Skip to main content

Gene Therapy: Promises, Problems and Prospects

  • Conference paper
Genes and Resistance to Disease

Abstract

Gene therapy is a novel form of molecular medicine which will have a major impact on human health in the coming century. Although the advent of recombinant DNA technology in modern medicine will allow fetal genetic screening and genetic counseling, the vast majority of those born with the disease are likely to be helped by gene therapy approaches. The scope and definition of gene therapy have expanded in the past few years. In addition to the possibility of correcting inherited genetic disorders like cystic fibrosis, hemophilia and familial hypercholesterolemia, gene therapy approaches are being used to combat acquired diseases, like cancer, AIDS, infectious diseases, Parkinson’s disease, and Alzheimer’s disease. We are not, at this time, contemplating germ line gene therapy, due to the complex technical and ethical issues involved. We are interested in pursuing somatic cell gene therapy, which is exclusively for the benefit for the individual and cannot be passed on to the succeeding generation. The minimum requirement for gene therapy is sustained production of the therapeutic gene product without any harmful side effects (Anderson 1998; Verma and Somia 1997; Crystal 1995; Mulligan 1993; Leiden 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson WF (1998) Human gene therapy. Nature 392 (Suppl), 25–30

    Article  PubMed  CAS  Google Scholar 

  • Berkner KL (1988) Development of adenovirus vector for expression of heterologous genes. Biotechniques 6:616–629

    Article  PubMed  CAS  Google Scholar 

  • Berkner KL (1992) Expression of heterologous sequences in adenoviral vectors In: Muzycka N (ed) Current topics in microbiology and immunology. Springer-Verlag, Berlin, 39–66

    Google Scholar 

  • Blömer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997) Highly efficient and sustained gene transfer in adult neurons with a lentiviral vector. J Virol 71:6641–6649

    PubMed  PubMed Central  Google Scholar 

  • Burns JC, Friedman T, Driever W, Burrascano M, Yii J-K (1993) Vesicular stomatitis virus G protein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chanrock RM, Ludwig W, Heubner RJ, Cate TR, Chui L-W (1966) Immunization with selective infection with type 4 adenovirus grown in human diploid tissue culture. I: safety and lack of oncogenicity and tests for potency in volunteers. JAMA 195:151–165

    Google Scholar 

  • Chatterjee S, Johnson PR, Wong KK, Jr. (1992) Dual target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science 258: 1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Mack LM, Kelly R, Ontell M, Kochanek S, Clemens PR (1997) Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc Natl Acad Sci USA 94:1645–1650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Coffin JM (1990) Retroviridae and their replication In: Fields BN Knipe DM et al. (eds) Virology. Second Edition, Raven Press, Ltd., New York, 1437–1500

    Google Scholar 

  • Crystal RG (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270:404–410

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Roman M, Naviaux RK, Verma JM (1992) Gene therapy via primary myoblasts: long-term expression of factor IX protein following transplantation in vivo. Proc Natl Acad Sci USA 89:10892–10895

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dai Y, Schwartz EM, Gu D, Zhang WW, Sarveknick N, Verma JM (1995) Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 92:1401–1405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Danos O, Mulligan RC (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci (USA) 85:6460–6464

    Article  CAS  Google Scholar 

  • Engelhardt JF, Ye X, Doranz B, Wilson JM (1994) Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 93:6196–6200

    Article  Google Scholar 

  • Field BN, Knipe DM, Howley PM (eds) (1996) Virology. Lippincott-Raven, Philadelphia PA

    Google Scholar 

  • Flannery JG, Zolotukhin S, Vaquero M, La Vail MM, Muzyczka N, Hauswirth WW (1997) Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci USA 94:6916–6921 Flotte TR, Afione SA, Conrad C, McGrath SA, Solow R, Oka H, Zeitlin PL, Guggino WB, Carrer BJ (1993) Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated viral vector. Proc Natl Acad Sci USA 90:10613–10617

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herzog RW, Hagstrom JN, Kung SH, Tai SJ, Wilson JM, Fisher KT, High KA (1997) Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 94:5804–5809

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kafri T, Blömer U, Gage FH, Verma IM (1997) Sustained expression of genes delivered directly in liver and musde by lentiviral vectors. Nat Gen 17:314–317

    Article  CAS  Google Scholar 

  • Kafri T, Morgan D, Krahl T, Sarrenirck N, Sherman L, Verma IM (1998) Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci USA 95:11377–11382

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kotin RM, Menninger JC, Ward DC, Berns KI (1991) Mapping and direct visualization of a region specific viral DNA integration site on chromosome 19q13-qtr. Genomics 10:81–834

    Article  Google Scholar 

  • Kozarsky FK, Wilson JM (1993) Gene therapy: adenovirus vectors. In: Current opinions in genetics and development. 499–503

    Google Scholar 

  • Leiden JM (1995) Gene therapy-promises, pitfalls and prognosis. New Engl J Med 333:871–873

    Article  PubMed  CAS  Google Scholar 

  • Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodefieiency virus. J Virol 68:510–516

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lewis P, Hensel M, Emerman M (1992) Human immunodeficiency virus infection of cells arrested in the cell cyde. EMBO J 11:3053–3058

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mann R Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retroviruses. Cell 33:153–159

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980–982, 984-986, 989-990

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vector occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miyoshi H, Takahashi M, Gage FH, Verma IM (1997) Stable and efficient gene transfer into the retina using a lentiviral vector. Proc Natl Acad Sci USA 94:10319–10323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mulligan RC (1993) The basic science of gene therapy. Science 260:926–932

    Article  PubMed  CAS  Google Scholar 

  • Muzyczka N (1992) Use of adeno-associated virus as a general transduction vector for mammalian cells In: Current topics in microbiology and immunology. Springer-Verlag, Berlin, 97–123

    Google Scholar 

  • Naldini L, Verma IM (1998) In: (Friedman T, ed) The development ofhuman gene therapy. CSHL Press, Cold Spring Harbor, 47–60

    Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan P, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells bya lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Rosman GJ, Osborne WRA, Miller AD (1991) Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introdueed genes. Proc Natl Acad Sci USA 88:1330–1334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poeschla E, Corbeau P, Wong-Staal F (1996) Development of HIV vectors for anti-HIV gene therapy. Proc Natl Acad Sci USA 93:11395–11399

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M (1996) Transduction of non dividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci USA 93:15266–15271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12:2099–2108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Samulski RJ, Chang L-S, Shenk T (1989) Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 63:3822–3828

    PubMed  CAS  PubMed Central  Google Scholar 

  • Scharfmann R, Axelrod JH, Verma IM (1991) Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc Natl Acad Sci USA 88:4626–4630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shenk TJ, Williams (1984) Genetic analysis of adenoviruses. In: Current topies in mierobiology and immunology. Springer-Verlag, Berlin, 1–39

    Google Scholar 

  • Snyder RO, Miao CH, Parijn GA, Spratr SK, Danos O, Nagy D, Gown AM, Winkler B, Meuse L, Cohen LK, Thompsen AR, Kay MA (1997) Persistent and therapeutic eoncentrations of human faetor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 16:270–276

    Article  PubMed  CAS  Google Scholar 

  • St. Louis D, Verma IM (1988) An alternative approach to somatic cell gene therapy. Proc Natl Acad Sci USA 85:3150–3154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Strauss SE (1984) In: Ginsberg HS (ed) The adenoviruses. Plenum Press, New York, 451–496

    Chapter  Google Scholar 

  • Verma IM (1990) Gene therapy. Sci Amer 262:68–84

    Article  Google Scholar 

  • Verma IM, Somia N (1999) Gene therapy: promises, problems and prospects. Nature 389:239–242

    Article  CAS  Google Scholar 

  • Walsh CE, Liu JM, Xiao X, Young NS, Nienhuis AW (1992) Regulated high level expression of a human γ-globin gene introduced into erythroid cells by adeno-associated virus vector. Proc Natl Acad Sci USA 89:7257–7261

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang L, Takabe K, Bidlingmaier SM, III CR, Verma IM (1999) Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA96:3906–3910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weinberg JB, Matthews TJ, Cullen BR, Malim MH (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exper Med 174:1477–1382

    Article  CAS  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1996) Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–8108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Y, Greenough K, Wilson JM (1996) Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver. Gene Ther 3:412–420

    PubMed  CAS  Google Scholar 

  • Yee J-K, Miyanohara A, Lalorte P, Bovic K, Burns JC, Friedmann T (1994) A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA 91:9564–9568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vectors achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verma, I.M. et al. (2000). Gene Therapy: Promises, Problems and Prospects. In: Boulyjenkov, V., Berg, K., Christen, Y. (eds) Genes and Resistance to Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56947-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56947-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63086-6

  • Online ISBN: 978-3-642-56947-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics