Skip to main content

Abstract

This paper is conceived primarily as an account of some interrelated ideas that we have contributed over a long period to the constitutive theory for soils known as hypoplasticity. Our previous publications on this issue have been purely seriatim and mainly for specialists. It now seems timely to attempt a unified, general presentation, which moreover is directed also to nonspe- cialists. In doing so, some emphasis is placed on the ideas and methodology underlying the model by skipping manipulative details, since the formulation may otherwise relapse into mathematical complexity, so obscuring the physical meaning. Despite the article’s review character some unpublished materials and background information are incorporated, which are otherwise omitted due to space limitation. Hopefully, the presentation will have a certain freshness, even for specialists.

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I-

I took the one less travelled by,

And that has made all the differnce.

from ”The Road not Taken” by Robert Frost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardet, J. P. (1990), Lode dependences for isotropic pressure-sensitive elasto-plastic materials, J. Appl. Mech., ASME, 57, 498–506

    Article  Google Scholar 

  2. Bauer, E. and Wu, W. (1993), A hypoplastic model for granular soils under cyclic loading, in: Kolymbas (ed), Proc. Int. Workshop Modern Approaches to Plasticity, 247–258

    Google Scholar 

  3. Bauer, E. and Wu, W. (1994), Extension of hypoplastic model with respect to cohesive powders, in: Siriwardane & Zaman (eds), Proc. Computer Methods and Advances in Geomechanics, 531–536

    Google Scholar 

  4. Bauer, E. and Wu, W. (1995), A hypoplastic constitutive model for cohesive powders, Powder Technology, 85, 1–9

    Article  Google Scholar 

  5. Bauer, E. (1995), Constitutive modelling of critical states in hypoplasticity, in: Pande & Pietruszczak (eds), Numerical Methods in Geomechanics, 15–20

    Google Scholar 

  6. Bauer, E. (1996), Calibration of a comprehensive constitutive equation for granular materials, Soils and foundations, 36, 13–26

    Article  Google Scholar 

  7. Bauer, E. and Huang, W. (1998), The dependence of shear banding on pressure and density in hypoplasticity, in: Adachi, Oka & Yashima (eds), Proc. 4th Int. Workshop on Localization and Bifurcation Theory for Soils and Rocks, 81–90

    Google Scholar 

  8. Bauer, E. and Huang, W. (1999), Effect of initial anisotropy on shear banding for granular materials, to appear in: Proc. 7th Int. Symp. Numerical Models Geomech., Graz, Austria, 121–126

    Google Scholar 

  9. Bazant, Z. P. (1978), Endochronic inelasticity and incremental plasticity, Int. J. Solids Structures, 14, 691–714

    Article  MATH  Google Scholar 

  10. Bazant, Z. P., Ansal, A. M. and Krizek, R.J. (1982), Endochronic models for soils, in: Proc. Soil Mechanics — transient and cyclic loads, 419–438

    Google Scholar 

  11. Bernstein, B. (1960), Hypo-elasticity and elasticity, Arch. Rational Mech. Anal., 6, 89–104

    Article  MathSciNet  MATH  Google Scholar 

  12. Boehler, J. P. and Sawczuk, A. (1977), On yielding of oriented solids, Acta Mech., 27, 185–204

    Article  Google Scholar 

  13. Boutwell, G. P. (1969), Mechanical behaviour of sands, Soil Mechanics Series, No. 7, Dissertation, Duke University, USA

    Google Scholar 

  14. Chambon, R. (1989), Une classe de lois comportement incrementalement non linéaire pour sols non visqueux, resolution de quelques problemes de coherence, C. R. Acad. Sci. Paris, t. 308, Serie II, 1571–1576

    Google Scholar 

  15. Chambon, R., Desrues, J., Hammad, W. and Charlier, R. (1994), CLoE, a new rate-type constitutive model for geomaterials, theoretical basis and implementation, Int. J. Numer. Anal. Methods Geomech. 18, 253–278

    Article  MATH  Google Scholar 

  16. Coon, M. D. and Evans, R. J. (1972), Incremental constitutive laws and their associated failure criterion with application to plain concrete, Int. J. Solids Structures, 8, 1169–1183

    Article  MATH  Google Scholar 

  17. Dafalias, Y. F. (1986), Bounding surface plasticity, I: mathematical formulation and hypoplasticity, Eng. Mech., ASCE, 112, 966–987

    Article  Google Scholar 

  18. Darve, F. (1974), Contribution à la détermination de la loi rhéologues incrémentale des sols, Thése de docteur-ingénieur Université Scientifique et Médicale de Grenoble, France

    Google Scholar 

  19. Darve, F. and Labanieh, S. (1982), Incremental constitutive law for sands and clays, Int. J. Num. Anal. Meth. Geomech., 6, 243–275

    Article  MATH  Google Scholar 

  20. Darve, F. (1990), The expression of rheological laws in incremental form and the main classes of constitutive equations, in: Darve (ed), Geomaterials: Constitutive Equations and Modelling, 123–147

    Google Scholar 

  21. Darve, F. and Laouafa, F. (1999), plane strain instability in soil, proc. 7th NUMOG, Graz, Austria, 85–90

    Google Scholar 

  22. Davis, R. O. and Mullenger, G. (1978), A rate-type constitutive model for soils with a critical state, Int. J. Num. Anal. Meth. Geomech., 2, 255–282

    Article  MATH  Google Scholar 

  23. Desrues, J. and Chambon, R. (1989), Shear band analysis for granular materials: the question of incremental non-linearity, Ing. Arch., 59, 187–196

    Article  Google Scholar 

  24. Desrues, J., Chambon, R., Mokni, M. and Mayerolle, F. (1996), Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography, Geotechnique, 46, 1–18

    Article  Google Scholar 

  25. Doanh, T. (1999), Strain response envelope: a complimentary tool for evaluating hypoplastic constitutive equations, in this proceedings

    Google Scholar 

  26. Goldscheider, M. (1976), Grenzbedingung und Fließregel von Sand, Mech. Resear. Comm., 3, 463–468

    Article  Google Scholar 

  27. Goldscheider, M. (1984), True triaxial tests on dense sand, in: Gudehus, Darve and Vardoulakis (eds), Proc. Int. Workshop on Constitutive Relations for Soils, 11–54

    Google Scholar 

  28. Dragusin, L. (1981), A hypoelastic model for soils, part I-IV, Int. J. Engng. Sci., 19, 511–552

    Article  MathSciNet  MATH  Google Scholar 

  29. Green, A. E. (1956a), Hypoelasticity and plasticity I, Proc. Royal Soc., 234, 46–59

    Article  MATH  Google Scholar 

  30. Green, A. E. (1956b), Hypoelasticity and plasticity II, J. Rat. Mech. Anal., 5, 725–734

    MATH  Google Scholar 

  31. Gudehus, G., Goldscheider, M. and Winter, H. (1977), Mechanical properties of sand and clay and numerical integration methods: some sources of errors and bounds of accuracy, in: Gudehus (ed), Finite Elements in Geomechanics, 121–150

    Google Scholar 

  32. Gudehus, G. (1979), A comparison of some constitutive laws for soils under radially symmetric loading and unloading, in: Wittke (ed), Proc. 3rd Int. Conf. on Numer. Methods in Geomech., 1309–1323

    Google Scholar 

  33. Gudehus, G. and Kolymbas D. (1985), Numerical testing of constitutive relations for soils, in: NN (ed), Proc. 3rd Int. Conf. on Numer. Methods in Geomech., 1309–1323

    Google Scholar 

  34. Gudehus, G. (1996), A comprehensive constitutive equation for granular materials, Soils and foundations, 36, 1–12

    Article  Google Scholar 

  35. Henkel, D. J. (1960), The shear strength of saturated remoulded clays, in: Proc. ASCE Research Conf. Shear Strength Cohesive Soils, 533–554

    Google Scholar 

  36. Herle, L, Doanh, T. and Wu, W. (1999), Comparison of hypoplastic and elasto-plastic approaches in constitutive modelling of static liquefaction, in this proceedings

    Google Scholar 

  37. Herle I. and Gudehus G.,. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials, 1999. In print.

    Google Scholar 

  38. Hill, R. (1959), Some basic principles in the mechanics of solids without a natural time, J. Mech. Phy. Solids, 7, 209–225

    Article  MATH  Google Scholar 

  39. Houlsby, G. T. and Withers, N. J. (1988), Analysis of cone pressuremeter test in clay, Géotechnique, 38, 575–587

    Article  Google Scholar 

  40. HĂĽgel, H. M. (1995), Prognose von Bodenverformungen, Dissertation, Karlsruhe University, Germany

    Google Scholar 

  41. Kolymbas, D. (1977), A rate-dependent constitutive equation for soils, Mech. Research Comm., 4, 367–372

    Article  Google Scholar 

  42. Kolymbas, D. (1978), Ein nichtlineares viskoplastisches Stoffgesetz für Böden, Dissertation, Karlsruhe University, Germany

    Google Scholar 

  43. Kolymbas, D. (1981), Bifurcation analysis for sand samples with a non-linear constitutive equation, Ing. Arch., 50, 131–140

    Article  MATH  Google Scholar 

  44. Kolymbas, D. (1982), A constitutive law of the rate type for soils, in: Gudehus, Darve and Vardoulakis (eds), Constitutive Ralations for Soils

    Google Scholar 

  45. Kolymbas, D. (1985), A generalized hypoelastic constitutive law, in: Proc. XIth ICSMFE, Vol. 5, 2626

    Google Scholar 

  46. Kolymbas, D. (1987), A novel constitutive law for soils, in: Desai (ed), Proc. 2nd Int. Conf. on Constitutive Laws for Engineering Materials, Elsevier, Amsterdam, 319–326

    Google Scholar 

  47. Kolymbas, D. (1988), Eine konstitutive Theorie für Böden und andere körnige Stoffe, Dissertation, Karlsruhe University, Germany

    Google Scholar 

  48. Kolymbas, D. and Rombach, G. (1989), Shear band formation in generalized hypoelasticity, Ing. Arch., 59, 177–186

    Article  Google Scholar 

  49. Kolymbas, D. (1991a), Computer aided design of constitutive laws, Int. J. Nu-mer, Anal. Methods Geomech., 15, 593–604

    Article  MATH  Google Scholar 

  50. Kolymbas, D. (1991b), An outline of plasticity, Ing. Arch., 61, 143–151

    MATH  Google Scholar 

  51. Kolymbas D. and Wu, W. (1993), Introduction to hypoplasticity, in: Kolymbas (ed), Modern Approaches to Plasticity, 213–223

    Google Scholar 

  52. Kolymbas D., Herle, I. and von Wolffersdorff, P. (1995), Hypoplastic constitutive equation with internal state variables, Int. J. Numer, Anal. Methods Geomech., 19, 415–436

    Article  MATH  Google Scholar 

  53. Krawietz, A. (1979), Stability and plastic yield of hypo-elastic materials, Dissertation, Technical University of Berlin, Germany

    Google Scholar 

  54. Lade, P. V. and Duncan, J. M. (1975), Elastoplastic stress-strain theory for cohesionless soil, J. Geotech. Eng. Div., ASCE, 101, 1037–1053

    Google Scholar 

  55. Lewin, P.I. and Burland, J.B. (1970), Stress-probe experiments on saturated normally consolidated clay. Géotechnique, 20 No.1, 1970, 38–56.

    Article  Google Scholar 

  56. Matsuoka, H. and Nakai, T. (1977), Stress-strain relationship of soil based on the SMP, in: Proc. IXth ICSMFE, 153–162

    Google Scholar 

  57. Mróz, Z. (1980), On hypoelasticity and plasticity approaches to constitutive modelling of inelastic behaviour of soils, Int. J. Numer, Anal. Methods Geomech., 4, 45–55

    Article  MATH  Google Scholar 

  58. Niemunis, A. (1993), Hypoplasticity vs. elastoplasticity, selected topics, in: Kolymbas (ed), Proc. Int. Workshop Modern Approaches to Plasticity, 277–307

    Google Scholar 

  59. Niemunis, A. and Herle, I. (1997) Hypoplastic model for cohesionless soils with elastic strain range, Int. J. Mech. Cohesive-Frictional Mater., 2, 279–299

    Article  Google Scholar 

  60. Palmer, A. C. (1972), Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressuremeter test, Géotechnique, 22, 451–457

    Article  MathSciNet  Google Scholar 

  61. Rice, J. R. (1976), The localization of plastic deformation, in: Koiter (ed), Theoretical and Applied Mechanics, 207–220

    Google Scholar 

  62. Rivlin, R. S. (1981), Some comments on the endochronic theory of plasticity, Int. J. Solids Struct, 17, 231–248

    Article  MATH  Google Scholar 

  63. Romano, M. (1974), A continuum theory for granular media with a critical state, Archiwum Mechaniki Stosowanej, 26, 1011–1028

    MATH  Google Scholar 

  64. Royis, P. (1989), Interpolation and one-to-one properties of incremental constitutive laws, Eur. J. Mech., A/Solids, 8, 385–411

    MathSciNet  MATH  Google Scholar 

  65. Royis, P. and Doanh, P. (1998), Theoretical analysis of strain response envelope using incrementally non-linear constitutive equations, Int. J. Numer, Anal. Methods Geomech., 22, 97–132

    Article  MATH  Google Scholar 

  66. Sandier, I. S. (1978), On the uniqueness and stability of endochronic theories of material behaviour, J. Appl. Mech., ASME., 45, 263–278

    Article  Google Scholar 

  67. Schofield, A. N. and C. P. Wroth (1968), Critical State Soil Mechanics, McGraw-Hill Book Co., London.

    Google Scholar 

  68. Sikora, Z. and Wu, W. (1991), Shear band formation in biaxial tests, in: Proc. Int. Conf. Constitutive Laws for Engineering Materials, 111–116

    Google Scholar 

  69. Sikora, Z. (1992), Hypoplastic flow of granular materials, Dissertation, Karlsruhe University, Germany

    Google Scholar 

  70. Smith, G.F. (1971), On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Engng. Sci., Vol.9, pp. 899–916

    Article  MATH  Google Scholar 

  71. Stutz, P. (1973), Comportement élasto-plastique des milieux granulaires, in: Foundations of Plasticity, Ed. A. Sawczuk, Vol. 1, Noordhoff Int. Pub., Leyden, pp. 37–49

    Google Scholar 

  72. Tamagnini, C., Viggiani, G. and Chambon, R. (1999), A review of two approaches to hypoplasticity, in this proceedings

    Google Scholar 

  73. Tamagnini, C., Viggiani, G. and Chambon, R. (1999), Performance of different stress point algorithms for the integration of hypoplastic constitutive equations for geomaterials, to appear in: Proc. 7th Int. Symp. Numerical Models Geomech., Graz, Austria, 189–194

    Google Scholar 

  74. Tokuoka, T. (1971), Yield conditions and flow rules derived from hypoelasticity, Arch. Rational Mech. Anal., 42, 239–252

    Article  MathSciNet  MATH  Google Scholar 

  75. Tokuoka, T. (1977), Rate type plastic material with kinematic hardening, Acta Mehcanica, 27, 145–154

    Article  Google Scholar 

  76. Tokuoka, T. (1982), Simple shear deformation of rate type plastic materials with combined work-hardening, Int. J. Engng. Sci., 20, 791–801

    Article  MATH  Google Scholar 

  77. Thomas, T. Y. (1955), Combined elastic and Prandtl-Reuss stress-strain relations, Proc. Nat. Acad. Sci. USA, 41, 720–726

    Article  MATH  Google Scholar 

  78. Truesdell, C. (1952), The mechanical foundations of elasticity and fluids, Arch. Rational Mech. Anal., 1, 125–300

    MathSciNet  MATH  Google Scholar 

  79. Truesdell, C. (1955), Hypoplasticity, J. Rat. Mech. Anal, 4, 83–133

    MathSciNet  MATH  Google Scholar 

  80. Truesdell, C. and Noll W. (1965), The Nonlinear Field Theories of Mechanics, in: Encyclopedia of Physics III/l, S. FlĂĽgge ed., Springer, Berlin

    Google Scholar 

  81. Truesdell, C. (1966), Six lectures on modern natural philosophy, Springer Verlag, New York, N.Y.

    MATH  Google Scholar 

  82. Valanis, K. C. (1971), A theory of viscoplasticity without a yield surface, Archi-wum Mechaniki Stosowanej, 23, 517–551

    MathSciNet  MATH  Google Scholar 

  83. Valanis, K. C. and Read, H. E. (1986), An endochronic theory for concrete, Mech. Mater., 5, 277–295

    Article  Google Scholar 

  84. Vardoulakis, I. (1977), Scherfugenbildung in Sandkrpern als Verzweigungsproblem, Dissertation, Karlsruhe University, Germany

    Google Scholar 

  85. Vardoulakis, I. (1980), Shear band inclination and shear modulus of sand in biaxial tests, Int. J. Numer. Anal. Methods Geomech., 2, 103–119

    Article  Google Scholar 

  86. Wang, C. C. (1970), A new representation theorem for isotropic functions, parts I and II, J. Rat. Mech. Anal., 36, 166–223

    Article  MATH  Google Scholar 

  87. von Wolffersdorff, P.-A. (1996), A hypoplastic relation for granular materials with a predefined limit state surface, Mech. Cohesive-Frictional Mater., 1, 251–271

    Article  Google Scholar 

  88. Wu, W. (1990), A unified numerical integration formula for the perfectly plastic von Mises model, Int. J. Numer. Meth. Eng., 30, 491–504

    Article  MATH  Google Scholar 

  89. Wu, W. and Kolymbas, D. (1990), Numerical testing of the stability criterion for hypoplastic constitutive equations, Mech. Mater., 9, 245–253

    Article  Google Scholar 

  90. Wu, W. and Sikora, Z. (1991), Localized bifurcation in hypoplasticity, Int. J. Engng. Sci., 29, 195–201

    Article  MATH  Google Scholar 

  91. Wu, W. (1992), Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe, Dissertation, Karlsruhe University, Germany

    Google Scholar 

  92. Wu, W. and Sikora, Z. (1992), Localized bifurcation of pressure sensitive dilatant granular materials, Mech. Research Comm., 19, 289–299

    Article  MATH  Google Scholar 

  93. Wu W. and Bauer, E. (1993), A hypoplastic constitutive model for barotropy and pyknotropy of granular soils, in: Kolymbas (ed), Modern Approaches to Plasticity, 365–383

    Google Scholar 

  94. Wu W., Bauer, E., Niemunis, A. and Herle, I. (1993), Visco-hypoplastic models for cohesive soils, in: Kolymbas (ed), Modern Approaches to Plasticity, 365–383

    Google Scholar 

  95. Wu W. and Bauer, E. (1994), A simple hypoplastic constitutive model for sand, Int. J. Numer, Anal. Methods Geomech., 18, 833–862

    Article  MATH  Google Scholar 

  96. Wu, W. and Niemunis, A. (1996), Failure criterion, flow rule and dissipation function derived from hypoplasticity, Int. J. Mech. Cohesive-Frictional Mater., 1, 145–163

    Article  Google Scholar 

  97. Wu, W., Bauer, E. and Kolymbas, D. (1996), Hypoplastic constitutive model with critical state for granular materials, Mech. Mater., 23, 45–69

    Article  Google Scholar 

  98. Wu, W. and Niemunis, A. (1997), Beyond failure in granular materials, Int. J. Numer, Anal. Methods Geomech., 21, 153–174

    Article  MATH  Google Scholar 

  99. Wu, W. (1998), Rational approach to anisotropy of sand, Int. J. Numer, Anal. Methods Geomech., 22, 921–940

    Article  MATH  Google Scholar 

  100. Wu, W. (1999a), Nonlinear analysis of shear band formation in sand, accepted for publication in: Int. J. Numer, Anal. Methods Geomech.

    Google Scholar 

  101. Wu, W. (1999b), A simple critical state model for sand, to appear in: Proc. 7th Int. Symp. Numerical Models Geomech., Graz, Austria

    Google Scholar 

  102. Ziegler, M. (1986), Berechnung des verschiebungsabhängigen Erddrucks in Sand, Dissertation, Karlsruhe University, Germany, 47–52

    Google Scholar 

  103. Zienkiewicz, O. C. and Pande, G. N. (1977), Some useful forms of isotropic yield surfaces for soil and rock mechanics, in: Finite Elements in Geomechanics, John Wiley & Sons, 179–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, W., Kolymbas, D. (2000). Hypoplasticity then and now. In: Kolymbas, D. (eds) Constitutive Modelling of Granular Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57018-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57018-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63115-3

  • Online ISBN: 978-3-642-57018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics