of individuals of unknown origin among already well-defined groups: This has been successfully applied to genetic data on bees (Conuet et al. 1996, with some phylogenetically well separated lineages), and on trout(Aurelle et al. 1998, but with some less clearly differentiated groups).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aurelle D, Berrebi P (1998) Microsatellite markers and management of brown trout Salmo trutta fario populations in south-western France. Génétique, selection. Evolution 30:75–90

    Google Scholar 

  • Aurelle D, Giraudel JL, Lek S, Berrebi P (1998) Utilisation des réseaux de neurones multicouches pour classifier des populations de truites à partir des données génétiques. In: E.N.S.A. (ed) 6ièmes rencontres de la Société Francophone de Classification. Montpellier, pp 11–14

    Google Scholar 

  • Bezdek JC, Ehrlich R, Full W (1984) The Fuzzy c-Means clustering algorithm. Computers and Geosciences 10:191–203

    Article  Google Scholar 

  • Blayo F, Demartines P (1991) Data analysis: How to compare Kohonen neuronal networks to other techniques ? In: Prieto A (ed) Artificial neuronal networks. Springer-Verlag, Berlin, pp 469–475

    Chapter  Google Scholar 

  • Chon T-S, Park YS, Moon KH, Cha E, Pa Y (1996) Patternizing communities by using an artificial neuronal network. Ecol Model 90:69–78

    Article  Google Scholar 

  • Cornuet JM, Aulagnier S, Lek S, Franck P, Solignac M (1996) Classifying individuals among infra-specific taxa using microsatellites data and neuronal networks. C R Acad Sci Paris, Life sciences 319:1167–1177

    CAS  Google Scholar 

  • Der R, Villmann Th, Martinetz Th (1994) New qualitative measure of topology preservation in Kohonen’s feature maps. In: Proc. ICNN’94, IEEE Service Center, Piscataway, pp 645–648

    Google Scholar 

  • Estoup A, Presa P, Krieg F,Vaiman D, Guyomard R (1993) (CT)n and (GT)n microsatellites: A new class of genetic markers for Salmo trutta L. (brown trout). Journal of the Genetical Society of Great Britain 71:488–496

    CAS  Google Scholar 

  • Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M (1998) Comparative analysis of microsatellite and allozyme markers: A case study investigating microgeographic differentiation in brown trout (Salmo trutta). Molecular Ecology 7:339–353

    Article  CAS  Google Scholar 

  • Foody GM (1996) Fuzzy modeling of vegetation from remotely sensed imagery. Ecol Model 85:3–12

    Article  Google Scholar 

  • Foody GM (1997) Fully fuzzy supervised classification of land cover from remotely sensed imagery with an artificial neuronal network. Neuronal Computing & Applications 5(4):238–247

    Article  Google Scholar 

  • Guégan JF, Lek S, Oberdorff T (1998) Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391:382–384

    Article  Google Scholar 

  • Guyomard R (1989) Diversité génétique de la truite commune. Bull Fr Pêche Piscic 314:118–135

    Article  Google Scholar 

  • Hämäläinen A (1994) A measure of disorder for the self-organizing map. In: Proc. ICNN’94, IEEE Service Center, Piscataway, pp 659–664

    Google Scholar 

  • Hamilton KE, Ferguson A, Taggart JB, Tomasson T, Walker A (1989) Post-glacial colonisation of brown trout, Salmo trutta L.: Ldh-5 as a phylogeographic marker locus. J Fish Biol 35:651–664

    Article  Google Scholar 

  • Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Tree 11:424–428

    CAS  Google Scholar 

  • Kiviluoto K (1996) Topology preservation in self-organizing maps. The 1996 IEEE International Conference on Neuronal Networks (Cat. No. 96CH35907) 1:294–299, New York

    Google Scholar 

  • Kohonen T (1995) Self-organizing maps. Springer-Verlag, Heidelberg (Series in Information Sciences, 30)

    Book  Google Scholar 

  • Kraaijveld MA, Mao J, Jain AK (1995) A non-linear projection method based on Kohonen’s topology preserving map. IEEE Transactions on Neuronal Networks 6:548–559

    Article  CAS  Google Scholar 

  • Mastrorillo S, Lek S, Dauba F, Belaud A (1997) The use of artificial neuronal networks to predict the presence of small-bodied fish in river. Freshwat Biol 38:237–246

    Article  Google Scholar 

  • O’Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatelitte. Can J Fish Aquat Sci 53:2292–2298

    Google Scholar 

  • Poteaux C (1995) Interactions génétiques entre formes sauvages et formes domestiques chez la truite commune (Salmo trutta fario L.). Thesis, University Montpellier II, Montpellier

    Google Scholar 

  • Poteaux C, Berrebi P (1997) Intégrité génomique et repeuplements chez la truite commune du versant méditerranéen. Bull Fr Pêche Piscic 344/345:309–322

    Article  Google Scholar 

  • Poteaux C, Bonhomme F, Berrebi P (1998) Differences between nuclear and mitochondrial introgressions of brown trout populations from a restocked main river and its unrestocked tributary. Biological Journal of the Linnean Society 63:379–392

    Article  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    CAS  Google Scholar 

  • Tsao C-K, Bezdek E, Pal NR JC (1994) Fuzzy Kohonen clustering networks. Pattern Recognition 27(5):757–764

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Information and Control 8:338–353

    Article  Google Scholar 

  • Zupan J, Li X, Gasteiger J (1993) On the topology distortion in self-organizing maps. Biological Cybernetics 70:189–198

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giraudel, J.L., Aurelle, D., Berrebi, P., Lek, S. (2000). Application of the Self-Organizing Mapping and Fuzzy Clustering to Microsatellite Data: How to Detect Genetic Structure in Brown Trout (Salmo trutta) Populations. In: Lek, S., Guégan, JF. (eds) Artificial Neuronal Networks. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57030-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57030-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63116-0

  • Online ISBN: 978-3-642-57030-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics