Skip to main content

Microphytobenthos in Constrasting Coastal Ecosystems: Biology and Dynamics

  • Chapter
Ecological Comparisons of Sedimentary Shores

Part of the book series: Ecological Studies ((ECOLSTUD,volume 151))

Abstract

The rocky intertidal foreshore has long been an area intensely studied by ecologists, and the contrasts found between relative heights on the shore and between shores of different aspects have developed into a series of classical studies that outline the nature of the forces (exposure, competition, grazing) that dominate rocky shore ecology (Raffaelli and Hawkins 1996). These hard shores have natural advantages for scientists interested in intertidal ecology: they are usually accessible; the sessile organisms are easily observed; and the shores are relatively stable. However, the contrasts between sandy (noncohesive) and muddy (cohesive) shores are equally of interest, although the shore themselves present more of a logistic challenge and hence contrasting accounts of the shores are less generally available. Also, except in the specialised circumstance of sea grass meadows and mangals, the primary producers (microphytobenthos) that dominate depositional systems are far less obvious than the intertidal macro algae found on hard substrata. The following chapter addresses some of the differences found between sandy and muddy shores with emphasis on the dominant microphytobenthos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Admiraal W (1984) The ecology of estuarine sediment-inhabiting diatoms. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 3. Biopress, Bristol, UK pp 269–322

    Google Scholar 

  • Allen JRL (1984) Sedimentary structures: their character and physical basis. Elsevier, Oxford

    Google Scholar 

  • Amos CL, Feeney T, Sutherland TF, Luternauer JL (1997) The stability and erodibility of fine-grained sediments from the Fraser River delta foreshore and upper foreslope. Est Coastal Shelf Sci 45:507–524

    Article  CAS  Google Scholar 

  • Bergey E (1999) Crevices as refugia for stream diatoms: effect of crevice size on abraded substrates. Limnol Oceanogr 44:1522–1529

    Article  Google Scholar 

  • Blanchard GF, Paterson DM, Stal L, Richard P, Galois R, Huet V, Kelly J, Honeywill C, de Brouwer J, Dyer K, Christie M, Seguignes M (2000) The effect of geomorphological structures on potential biostabilisation by microphytobenthos on intertidal mudflats. Continental Shelf Res (special issue) 20(10/11):1243–1256

    Article  Google Scholar 

  • Brown E, Colling A, Park D, Phillips J, Rothery D, Wright J (1999) Waves, tides and shallow-water processes, 2nd edn. Open Univ, Milton Keynes

    Google Scholar 

  • Chrost RJ (1991) Microbial enzymes in aquatic environments. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Connell JH (1978) Diversity in tropical rainforests and coral reefs. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Daborn GR, Amos CL, Berlinsky M, Christian H, Drapeau G, Faas RW, Grant J, Long B, Paterson DM, Perillo GME, Piccolo MC (1993) An ecological “cascade” effect: migratory birds affect stability of intertidal sediments. Limnol Oceanogr 38:225–231

    Article  CAS  Google Scholar 

  • Dade WB, Davies JD, Nichols PD, Nowell ARM, Thistle D, Trexler MB, White DC (1990) Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiol J 8:1–16

    Article  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • Decho AW (1994) Molecular-scale events influencing the macro-scale cohesiveness of exopolymers. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediment. BIS-Verlag, Oldenburg, pp 135–148

    Google Scholar 

  • Decho AW (2000) Exopolymer micro domains as structuring agents for heterogeneity within microbial biofilms. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 217–225

    Google Scholar 

  • Delgado M, de Jonge VN, Peletier H (1991) Effect of sand movement on the growth of benthic diatoms. J Exp Mar Biol 145:221–231

    Article  Google Scholar 

  • De Winder B, Staats N, Stal LJ, Paterson DM (1999) Carbohydrate secretion by phototrophic communities in tidal sediments. J Sea Res 42:131–146

    Article  Google Scholar 

  • Faas RW, Christian HA, Daborn GR (1992) Biological control of mass properties of surficial sediments: an example from Starr’s Point tidal flat, Minas Basin, Bay of Fundy. Nearshore and estuarine cohesive sediment dynamics. American Geophysical Union, vol 42. Springer, Berlin Heidelberg New York, pp 360–377

    Google Scholar 

  • Gause GF (1934) Experimental demonstration of Volterra’s periodic oscillation in numbers of animals. J Exp Biol 12:44–48

    Google Scholar 

  • Gerdes G, Krumbein WE (1987) Biolaminated deposits. Lecture notes in earth sciences, vol 9. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gerdes G, Krumbein WE, Reineck HE (1987) Mellum, Portrait einer Insel. Verlag Waldemar Kramer, Frankfurt/Main

    Google Scholar 

  • Grant J, Gust G (1987) Prediction of coastal sediment stability from photopigment content from mats of purple sulphur bacteria. Nature 330:244–246

    Article  Google Scholar 

  • Grover JP (1997) Resource competition. Chapman Hall, London

    Book  Google Scholar 

  • Hay SI, Maitland TC, Paterson DM (1993) The speed of diatom migration through natural and artificial substrata. Diatom Res 8:371–384

    Article  Google Scholar 

  • Holland AF, Zingmark RG, Dean JM (1974) Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms. Mar Biol 27:191–196

    Article  Google Scholar 

  • Huettel M, Forster S, Kloser S, Fossing H (1996) Vertical migration in the sedimentdwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. App Environ Microbiol 62:1863–1872

    CAS  Google Scholar 

  • Jickells TD, Rae JE (1997) Biogeochemistry of intertidal sediments. CUP, Cambridge Kingston MB (1999) Effect oflight on vertical migration and photosynthesis of Euglena proxima (Euglenophyta). J Phycol 35:245–253

    Google Scholar 

  • Leeder MR (1982) Sedimentology: Process and product. Harper Collins, London Madsen NP, Nillson P, Sundback K (1993) The influence of benthic micro algae and the stabilisation of a subtidal sediment. J Exp Mar Biol Ecol 170:159–178

    Google Scholar 

  • Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495

    Article  Google Scholar 

  • Moodley LM (1992) Experimental ecology of benthic foraminifera in soft sediments and its (paleo) environmental significance. PhD thesis, Vrijie universiteit te Amsterdam, Netherlands

    Google Scholar 

  • Neumann AC, Gebelein CD, Scoffin TP (1970) The composition, structure, and erodibility of subtidal mats, Abaco, Bahamas. J Sed Petrol 40:274–297

    Google Scholar 

  • Noffke N, Krumbein WE (1999) A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentology 46:417–426

    Article  Google Scholar 

  • Oh SH, Koh CH (1995) Distribution of diatoms in the surficial sediments of the Mangyung-Dongjin tidal flat, west coast Korea (Eastern Yellow Sea). Mar Biol 122:487–496

    Article  Google Scholar 

  • Oppenheim DR (1988) The distribution of epipelic diatoms along an intertidal shore in relation to principal physical gradients. Bot Mar 31:65–72

    Article  Google Scholar 

  • Oppenheim DR (1991) Seasonal changes in epipelic diatoms along an intertidal shore, Berrow Flats, Somerset. Mar Biol Assoc UK 71:579–596

    Article  Google Scholar 

  • Palinska KA, Liesack W, Rhiel E, Krumbein WE (1996) Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Arch Microbiol 166:224–233

    Article  PubMed  CAS  Google Scholar 

  • Parker WR (1997) On the characterisation of cohesive sediments for transport modelling. In: Black KS, Paterson DM, Cramp A (eds) Sedimentary processes in the intertidal zone. Geological Society special publication 139. Geological Society, London, pp 3–14

    Google Scholar 

  • Paterson DM (1997) Biological mediation of sediment erodibility: ecology and physical dynamics. In: Burt N, Parker R, Watts J (eds) Cohesive sediments. Wiley, Chichester, pp 215–229

    Google Scholar 

  • Paterson DM, Black KS (1999) Water flow, sediment dynamics, and benthic biology. In: Raffaelii D, Nedwell D (eds) Advances in ecological research. Academic Press, London, pp 155–193

    Google Scholar 

  • Paterson DM, Black KS (2000) Siliclastic intertidal microbial sediments. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 217–225

    Google Scholar 

  • Paterson DM, Yates MG, Wiltshire KH, McGrorty S, Miles A, Eastwood JEA, Blackburn J, Davidson I (1998) Microbiological mediation of spectral reflectance from intertidal cohesive sediments. Limnol Oceanogr 43:1207–1221

    Article  Google Scholar 

  • Patterson DJ, Larsen J, Corliss JO (1989) The ecology of heterotrophic flagellates and ciliates living in marine sediments. Prog Protistol 3:185–277

    Google Scholar 

  • Peletier H (1996) Long-term changes in intertidal estuarine diatom assemblages related to reduced input of organic waste. Mar Ecol Prog Ser 137:265–271

    Article  Google Scholar 

  • Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72

    Article  CAS  Google Scholar 

  • Proulx M, Mazumder A (1998) Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79:2581–2592

    Article  Google Scholar 

  • Raffaelli D, Hawkins S (1996) Intertidal ecology. Chapman Hall, London

    Book  Google Scholar 

  • Riethmuller R, Hakvoort JHM, Heinke M, Heymann K, Khul H, Witte G (1998) Relating erosion shear stress to tidal flat surface colour. In: Black KS, Paterson DM, Cramp A (eds) Sedimentary processes in the intertidal zone. Geological Society special publication 139. Geological Society, London, pp 1–10

    Google Scholar 

  • Riethmuller R, Heinke M, Kuhl H, Keuke-Rudiger R (2000) Chlorophyll a concentration as a potential index of sediment surface stabilisation by microphytobenthos. Cont Shelf Res (special issue) 20(10/11):1351–1372

    Article  Google Scholar 

  • Riding RE, Awramik SM (2000) Microbial sediments. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Riege H, Villbrandt M (1994) Norderney survey. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediment. BIS-Verlag, Oldenburg, pp 339–360

    Google Scholar 

  • Round FE (1979) A diatom assemblage living below the surface of intertidal sand flats. Mar Biol 54:219–223

    Article  Google Scholar 

  • Round FE (1981) The ecology of the algae. CUP, Cambridge

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms. CUP, Cambridge

    Google Scholar 

  • Sabbe K (1993) Short-term fluctuations in benthic diatom numbers on an intertidal sandflat in the Westerschelde Estuary (Zeeland, The Netherlands). Hydrobiologia 269/270:275–284

    Article  Google Scholar 

  • Saburova MA, Polikarpov IG, Burkovsky IV (1995) Spatial structure of an intertidal sandflat microphytobenthic community as related to different spatial scales. Mar Ecol Prog Ser 129:229–239

    Article  Google Scholar 

  • Serôdio J, da Silva JM, Catarino F (1997) Non-destructive tracing of migratory rhythms of intertidal benthic microalage using in vivo chlorophyll a fluorescence. J Phycol 33:542–553

    Article  Google Scholar 

  • Smith DJ, Underwood GJC (1998) Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591

    Article  CAS  Google Scholar 

  • Soulsby S (1997) Dynamics of marine sands. Thomas Telford, London

    Google Scholar 

  • Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32

    Article  CAS  Google Scholar 

  • Sutherland TF, Amos CL, Grant J (1998a) The effect of buoyant biofilms on the erodibility of sublittoral sediments of a temperate microtidal estuary. Limnol Oceanogr 43:225–235

    Article  CAS  Google Scholar 

  • Sutherland TF, Grant J, Amos CL (1998b) The effect of carbohydrate production by the diatom Nitzschia curvilineata on the erodibility of sediment. Limnol Oceanogr 43:65–72

    Article  CAS  Google Scholar 

  • Taylor I, Paterson DM (1998) Microspatial variation in carbohydrate concentrations with depth in the upper millimetres of intertidal cohesive sediments. Est Coastal Shelf Sci 46:359–370

    Article  CAS  Google Scholar 

  • Taylor I, Paterson DM, Mehlert A (1999) The quantitative variability and monosaccharide composition of sediment carbohydrates associated with intertidal diatom assemblages. Biogeochemistry 45:303–327

    CAS  Google Scholar 

  • Teisson C (1997) A review of cohesive sediment transport models. In: Black KS, Paterson DM, Cramp A (eds) Sedimentary processes in the intertidal zone. Geological Society special publication 139. Geological Society, London, pp 367–381

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Univ Press, Princeton

    Google Scholar 

  • Tolhurst TJ, Riethmiiller R, Paterson DM (2000) In situ versus laboratory analysis of sediment stability from intertidal mudflats. Continental Shelf Research (special issue) 20(10/11):1317–1334

    Article  Google Scholar 

  • Underwood GJC (1994) Seasonal and spatial variation in epipelic diatom assemblages in the Severn Estuary. Diatom Res 9:451–472

    Article  Google Scholar 

  • Underwood GJC, Paterson DM (1993) Recovery of intertidal benthic diatoms after biocide treatment and associated sediment dynamics. J Mar Biol Assoc UK 73:24–45

    Google Scholar 

  • Underwood GJC, Smith DJ (1998) Predicting epipelic diatom exopolymer concentrations in intertidal sediments from sediment chlorophyll a. Microbiol Ecol 35:116–125

    Article  CAS  Google Scholar 

  • Underwood GJC, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exoploymers from intertidal sediments. Limnol Oceanogr 40:1243–1253

    Article  CAS  Google Scholar 

  • Underwood GJC, Phillips J, Saunders K (1998) Distribution of estuarine benthic diatom species along salinity and nutrient gradients. Eur J Phycol 33:173–183

    Article  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. CUP, Cambridge

    Google Scholar 

  • Vogel S (1994) Life in moving fluids, 2nd edn. Academic Press, London

    Google Scholar 

  • Vos PC, de Boer PL, Misdrop R (1988) Sediment stabilization by benthic diatoms in intertidal sandy shoals; qualitative and quantitative observations. In: de Boer PL, van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. Reidel, The Netherlands, pp 511–526

    Google Scholar 

  • Wachendörfer V, Riege H, Krumbein WE (1994) Parahistological sediment thin sections. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediment. BISVerlag. Oldenburg. pp 257–278

    Google Scholar 

  • Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U (1999) Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser 187:77–87

    Article  Google Scholar 

  • Wetherbee R, Lind JL, Burke J, Quatrano RS (1998) The first kiss: establishment and control of initial adhesion by raphid diatoms. J Phycol 34:9–15

    Article  Google Scholar 

  • Yallop ML, de Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production, and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Est Coastal Shelf Sci 39:565–582

    Article  Google Scholar 

  • Yallop ML, Paterson DM (1994) Seasonal field studies: survey of Severn Estuary. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediment. BIS-Verlag, Oldenburg, pp 280–325

    Google Scholar 

  • Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass and sediment stability in biofilms of intertidal sediments. Microbial Ecol 39:116–127

    Article  CAS  Google Scholar 

  • Zong Y, Horton BJ (1999) Diatom zones across intertidal mudflats and coastal saltmarshes in Britain. Diatom Res 13(2):375–394

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paterson, D.M., Hagerthey, S.E. (2001). Microphytobenthos in Constrasting Coastal Ecosystems: Biology and Dynamics. In: Reise, K. (eds) Ecological Comparisons of Sedimentary Shores. Ecological Studies, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56557-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56557-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62517-6

  • Online ISBN: 978-3-642-56557-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics