Skip to main content

Zusammenfassung

Für Übertragungsstrecken im 100-m-Nahbereich, bei denen keine hohe Teilnehmerbündelung erreicht wird, oder für die Signalübertragung innerhalb elektronischer Geräte werden die Herstellungs-, Installations- und Wartungskosten besonders wichtig. Daher verwendet man dort preiswerte Quarzglas- oder Kunststoff-Lichtwellenleiter mit so großen Querschnittsabmessungen, daß die notwendigen Verbindungselemente aus Kunststoffteilen hergestellt werden können, Kap. 8. Als Lichtquellen lassen sich großflächige Lumineszenzdioden verwenden. In Fasern dieser Art propagieren zahlreiche Moden, deren Laufzeitunterschiede die Übertragungsbandbreite begrenzen, Kap. 3.

Allgemeine Literatur

Adams, M.J.: An introduction to optical waveguides. Chichester: John Wiley & Sons 1981 — Agrawal, G.P.: Fiber-optic communication system. Chichester: John Wiley & Sons 1997 — Arnaud, J.A.: Beam and fiber optics. New York: Academic Press 1976 — Ghatak, A.; Thyagarajan, K.: Introduction to fiber optics. Cambridge: University Press 1998 — Grau, G.; Freude, W.: Optische Nachrichtentechnik, 3. Aufl. Berlin: Springer Verlag 1991. Seit 1997 vergriffen. Berichtigter Nachdruck über W.F. (W. Freude@etec.uni-karlsruhe.de);dienachstehende Darstellung stützt sich auf dieses Buch. — Snyder, A. W.; Love, I. D.: Optical waveguide theory. London: Chapman and Hall 1983 — Unger, H.-G.: Planar optical waveguides and fibres. Oxford: Clarendon Press 1977 — Unger, H.-G.: Optische Nachrichtentechnik, Teil I und II, 2. Aufl. Heidelberg: Dr. Alfred Hüthig 1990 und 1992

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. Abramowitz, M.; Stegun, I.A. (Herausg.): Handbook of mathematical functions, 9. Aufl. New York: Dover Publications 1970

    Google Scholar 

  2. Accordi, P.; Basola, c.P.; Bava, G.P.; Chiaretti, G.; Montrosset, I.: Coupling efficiency evaluation of multimode fiber devices using GRIN rod lenses. Appl. Opt. 29(1990) 37–46

    Google Scholar 

  3. Adams, M.J..: An introduction to optical waveguides. Chichester: John Wiley & Sons 1981

    Google Scholar 

  4. Aida, I.; Boreman, G.D.: On-axis and off-axis propagation of Gaussian beams in graded index media. Appl. Opt. 29 (1990) 2944–2950

    Google Scholar 

  5. Arnaud, I.A.: Beam and fiber optics. New York: Academic Press 1976

    Google Scholar 

  6. Artiglia, M.; Coppa, G.; Di Vita, P.; Kalinowski, H.J.; Potenza, M.: Bending loss characterization in single-mode fibres. Proc.13th Europ. Conf. Opt. Commun. Helsinki (ECOC 1987) 437–443

    Google Scholar 

  7. Barnoski, M.K.: Fiber couplers, in: Semiconductor devices for optical communication (herausgegeben von H. Kressel). Berlin: Springer Verlag 1980

    Google Scholar 

  8. Barrell, K.F.; Pask, C.: Optical fibre excitation by lenses. Optica Acta 26 (1979) 91–108

    Google Scholar 

  9. Bartelt, O.; Lohmann, A. W.; Freude, W.; Grau, G.K.: Mode analysis of optical fibres using computer-generated matched filters. Electron. Lett. 19 (1983) 247–249. Satzfehlerberichtigung: Electron. Lett. 19 (1983) 560. Weiterer Satzfehler: Nenner von (3), statt 2πa lies 2πa 2

    Google Scholar 

  10. Bennett, M.J.: Dispersion characteristics of monomode optical-fibre systems. Proc. IEE 130 (1983) 309–314

    Google Scholar 

  11. Berdagué, S.; Facq, P.: Mode division multiplexing in optical fibers. Appl. Opt. 21 (1982) 1950–1955

    Google Scholar 

  12. Bockstaele, R.; Sys, C.; Blodelle, I.; Dhoedt, R; Moerman, I.; Van Daele, P.; Demeester, P.; Baets, R.: Resonant cavity LED’s optimized for coupling to polymer optical fibers. IEEE Photon. Technol. Lett. 11 (1999) 158–160

    Google Scholar 

  13. Born, M.; Wolf, E.: Principles of optics, 6. Aufl. Oxford: Pergamon Press 1980

    Google Scholar 

  14. Brown, G.D.: Chromatic dispersion measurements in graded-index multimode optical fibers. J. Lightwave Technol. 12 (1994) 1907–1909

    Google Scholar 

  15. Chandra, R.; Thyagarajan, K.; Ghatak, A.K.: Mode excitation by tilted and offset Gaussian beams in W-type fibers. Appl. Opt. 17 (1978) 2842–2847

    Google Scholar 

  16. Cohen, L.G.; Mammel, W.L.; Lumish, S.: Dispersion and spectra in single-mode fibers. IEEE J. Quantum Electron. QE-18 (1982) 230–233

    Google Scholar 

  17. Di Vita, P.; Rossi, U.: Theory of power coupling between multimode fibres. Opt. Quantum Electron. 10 (1978) 107–117

    Google Scholar 

  18. Düser, M.; Bayvel, P.: 2.5 Gbit/s transmission over 4.5 km of 62.5 μm multimode fibre using centre launch technique. Electron. Lett. 36 (2000) 57–58

    Google Scholar 

  19. Ebeling, K.J.: Integrierte Optoelektronik, 2. Aufl. Berlin: Springer Verlag 1992

    Google Scholar 

  20. Van Etten, W.: The ergodicity of laser light in connection with optical fibre transmission. Opt. & Quantum Electron. 13 (1981) 519–521

    Google Scholar 

  21. Van Etten, W.; Lambo, W.; Simons, P.: Loss in multimode fiber connections with a gap. Appl. Optics 24 (1985) 970–976

    Google Scholar 

  22. Facq, P.; Fournet, P.; Arnaud, I.: Observation of tubular modes in multimode graded-index optical fibres. Electron. Lett. 16 (1980) 648–650

    Google Scholar 

  23. Facq, P.; De Fornel, F.; Jean, F.: Tunable single-mode excitation in multimode fibres. Electron. Lett. 20 (1984) 613–614

    Google Scholar 

  24. Felsen, L.R: Evanescent waves. J. Opt. Soc. Am. 66 (1976) 751–760

    Google Scholar 

  25. Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik. Berlin: VEB Deutscher Verlag der Wissenschaften 1971

    MATH  Google Scholar 

  26. Freude, W.: Messung der Faserdispersion mit Lichtimpulsen geringer spektraler Breite. Diskussionssitzung der Informationstechnischen Gesellschaft ITG (früher NTG) „Meßtechnik an optischen Nachrichtenübertragungssystemen “. Ottilienberg-Karlsruhe: Vortrag 1978

    Google Scholar 

  27. Freude, W.: Far-field profiling of multimode optical fibres. Electron. Leu. 17 (1981) 385–387

    Google Scholar 

  28. Freude, W.: Impulse dispersion in a multimode optical fiber from its far-field radiation pattern. Appl. Opt. 23 (1984) 4209–4211

    Google Scholar 

  29. Freude, W.: Analyse von Lichtwellenleitern aus dem Nah-und Fernfeld. Universität Karlsruhe: Habilitationsschrift 1986

    Google Scholar 

  30. Freude, W.; Fritzsche, C.; Grau, G.; Lu, Shan-da: Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides. J. Lightwave Technol. LT-4 (1986) 64–72. Satzfehlerberichtigung: LT-4 (1986) 694. Weitere Satzfehler: In (1), statt Nenner

    Google Scholar 

  31. Freude, W.; Grau, G.K.; Liebler, W.; Wilppermann, B: Computer-generated holograms with error compensation. Appl. Opt. 27 (1988) 138–146

    Google Scholar 

  32. Gambling, W.A.; Payne, D.N.; Matsumura, H.: Mode excitation in a multimode optical-fibre waveguide. Electron. Lett. 9 (1973) 412–414. Nachdruck in: Electron. Lett. 25 (1989) S13-S15

    Google Scholar 

  33. Garito, A.F.; Wang, J.; Gao, R.: Effects of random perturbations in plastic optical fibers. Science 281 (1998) 962–967

    Google Scholar 

  34. Carrett, I.; Todd, C.J.: Review. Components and systems for long-wavelength monomode fibre transmission. Opt. & Quantum Electron. 14 (1982) 95–143

    Google Scholar 

  35. Geckeler, S.: Gruppenlaufzeitdifferenzen in Lichtwellenleitern mit Gradientenprofil. Frequenz 32 (1978) 68–75

    Google Scholar 

  36. Geckeler, S.: Dispersion in optical fibers: new aspects. Appl. Opt. 17 (1978) 1023–1029

    Google Scholar 

  37. Geckeler, S.: Compensation of profile dispersion in graded-index optical fibres. Electron. Lett. 15 (1979) 682–683

    Google Scholar 

  38. Geckeler, S.: Pulse broadening in optical fibers with mode mixing. Appl. Opt. 18 (1979) 2192–2198

    Google Scholar 

  39. Ghatak, A.: Optics, 2. Aufl. Delhi: Tata McGraw-Hill 1992

    Google Scholar 

  40. Ghatak, A.: Introduction to quantum mechanics. Delhi: Macmillan India 1996

    Google Scholar 

  41. Gloge, D.; Marcatili, E.A.J.: Impulse response of fibers with ring-shaped parabolic index distribution. BellSyst. Techn.J. 52 (1973) 1161–1168

    Google Scholar 

  42. Gloge, D.; Marcatili, E.A.J.: Multimode theory of graded-core fibers. Bell Syst. Techn. J. 52 (1973) 1563–1578

    Google Scholar 

  43. Gloge, D.: Propagation effects in optical fibers. IEEE Trans. Microw. Theory Tech. MTT-23 (1975) 106–120

    Google Scholar 

  44. Gloge, D.; Ogawa, K.; Cohen, L. G.: Baseband characteristics of long-wavelength L.E.D. systems. Electron. Lett. 16 (1980) 366–367

    Google Scholar 

  45. Goldberg, S.: Die Wahrscheinlichkeit, 2. Aufl. Brauschweig: Vieweg-Verlag 1969

    Google Scholar 

  46. Goldstein, H.: Classical mechanics, 2. Aufl. Reading: Addison-Wesley 1980

    MATH  Google Scholar 

  47. Golub, M.A.; Karpeev, S. V.; Krivoshlykov, S.G.; Prokhorov, A.M.; Sisakyan, I.N.; Soifer, V.A.: Experimental studies of spatial filters which separate transverse modes of optical fields. Kvantovaya Elektron. Moscow 10 (1983) 1700–1701

    Google Scholar 

  48. Golub, M.A.; Karpeev, S. v.; Krivoshlykov, S.G.; Prokhorov, A.M.; Sisakyan, I.N.; Soifer, V.A.: An experimental study into the power distribution over transverse modes in a fiber-optic wave-guide with the use of spatial filters. Kvantovaya Elektron. Moscow 11 (1984) 1869–1871

    Google Scholar 

  49. Gottwald, K.: Das Verbinden von Glasfasern, in: Optische Telekommunikationssysteme, Band 1: Physik und Technik (Herausg. W. Haist). Gelsenkirchen-Buer: Damm-Verlag 1989

    Google Scholar 

  50. Grau, G.K.: Quantenelektronik. Braunschweig: Vieweg 1978

    Google Scholar 

  51. Grau, G.; Leminger, O.G.; Sauter, E.G.: Mode excitation in parabolic index fibres by Gaussian beams. Arch. Elektron. & Ubertragungstech. 34 (1980) 259–265

    Google Scholar 

  52. Grau, G.K.; Leminger, O.G.: Relations between near-field and far-field intensities, radiance, and modal power distribution of multimode graded-index fibers. Appl. Opt. 20 (1981) 457–459

    Google Scholar 

  53. Grau, G.; Freude, W.: Optische Nachrichtentechnik, 3. Aufl. Berlin: Springer Verlag 1991. Seit 1997 vergriffen. Berichtigter Nachdruck iiber W.E E-mail: W.Freude@etec.uni-karlsruhe.de

    Google Scholar 

  54. Haas, Z.; Santoro, M.A.: A mode-filtering scheme for improvement of the bandwith-distance product in multimode fiber systems. J. Lightwave Technol. 11 (1993) 1125–1131

    Google Scholar 

  55. Hackert, M.J.: Explanation of launch condition choice for GRIN multimode fiber attenuation and bandwidth measurements. J. Lightwave Technol. 10 (1992) 125–129

    Google Scholar 

  56. Hartog, A.H.; Adams, M.J.: On the accuracy of the WKB approximation in optical dielectric waveguides. Opt. & Quantum Electron. 9 (1977) 223–232

    Google Scholar 

  57. Hillerich, B.: Efficiency and alignment tolerances of LED to single-mode fibre coupling-theory and experiment. Opt. & Quantum Electron. 19 (1987) 209–222

    Google Scholar 

  58. Hornung, S.; Doran, N.J.; Allan, R.: Monomode fiber microbending loss measurements and their interpretation. Opt. &Quantum Electron. 14 (1982) 359–362

    Google Scholar 

  59. Imai, M.; Hara, E.H.: Excitation of the fundamental and lower-order modes of optical fiber waveguides with Gaussian beams. 1: Tilted beams. Appl. Opt. 13 (1974) 1893–1899

    Google Scholar 

  60. Imai, M.; Hara, E.H.: Excitation of the fundamental and lower-order modes of optical fiber waveguides with Gaussian beams. 2: Offset beams. Appl. Opt. 14 (1975) 169–173

    Google Scholar 

  61. International Union of Pure and Applied Physics: Symbole, Einheiten und Nomenklatur in der Physik. Dt.Ausg. von Symbols, Units and Nomenclature in Physics. Document U.I.P.20 (1978). Weinheim: Physik Verlag 1981

    Google Scholar 

  62. Jean, F.; Facq, P.; De Fornel, F.: Coupling efficiency in selective excitation of tubular modes into gradedindex multimode fibres. Electron. Lett. 22 (1986) 11–13

    Google Scholar 

  63. Kapany, N.S.; Burke, J.J..; Sawatari, T.: Fiber optics. XIII. Mode detection and discrimination in optical waveguides and resonators. J. Opt. Soc. Am. 60 (1970) 1350–1358

    Google Scholar 

  64. Karstensen, H.; Drögemiiller, K.: Loss analysis of laser diode to single-mode fiber couplers with glass spheres or silicon plano-convex lenses. J. Lightwave Technol. 8 (1990) 739–747

    Google Scholar 

  65. Kitayama, K.-L; Ohashi, M.; Seikai, S.: Mode conversion at splices in multimode graded-index fibers. IEEE J. Quantum Electron. QE-16 (1980) 971–978

    Google Scholar 

  66. Kitayama, K.-I.; Seikai, S.; Uchida, N.: Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber. IEEE J. Quantum Electron. QE-16 (1980) 356–362

    Google Scholar 

  67. Krivoshlykov, S.G.; Sauter, E.G.: Mode coupling between two waveguides with offset, tilt and gap using quantum theoretical methods. J. Phys. A: Math. Gen. 20 (1987) 3805–3823

    MathSciNet  Google Scholar 

  68. Kutz, J.N.; Cox, J.A.; Smith, D.: Mode mixing and power diffusion in multimode fibers. J. Lightwave Technol. 16 (1998) 1195–1202

    Google Scholar 

  69. Leminger, O.G.; Grau, G.K.: Near-field intensity and modal power distribution in multimode gradedindex fibres. Electron. Lett. 16 (1980) 678–679

    Google Scholar 

  70. Linares, J.; Gomez-Reino, C: Optical propagator in a graded-index medium with a hyperbolic secant refractive-index profile. Appl. Opt. 33 (1994) 3427–3431

    Google Scholar 

  71. Loke, M.-Y.; McMullin, J.N.: Simulation and measurement of radiation loss at multimode fiber macrobends. J. Lightwave Technol. 8 (1990) 1250–1256

    Google Scholar 

  72. Marcatili, E.A.J.: Modal dispersion in optical fibers with arbitrary numerical aperture and profile dispersion. Bell Syst. Techn. J. 56 (1977) 49–63

    Google Scholar 

  73. Marchand, E. W,; Nishihara, H. (Herausg.): Feature papers on graded-index optics. Appl. Opt. 29 (1990) 3991–4110

    Google Scholar 

  74. Marcuse, D.: Light transmission optics. New York: Van Nostrand Reinhold 1972

    Google Scholar 

  75. Marcuse, D.: Theory of dielectric optical waveguides. New York: Academic Press 1974

    Google Scholar 

  76. Marcuse, D.: Coupled power equations for lossy fibers. Appl. Opt. 17 (1978) 3232–3237

    Google Scholar 

  77. Marcuse, D.; Presby, H.M.: Effects of profile deformations on fiber bandwidth. Appl. Opt. 18 (1979) 3758–3763. Erratum: Marcuse, D.: Calculation of bandwidth from index profiles of optical fibers: correction. AppL. Opt. 19 (1980) 188–189

    Google Scholar 

  78. Marcuse, D.: Pulse distortion in single-mode fibers. Appl. Opt. 19 (1980) 1653–1660

    Google Scholar 

  79. Mattheus, A.: Faserverbindungen, in: Optische Telekommunikationssysteme (Herausg. H. Hultzsch). Gelsenkirchen: Damm-Verlag 1996

    Google Scholar 

  80. McMullin, I.N.; Freeman, I.E.: On the shape of bent fiber. J. Lightwave Technol. 8 (1990) 1091–1096

    Google Scholar 

  81. Miller, C.M.; Mettler, S.C: A loss model for parabolic-profile fiber splices. Bell Syst. Techn. J. 57 (1978) 3167–3180

    Google Scholar 

  82. Miyagi, M.; Kawakami, S.; Ohashi, M.; Nishida, S.: Measurement of mode conversion coefficients and mode dependent losses in a multimode fiber. Appl. Opt. 17 (1978) 3238–3244

    Google Scholar 

  83. Morse, P.M.; Feshbach, H.: Methods of theoretical physics, Band 1 and 2. New York: McGraw-Hill 1953

    Google Scholar 

  84. Nagano, K.; Kawakami, S.: Mode conversion coefficients in graded-index fibers with various fibercoating schemes: measurements. Appl. Opt. 21 (1982) 542–546

    Google Scholar 

  85. Naqwi, A.; Durst, F.: Focusing of diode laser beams: a simple mathematical model. Appl. Opt. 29 (1990) 1780–1785

    Google Scholar 

  86. Neumann, E.-G.: Single-mode fibers. Berlin: Springer Verlag 1988

    Google Scholar 

  87. Ohashi, M.; Kitayama, K.-I.; Seikai, S.: Mode coupling effects in a graded-index fiber cable. Appl. Opt. 20 (1981) 2433–2438

    Google Scholar 

  88. Olshansky, R.: Mode coupling effects in graded-index optical fibers. Appl. Opt. 14 (1975) 935–945

    Google Scholar 

  89. Olshansky, R.: Multipleα index profiles. Appl. Opt. 18 (1979) 683–689

    Google Scholar 

  90. Olshansky, R.: Propagation in glass optical waveguides. Rev. Mod. Phys. 51 (1979) 341–367

    Google Scholar 

  91. Papen, G.; Murphy, G.M.: Modal noise in multimode fibers under restricted launch conditions. J. Lightwave Technol. 17 (1999) 817–822

    Google Scholar 

  92. Park, E.-H.; Kim, M.-J.; Kwon, Y.-S.: Microlens for efficient coupling between LED and optical fiber. IEEE Photon. Technol. Lett. 11 (1999) 439–441

    Google Scholar 

  93. Petermann, K.: Fundamental mode microbending loss in graded-index and W fibres. Opt. & Quantum Electron. 9 (1977) 167–175

    Google Scholar 

  94. Petermann, K.: Uncertainties of the leaky mode correction for near-square-law optical fibres. Electron. Lett. 13 (1977) 513–514

    Google Scholar 

  95. Petermann, K.: Modes in active waveguides with inhomogeneous gain profiles as applied to injection lasers. Arch. Elektron. & Übertragungstech. 32 (1978) 313–320

    Google Scholar 

  96. Petermann, K.: A generalized condition for the delay equalization in multimode optical fibres. Proc. 4th Europ. Conf. Opt. Commun. Genova (ECOC 1978) 281–287

    Google Scholar 

  97. Petermann, K.: Nonlinear distortions and noise in optical communication systems due to fiber connectors. IEEE J. Quantum Electron. QE-16 (1980) 761–770

    Google Scholar 

  98. Petermann, K.; Kuhne, R.: Upper and lower limits for the microbending loss in arbitrary single-mode fibers. J. Lightwave Technol. LT-4 (1986) 2–7

    Google Scholar 

  99. Petermann, K.: Laser diode modulation and noise. Dordrecht: Kluwer Academics Publishers 1988

    Google Scholar 

  100. Raddatz, L.; White, I.H.: Overcoming the modal bandwidth limitation of multimode fiber by using passband modulation. IEEE Photon. Technol. Lett. 11 (1999) 266–268

    Google Scholar 

  101. Rodhe, P.M.: A matrix transfer function for an optical fibre based on coupled power theory. Opt. & Quantum Electron. 13 (1981) 175–178. Erratum: 13 (1981) 352

    Google Scholar 

  102. Safaadi-Jazi, A.; Suppanitchakij, V.: A tapered graded-index lens: analysis of transmission properties and applications in fiber-optic communication systems. IEEE J. Quantum Electron. 33 (1997) 2159–2166

    Google Scholar 

  103. Saijonmaa, J.; Sharma, A.B.; Halme, S.J.: Optimal excitation of multimode graded-index fibres in D.M.D. and D.M.A. measurements. Electron. Lett. 16 (1980) 690–692

    Google Scholar 

  104. Saijonmaa, J.; Sharma, A.B.; Halme, S.J.: Selective excitation of parabolic index optical fibers by Gaussian beams. Appl. Opt. 19 (1980) 2442–2452

    Google Scholar 

  105. Sauter, E.G.; Grau, G.K.: Excitation of steady-state power distribution in parabolic-index fibres by Gaussian TEM100-beam. Electron. Lett. 16 (1980) 748–749

    Google Scholar 

  106. Snyder, A. W.: Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide. IEEE Trans. Microwave Theory Tech. MTT-17 (1969) 1130–1138

    Google Scholar 

  107. Snyder, A. W.; Love, J.D.: Optical waveguide theory. London: Chapman and Hall 1983

    Google Scholar 

  108. Streifer, W.; Kurtz, C.K.: Scalar analysis of radially inhomogeneous guiding media. J. Opt. Soc. Am. 57 (1967) 779–786

    Google Scholar 

  109. Uematsu, Y.; Ozeki, T.: Efficient power coupling between a MH LED and a multimode fiber with a tapered launcher. Techn. Dig. Internat. Conf. Integrated Optics and Opt. Commun. Tokyo (1977) 371

    Google Scholar 

  110. Unger, H.-G.: Planar optical waveguides and fibres. Oxford: Clarendon Press 1977

    Google Scholar 

  111. Unger, H.-G.: Optische Nachrichtentechnik, Teil I und II, 2. Aufl. Heidelberg: Dr. Alfred Hüthig 1990 und 1992

    Google Scholar 

  112. Webster, M.; Raddatz, L.; White, I.H.; Cunningham, D.G.: A statistical analysis of conditioned launch for Gigabit Ethernet links using multimode fiber. J. Lightwave Technol. 17 (1999) 1532–1541

    Google Scholar 

  113. Weierholt, A.: Modal dispersion of optical fibres with a composite a-profile graded-index core. Electron. Lett. 15 (1979) 733–734

    Google Scholar 

  114. White, W.R.; Düser, M.; Reed, W.A.; Onishi, T.: Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber. IEEE Photon. Technol. Lett. 11 (1999) 997–999

    Google Scholar 

  115. Yang, S.; Hjelme, D.R.; Januar, I.P.; Vayshenker, I.P.; Mickelson, A.R.: Transfer function approach to the experimental determination of mode transfer matrices. Appl. Opt. 29 (1990) 3166–3175

    Google Scholar 

  116. Yevick, D.; Stoltz, B.: Near-field distributions in selectively excited elliptical optical fibres. Electron. Lett. 16 (1980) 210–211

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freude, W. (2002). Vielmodenfasern. In: Voges, E., Petermann, K. (eds) Optische Kommunikationstechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56395-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56395-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63134-4

  • Online ISBN: 978-3-642-56395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics