Skip to main content

Abstract

We consider a continuum model for the flow of two phases of different mobility and density in a Hele-Shaw cell or a porous medium. As a consequence of the Saffman-Taylor instability, the phase distribution is thought to develop a microstructure, so that its evolution is effectively unpredictable. We identify the constraints on the macroscopic quantities, like the averaged volume fraction of the phases, and show that these constraints allow to derive some predictions on how the macroscopic quantities change over time. Furthermore, we investigate a class of closure hypothesis, which complement these constraints and thereby determine an evolution of the macroscopic quantities themselves, by analyzing the stability of this evolution.

Our analysis uses a combination of tools from nonlinear scalar conservation laws and ideas from the theory of effective moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-W. Alt, unpublished notes.

    Google Scholar 

  2. H. Aref & G. Tryggvason, Numerical experiments on Hele-Shaw flow with sharp interface, J. Fluid Mech.136(1983), pp. 1–3.

    Article  MATH  Google Scholar 

  3. R. L. Chouke, P. van Meurs & C. van der Poel, The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media, Trans. AIME 216 (1958), pp. 188-19.

    Google Scholar 

  4. G. M. Homsy, Viscous fingering in porous media, Ann. Rev. Fluid Mech.19 (1987), pp. 272–311.

    Article  Google Scholar 

  5. S.N. Kruzkov, First order quasilinear equations in several independent variables, Math. USSR-Sb 10 (1970), pp. 217—243

    Google Scholar 

  6. S. Luckhaus, P. I. Plotnikov, Entropy solutions to the Buckley-Leverett equations, Siberian Math J.41 (2) (2000), pp. 329–348.

    Article  MathSciNet  Google Scholar 

  7. J. Malek, J. Necas, M. Rocky ta and M. Rucicka, Weak and Measure-valued solutions to evolutionary partial differential equations,. Chapman & Hall, (1996)

    Google Scholar 

  8. F. Murat, L. Tartar,H-convergence, in Topics in the mathematical modelling of composite materials,. R. Kohn & A. Cherkaev (Edts.), Birkhäuser, (1997), pp. 21–24.

    Google Scholar 

  9. F. Otto, Stability investgation of planar solutions of the Buckley-Leverett equations, preprint no. 345 of the Sonderforschungbereich 256, University of Bonn (1994)

    Google Scholar 

  10. F. Otto, Viscous fingering: bound on the growth rate of mixing zone, SIAM J. Appl. Math.57 (1997), pp. 982–990

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach, Comm. Pure Appl. Math.52 (1999), pp. 873–915

    Article  MathSciNet  MATH  Google Scholar 

  12. P. G. Saffman & G. I. Taylor, The penetration of a fluid into porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. A 245 (1958), pp. 312–332.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Smoller, Shock waves and reaction-diffusion equations,. Springer, (1994)

    Google Scholar 

  14. L. Tartar, Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials,. R. Kohn & A. Cherkaev (Edts.), Birkhäuser, (1997), pp. 9-2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Otto, F. (2001). Evolution of Microstructure: an Example. In: Fiedler, B. (eds) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56589-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56589-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62524-4

  • Online ISBN: 978-3-642-56589-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics