Skip to main content

Opioid and Antiopioid Peptides: A Model of Yin-Yang Balance in Acupuncture Mechanisms of Pain Modulation

  • Chapter
Clinical Acupuncture

Abstract

At first glance, sharp differences exist between medicinal practices originating in the east and in the west. While Western medicine is more technological, relies on quantitative measurements, and is increasingly evidence-based, Eastern medicine is minimally invasive, relies on qualitative assessments, and remains largely experience-based. However, one concept shared by both medical systems is that most if not all physiological functions are regulated by activities posessing opposite effects. To consider only a few examples, blood sugar is decreased by insulin and increased by glucagon, calcitonin and parathyroid hormone act in opposing directions to regulate calcium levels in blood and tissues, and, generally speaking, the sympathetic and parasympathetic systems have contrasting functions in regulating many aspects of our internal environment. These phenomena can be regarded as reflections of the yin-yang balance described in traditional Chinese medicine. Thus, the “homeostasis” of Western medicine has long been recognized as “dynamic balance” in the classical texts of Chinese medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hughes J, Smith TW, Kosteritz HW et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  2. Ungar G, Ungar A, Malin DH et al (1977) Brain peptides with opiate antagonistic action: TheIR possible role in tolerance and dependence. Psychoneuroendocrinol 2:1–10

    Article  CAS  Google Scholar 

  3. Han JS, Ding XZ, Fan SG (1985) Is CCK-8 a candidate for endogenous antiopioid peptide substrate? Neuropeptides 5:399–402

    Article  PubMed  CAS  Google Scholar 

  4. Han JS, Terenius L (1982) Neurochemical basis of acupuncture analgesia. Annu Rev Pharmacol Toxicol 22:193–220

    Article  PubMed  CAS  Google Scholar 

  5. Meunier JC, Mollereau C, Toll L et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535

    Article  PubMed  CAS  Google Scholar 

  6. Pomeranz B, Chiu D (1976) Naloxone blocks acupuncture analgesia and causes hyperalgesia: Endorphin is implicated. Life Sci 19:1757–1762

    Article  PubMed  CAS  Google Scholar 

  7. Mayer DJ, Price DD, Rafii A (1977) Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res 121:368–372

    Article  PubMed  CAS  Google Scholar 

  8. Han JS, Wang Q (1992) Mobilization of specific neuropeptides by peripheral stimulation of identified frequencies. News Physiol Sci USA 7:176–180

    CAS  Google Scholar 

  9. Chen XH, Han JS (1992) Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors: Another cross-tolerance study. Beh Brain Res 47:143–149

    Article  Google Scholar 

  10. Chen XH, Han JS (1992) All three types of opioid receptors in the spinal cord are important for 2–15 Hz electroacupuncture analgesia. Eur J Pharmacol 211:203–210

    Article  PubMed  CAS  Google Scholar 

  11. Cox BA, Goldstein A, Li CH (1976) Opiate activity of a peptide, β-lipotropin (61–91) derived from β-lipotropin. Proc Natl Acad Sci USA 73:1821–1823

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein A, Tachibana S, Lowrey LI et al (1979) Dynorphin (1–13), an extraordinary potent opioid peptide. Proc Natl Acad Sci USA 76:6666–6670

    Article  PubMed  CAS  Google Scholar 

  13. Zadina JE, Lackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for µ-opiate receptor. Nature 386:499–502

    Article  PubMed  CAS  Google Scholar 

  14. He CM, Han JS (1990) Attenuation of low rather than highfrequency electroacupuncture analgesia by microinjection of β-endorphin antiserum into the periaqueductal gray in rats. Acupuncture. Sci Intl J 1:94–99

    Google Scholar 

  15. Han Z, Jiang YH, Wan Y, Wang Y, Chang JK, Han JS (1999) Endomorphin 1 mediates 2 Hz but not 100 Hz electroacupuncture analgesia in the rat. Neurosci Lett: 274:75–78

    Article  PubMed  CAS  Google Scholar 

  16. Fei H, Xie GX, Han JS (1987) Low and high frequency electroacupuncture stimulation releases met-enkephalin and dynorphin A in rat spinal cord. Chin Sci Bull 1987 34:703–705

    Google Scholar 

  17. Han JS, Chen XH, Sun SL et al (1991) Effect of low and highfrequency TENS on met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain 47:295–298

    Article  PubMed  CAS  Google Scholar 

  18. Wang Q, Mao LM, Han JS (1990) The arcuate nucleus of hypothalamus mediates low but not high frequency electroacupuncture analgesia in rats. Brain Res 513:60–66

    Article  PubMed  CAS  Google Scholar 

  19. Wang Q, Mao LM, Han JS (1990) Analgesic electrical stimulation of the hypothalamic arcuate nucleus: Tolerance and its cross-tolerance to 2 Hz or 100 Hz electroacupuncture. Brain Res 518:40–46

    Article  PubMed  CAS  Google Scholar 

  20. Wang Q, Mao LM, Han JS (1990) Diencephalon as a cardinal neural structure for mediating 2 Hz but not 100 Hz electroacupuncture-induced tail flick latency suppression. Behav Brain Res 37:149–156

    Article  PubMed  CAS  Google Scholar 

  21. Wang Q, Mao LM, Han JS (1990) The role of PAG in mediation of analgesia produced different frequencies electroacupuncture stimulation in rats. Intl J Neurosci 53:167–172

    Article  CAS  Google Scholar 

  22. Wang Q, Mao LM, Han JS (1991) The role of parabrachial nucleus in high frequency electroacupuncture analgesia in rats. Chin J Physiol Sci 7:363–367

    CAS  Google Scholar 

  23. Han JS, Tang J, Huang BS (1979) Acupuncture tolerance in rats: Antiopiate substrates implicated. Chin Med J 92:625–627

    Google Scholar 

  24. Ren MF, Han JS (1979) Rat tail flick acupuncture analgesia model. Chin Med J 92:576–582

    Google Scholar 

  25. Han JS, Tang J, Huang BS et al (1979) Acupuncture tolerance in rats: Antiopiate substrates implicated. Chin Med J 92:625–627

    Google Scholar 

  26. Han JS (1992) The role of CCK in electroacupuncture analgesia and electroacupuncture tolerance. In: CT Dourish, SJ Cooper, SD Iversen, LL Iversen (eds) Multiple cholecystokinin receptors in the CNS. Oxford University Press, Oxford, pp 480–502

    Google Scholar 

  27. Han JS (1995) Molecular events underlying the antiopioid effect of CCK-8 in the central nervous system. In: AC Cuello, B Collier (eds) Pharmacological sciences: Perspectives for research and therapy in the late 1990s. Birkhauser Verlag, Basel, pp 199–207

    Chapter  Google Scholar 

  28. Han JS (1995) Cholecystokinin octapeptide (CCK-8): A negative feedback control mechanism for opioid analgesia. Prog Brain Res 105:263–271

    Article  PubMed  CAS  Google Scholar 

  29. Bian JT, Sun MZ, Xu MY, Han JS (1993) Antagonism by CCK-8 of the antinociceptive effect of electroacupuncture on pain-related neurons in nucleus parafascicularis of the rat. Asia Pacific J Pharmacol 8:90–97

    Google Scholar 

  30. Li Y, Han JS (1989) Cholecystokinin octapeptide antagonizes morphine analgesia in periaqueductal gray of the rat. Brain Res 480:105–110

    Article  PubMed  CAS  Google Scholar 

  31. Zhou ZF, Du MY, Jian Y et al (1981) Effect of intracerebral microinjection of naloxone on acupuncture- and morphine-analgesia in the rabbit. Sci Sinica 24:1166–1178

    PubMed  CAS  Google Scholar 

  32. Zhou ZF, Xuan YT, Han JS (1984) Analgesic effect of morphine injected into habenula, nucleus accumbens, or amygdala of rabbits. Acta Pharmacol Sin 5:150–153

    CAS  Google Scholar 

  33. Pu SF, Zhuang HX, Han JS (1994) CCK-8 antagonizes morphine analgesia in nucleus accumbens of the rat via the CCK-B receptor. Brain Res 657:159–164

    Article  PubMed  CAS  Google Scholar 

  34. Wang XJ, Wang XM, Han JS (1990) CCK-8 antagonize opioid analgesia mediated by μ- and but not δ-receptors in the spinal cord of the rat. Brain Res 523:5–10

    Article  PubMed  CAS  Google Scholar 

  35. Dickenson AH, Sullivan AF, Magnuson DS (1992) CCK and opioid interaction in the spinal cord. In: CT Dourish, SJ Cooper, SD Iversen et al (eds) Multiple CCK receptors in the CNS. Oxford University Press, Oxford, pp 503–510

    Google Scholar 

  36. Wang XJ, Fan SG, Ren MF, Han JS (1989) Cholecystokinin-8 suppressed 3H-etorphine binding to rat brain opiate receptors. Life Sci 45:117–123

    Article  PubMed  CAS  Google Scholar 

  37. Wang XJ, Han JS (1990) Modification by CCK-8 of the binding of (μ-, δ-, and opioid receptors. J Neurochem 55 1379–1382

    Article  PubMed  CAS  Google Scholar 

  38. Liu NJ, Xu T, Xu C, Li CQ et al (1995) Cholecystokinin octapeptide reverses μ opioid receptor-mediated inhibition of calcium current in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 1995 275:1293–1299

    Google Scholar 

  39. Xu T, Liu NJ, Li CQ et al (1996) Cholecystokinin octapeptide reverses the χ opioid receptor-mediated depression of calcium current in rat dorsal root ganglion neurons. Brain Res 730:207–211

    PubMed  CAS  Google Scholar 

  40. Zhang LJ, Lu XY, Han JS (1992) Influence of CCK-8 on phosphoinositide turnover in neonatal rat brain cells. Biochem J 285:847–850

    PubMed  CAS  Google Scholar 

  41. Zhang LJ, Wang XJ, Han JS (1993) Modification of opioid receptors and uncoupling of receptors from G protein as possible mechanisms underlying suppression of opioid binding by CCK-8. Chin Med Sci J 8:1–4

    PubMed  Google Scholar 

  42. Zhang LJ, Han JS (1994) Regulation by lithium of the antagonistic effect of CCK-8 on ohmefentanyl-induced antinociception. Neuropharmacol 33:123–126

    Article  CAS  Google Scholar 

  43. Wang JF, Ren MF, Han JS (1992) Mobilization of calcium from intracellular store as a possible mechanism underlying the antiopioid effect of CCK-8. Peptides 13:947–951

    Article  PubMed  CAS  Google Scholar 

  44. Zhou Y, Sun YH, Zhang ZW et al (1993) Increased release of immunoreactive CCK-8 and enhancement of electroacupuncture analgesia by CCK-8 antagonist in rat spinal cord. Neuropeptides 24:139–144

    Article  PubMed  CAS  Google Scholar 

  45. Sheng S, Tian JB, Han JS (1995) Electroacupuncture induces spinal CCK release via μ-and opioid receptors. Chin Sci Bull 40:555–557

    Google Scholar 

  46. Pu SF, Xhuang HX, Han JS (1994) CCK-8 gene expression in rat amygdaloid neurons: Normal distribution and effect of morphine tolerance. Mol Brain Res 21:183–189

    Article  PubMed  CAS  Google Scholar 

  47. Zhou Y, Sun YH, Zhang ZW, Han JS (1992) Accelerated expression of CCK gene in the brain of rats rendered tolerant to morphine. NeuroReport 3:1121–1123

    Article  PubMed  CAS  Google Scholar 

  48. Ding XZ, Fan SG, Zhou JP, Han JS (1986) Reversal of tolerance to morphine analgesia but no potentiation of morphine–induced analgesia by antiserum against CCK-8. Neuropharmacol 25: 1155–1160

    Article  CAS  Google Scholar 

  49. Sun YH, Zhou Y, Han JS (1995) Accelerated release and production of CCK-8 in CNS of rats during prolonged electroacupuncture stimulation. Chin J Neurosci 2:83–88

    Google Scholar 

  50. Bian JT, Sun MZ, Han JS (1993) Reversal of electroacupuncture tolerance by CCK-8 antiserum: An electrophysiological study on pain-related neurons in nucleus parafascicularis of the rat. Intl J Neurosci 72:15–29

    Article  CAS  Google Scholar 

  51. Liu SX, Luo F, Shen S et al (1999) Relationship between the analgesic effect of electroacupuncture and CCK-8 content in spinal perfusate in rats. Chin Sci Bull 44:240–243

    Article  CAS  Google Scholar 

  52. Zhou Y, Sun YH, Zhang ZW, Han JS (1993) Increased release of immunoreactive CCK-8 by morphine and potentiation of opioid analgesia by CCK-B receptor antagonist L-365260 in rat spinal cord. Eur J Pharmacol 234:147–154

    Article  PubMed  CAS  Google Scholar 

  53. Zhang LX, Wu M, Han JS (1992) Suppression of audiogenic epileptic seizure by intracerebral injection of a CCK gene vector. NeuroReport 03:700–702

    Article  CAS  Google Scholar 

  54. Zhang LX, Li XL, Wang L, Han JS (1997) Rats with decreased brain CCK levels show increased responsiveness to peripheral electrical stimulation-induced analgesia. Brain Res 745:158–164

    Article  PubMed  CAS  Google Scholar 

  55. Tang NM, Dong HW, Wang XM et al (1997) Cholecystokinin antisense RNA increases the analgesic effect induced by electroacupuncture or low dose morphine: Conversion of low responders into high responders. Pain 71:71–80

    Article  PubMed  CAS  Google Scholar 

  56. Darland T, Heinricher MM, Grandy DK (1998) Orphanin FQ nociceptin: A role in pain and analgesia, but so much more. Trends Neurosci 21:215–221

    Article  PubMed  CAS  Google Scholar 

  57. Tian JH, Xu W, Fang Y et al (1997) Bidirectional modulatory effect of OFQ on morphine-induced analgesia: Antagonism in brain and potentiation in spinal cord of the rat. Br J Pharmacol 20:676–680

    Article  Google Scholar 

  58. Tian JH, Zhang W, Fang Y et al (1998) Endogenous orphanin FQ: Evidence for a role in the modulation of electroacupuncture analgesia and development of tolerance to analgesia produced by morphine and electroacupuncture. Br J Pharmacol 124:21–26

    Article  PubMed  CAS  Google Scholar 

  59. Yuan L, Han Z, Chang JK, Han JS (1999) Accelerated release and production of orphanin FQ in brain of chronic morphine tolerant rats. Brain Res 826:330–334

    Article  PubMed  CAS  Google Scholar 

  60. Tian JH, Xu W, Zhang W et al (1997) Involvement of endogenous orphanin FQ in electroacupuncture-induced analgesia. NeuroReport 8:497–500

    Article  PubMed  CAS  Google Scholar 

  61. Okuda-Ashitaka E, Minami T, Tachibana S et al (1998) Nocistatin, a peptide that blocks nociceptin action in pain transmission. Nature 392:286–289

    Article  PubMed  CAS  Google Scholar 

  62. Zhao CS, Li BS, Zhao GY et al (1999) Nocistatin reversed the effect of orphanin FQ nociception in antagonizing morphine analgesia. NeuroReport 10:297–299

    Article  PubMed  CAS  Google Scholar 

  63. Kaneko S, Tamura S, Takagi H (1985) Purification and identification of endogenous antiopioid substance from bovine brain. Biochem Biophys Res Commun 587–593

    Google Scholar 

  64. Wang KW, Han JS (1987) Angiotensin II antagonizes morphine analgesia: Effective by intracereb-roventricular injection but not by intrathecal injection. Chinese Sci Bull 33:123–128

    Google Scholar 

  65. Wang XM, Han JS (1989) Antagonism to morphine analgesia and involvement in morphine tolerance of angiotensin II in periaqueductal gray of the rabbit. Chinese Sci Bull 33:149–152

    Google Scholar 

  66. Wang KW, Han JS (1989) Evidence for involvement of brain angiotensin II in tolerance to electroacupuncture analgesia in rats. Chin J Appl Physiol 5:32–36

    Google Scholar 

  67. Wang KW, Han JS (1989) Evidence for brain angiotensin II being involved in morphine tolerance in the rat. Chin J Pharmacol Toxicol 3:7–11

    CAS  Google Scholar 

  68. Wang KW, Han JS (1999) Accelerated synthesis and release of angiotensin II in the rats brain during electroacupuncture tolerance. Sci Sinica (B) 33:686–693

    Google Scholar 

  69. Gao RW, Wang KW, Han JS (1989) Accelerated angiotensinogen gene expression in the brain of the rat made tolerance to morphine and electroacupuncture analgesia. Acta Physiol Sin 41:299–303

    CAS  Google Scholar 

  70. Sheng S, Li J, Wang XM et al (1989) Angiotensin II release and antielectroacupuncture analgesia in spinal cord. Acta Physiol Sin 41:179–183

    Google Scholar 

  71. Wang KW, Han JS (1989) Possible mechanisms of the antiopioid activity of angiotensin II. J Beijing Med Univ 21:7–9

    Google Scholar 

  72. Wang XM, Wang XJ, Han JS (1989) Antagonistic effects of angiotensin II and morphine on synaptosomal calcium uptake. Acta Physiol Sin 41:179–183

    CAS  Google Scholar 

  73. Smock T, Fields HL (1989) ACTH1-24 blocks opiate-induced analgesia in the rat. Brain Res 212:202–206

    Article  Google Scholar 

  74. Hammonds RG, Li CH (1984) Beta-endorphin (1–27) is an antagonist of beta-endorphin analgesia. Proc Natl Acad Sci (USA) 81:1389–1390

    Article  CAS  Google Scholar 

  75. Han NL, Bian ZB, Luo F, Han JS (1997) Antagonistic effect of CCK-8 and angiotensin II in antagonizing morphine-induced analgesia in rats. Chin J Pain Med 3:233–237

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, JS. (2001). Opioid and Antiopioid Peptides: A Model of Yin-Yang Balance in Acupuncture Mechanisms of Pain Modulation. In: Stux, G., Hammerschlag, R. (eds) Clinical Acupuncture. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56732-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56732-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64054-7

  • Online ISBN: 978-3-642-56732-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics