Skip to main content

Small Stress Proteins: Modulation of Intracellular Redox State and Protection Against Oxidative Stress

  • Chapter
Small Stress Proteins

Abstract

Small stress proteins (also denoted small heat shock proteins: sHsp) are oligomeric phospho-polypeptides (Arrigo and Welch 1987; Arrigo et al. 1988; de Jong et al. 1993; Buchner et al. 1998) which increase the cell resistance to different types of stress, including heat shock and oxidative stress (reviewed in Arrigo and Landry 1994; Arrigo 1998, 2000; Arrigo and Préville 1999). In vitro, these proteins have been described as ATP-independent chaperones which counteract protein denaturation and help in the refolding of misfolded polypeptides (Jakob et al. 1993; Jakob and Buchner 1994; Ehrnsperger et al. 2000). Except for a role in maintaining cytoskeletal architecture, little information was available concerning the mode of action of these proteins in vivo. Recently, it has been proposed that large sHsp oligomers bind to misfolded polypeptides (Ehrnsperger et al. 1997; Lee et al. 1997) and present them to ATP-dependent protein chaperones (Hsp70, Hsp40, Hsp90 and co-chaperones) (see Haslbeck and Buchner, Chap. 3, this Vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arata S, Hamaguchi S, Nose K (1995) Effects of the overexpression of the small heat shock protein, Hsp27, on the sensitivity of human fibroblast cells exposed to oxidative stress. J Cell Physiol 163:458–465

    Article  PubMed  CAS  Google Scholar 

  • Arrigo A-P (1990) Tumor necrosis factor induces the rapid phosphorylation of the mammalian heat shock protein hsp28. Mol Cell Biol 10:1276–1280

    PubMed  CAS  Google Scholar 

  • Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379:19–26

    PubMed  CAS  Google Scholar 

  • Arrigo AP (1999) Gene expression and the thiol redox state. Free Radie Biol Med 27:936–944

    Article  CAS  Google Scholar 

  • Arrigo AP (2000) sHsp as novel regulators of programmed cell death and tumorigenicity. Pathol Biol (Paris) 48:280–288

    CAS  Google Scholar 

  • Arrigo A-P, Landry J (1994) Expression and Function of the Low-molecular-weight Heat Shock Proteins. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 335–337.

    Google Scholar 

  • Arrigo A-P, Préville X (1999) Role of Hsp27 and related proteins. In: Latchman DS (ed) Stress Proteins. Springer, Berlin Heidelberg New York, pp 101–113.

    Chapter  Google Scholar 

  • Arrigo A-P, Welch W (1987) Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem 262:15359–15369

    PubMed  CAS  Google Scholar 

  • Arrigo A-P, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    PubMed  CAS  Google Scholar 

  • Baek SH, Min JN, Park EM, Han MY, Lee YS, Lee YJ, Park YM (2000) Role of small heat shock protein HSP25 in radioresistance and glutathione-redox cycle. J Cell Physiol 183:100–107

    Article  PubMed  CAS  Google Scholar 

  • Buchner J, Ehrnsperger M, Gaestel M, Walke S (1998) Purification and characterization of small heat shock proteins. Methods Enzymol 290:339–349

    Article  PubMed  CAS  Google Scholar 

  • De Jong W, Leunissen J, Voorter C (1993) Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10:103–126

    PubMed  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16: 221–229

    Article  PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Gaestel M, Buchner J (2000) Analysis of chaperone properties of small Hsp’s. Methods Mol Biol 99:421–429

    PubMed  CAS  Google Scholar 

  • Fiers W (1991) Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett 285:199–212

    Article  PubMed  CAS  Google Scholar 

  • Ganea E, Harding J (1996) Inhibition of 6-phosphogluconate dehydrogenase by carbamylation and protection by alpha-crystallin, a chaperone-like protein. Biochem Biophys Res Commun 222:626–631

    Article  PubMed  CAS  Google Scholar 

  • Ganea E, Harding JJ (1995) Molecular chaperones protect against glycation-induced inactivation of glucose-6-phosphate dehydrogenase. Eur J Biochem 231:181–187

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Mehlen P, Fromentin A, Hammann A, Assem M, Arrigo A-P, Chauffert B (1996) Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur J Biochem 237:653–659

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, Mehlen P (1997) HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 57:2661–2667

    PubMed  CAS  Google Scholar 

  • Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A (1999) Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445:98–102

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Davies KJ (1997) Breakdown of oxidized proteins as a part of secondary antioxidant defenses in mammalian cells. Biofactors 6:165–172

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526–534

    PubMed  CAS  Google Scholar 

  • Guay J, Lambert H, Gingras Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110:357–368

    PubMed  CAS  Google Scholar 

  • Guenal I, Sidoti-de Fraisse C, Gaumer S, Mignotte B (1997) Bcl-2 and Hsp27 act at different levels to suppress programmed cell death. Oncogene 15:347–360

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    Article  PubMed  CAS  Google Scholar 

  • Huot J, Roy G, Lambert H, Chretien P, Landry J (1991) Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human 27,000 heat shock protein. Cancer Res 51:5245–5252

    PubMed  CAS  Google Scholar 

  • Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56:273–279

    PubMed  CAS  Google Scholar 

  • Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80:383–392

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86

    PubMed  CAS  Google Scholar 

  • Jakob U, Buchner J (1994) Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci 19:205–211

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engels K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Katschinski DM, Boos K, Schindler SG, Fandrey J (2000) Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 275:21094–21098

    Article  PubMed  CAS  Google Scholar 

  • Kaur P, Saklatvala J (1988) Interleukin 1 and tumour necrosis factor increase phosphorylation of fibroblast proteins. FEBS Lett 241:6–10

    Article  PubMed  CAS  Google Scholar 

  • Kretz-Remy C, Mehlen P, Mirault ME, Arrigo A-P (1996) Inhibition of I kappa B-alpha phosphorylation and degradation and subsequent NF-kappa B activation by glutathione peroxidase overexpression. J Cell Biol 133:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Lavoie JN, Hickey E, Weber LA, Landry J (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of Heat Shock Protein 27. J Biol Chem 268:24210–24214

    PubMed  CAS  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heatdenatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  PubMed  CAS  Google Scholar 

  • Lelli JL Jr, Becks LL, Dabrowska MI, Hinshaw DB (1998) ATP converts necrosis to apoptosis in oxidant-injured endothelial cells. Free Radic Biol Med 25:694–702

    Article  PubMed  CAS  Google Scholar 

  • Mairesse N, Bernaert D, Del Bino G, Horman S, Mosselmans R, Robaye B, Galand P (1998) Expression of HSP27 results in increased sensitivity to tumor necrosis factor, etoposide, and H202 in an oxidative stress-resistant cell line. J Cell Physiol 177:606–617

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Briolay J, Smith L, Diaz-Latoud C, Pauli D, Arrigo A-P (1993) Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild type or deletion mutants of the Drosophila 27-kDa heat-shock protein. Eur J Biochem 215:277–284

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Kretzremy C, Briolay J, Fostan P, Mirault ME, Arrigo AP (1995a) Intracellular reactive oxygen species as apparent modulators of heat-shock protein 27 (hsp27) structural organization and phosphorylation in basal and tumour necrosis factor alpha-treated T47D human carcinoma cells. Biochem J 312:367–375

    PubMed  CAS  Google Scholar 

  • Mehlen P, Mehlen A, Guillet D, Préville X, Arrigo A-P (1995b) Tumor necrosis factor-a induces changes in the phosphorylation, cellular localization, and oligomerization of human hsp27, a stress protein that confers cellular resistance to this cytokine. J Cell Biochem 58:248–259

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Préville X, Chareyron P, Briolay J, Klemenz R, Arrigo A-P (1995c) Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF-and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–374

    PubMed  CAS  Google Scholar 

  • Mehlen P, Préville X, Kretz-Remy C, Arrigo A-P (1996a) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these protein against TNF.N-induced cell death. EMBO J 15:2695–2706

    PubMed  CAS  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo A-P (1996b) Small stress proteins as novel regulators of apoptosis—heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Hickey E, Weber L, Arrigo A-P (1997) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFa in NIH-3T3-ras cells. Biochem Biophys Res Commun 241:187–192

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142

    Google Scholar 

  • Oesterreich S, Weng C-N, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SW (1993) The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 53:4443–4448

    PubMed  CAS  Google Scholar 

  • Park YM, Han MY, Blackburn RV, Lee YJ (1998) Overexpression of HSP25 reduces the level of TNF alpha-induced oxidative DNA damage biomarker, 8-hydroxy-2’-deoxyguanosine, in L929 cells. J Cell Physiol 174:27–34

    Article  PubMed  CAS  Google Scholar 

  • Paul C, Arrigo AP (2000) Comparison of the protective activities generated by two survival proteins: Bcl-2 and Hsp27 in L929 murine fibroblasts exposed to menadione or staurosporine. Exp Gerontol 35:757–766

    Article  PubMed  CAS  Google Scholar 

  • Powis G, Briehl M, Oblong J (1995) Redox signalling and the control of cell growth and death. Pharmacol Ther 68:149–173

    Article  PubMed  CAS  Google Scholar 

  • Préville X, Gaestel M, Arrigo AP (1998a) Phosphorylation is not essential for protection of L929 cells by Hsp25 against H202-mediated disruption actin cytoskeleton, a protection which appears related to the redox change mediated by Hsp25. Cell Stress Chaperones 3: 177–187

    Article  PubMed  Google Scholar 

  • Préville X, Schultz H, Knauf U, Gaestel M, Arrigo AP (1998b) Analysis of the role of Hsp25 phosphorylation reveals the importance of the oligomerization state of this small heat shock protein in its protective function against TNFalpha-and hydrogen peroxide-induced cell death. J Cell Biochem 69:436–452

    Article  PubMed  Google Scholar 

  • Preville X, Salvemini F, Giraud S, Chaufour S, Paul C, Stepien G, Ursini MV, Arrigo AP (1999) Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 247:61–78

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387:773–776

    Article  PubMed  CAS  Google Scholar 

  • Richards EH, Hickey E, Weber LA, Master JR (1996) Effect of overexpression of the small heat shock protein HSP27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res 56:2446–2451

    PubMed  CAS  Google Scholar 

  • Robaye B, Hepburn A, Lecocq R, Fiers W, Boeynaems JM, Dumont JE (1989) Tumor necrosis factor-a induces the phosphorylation of 28 kDa stress proteins in endothelial cells: Possible role in protection against cytotoxicityoc Biochem Biophys Res Commun 163:301–308

    Article  PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3:228–236

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Nordgren H, Zhivotovsky B, Peterson E, Orrenius S (1999) A comparative study of apoptosis and necrosis in HepG2 cells: oxidant-induced caspase inactivation leads to necrosis. Biochem Biophys Res Commun 255:6–11

    Article  PubMed  CAS  Google Scholar 

  • Sitte N, Merker K, Grune T (1998) Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett 440:399–402

    Article  PubMed  CAS  Google Scholar 

  • Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, Von Zglinicki T, Davies KJ (2000) Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 14:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Souren JE, Van Aken H, Van Wijk R (1996) Enhancement of superoxide production and protection against heat shock by HSP27 in fibroblasts. Biochem Biophys Res Commun 227:816–821

    Article  PubMed  CAS  Google Scholar 

  • Têtu B, Lacasse B, Bouchard H-L, Lagacé R, Huot J, Landry J (1992) Prognostic influence of HSP-27 expression in malignant fibrous histiocytoma: a clinicopathological and immunohistochemical study. Cancer Res 52:2325–2328

    PubMed  Google Scholar 

  • Têtu B, Brisson J, Landry J, Huot J (1995) Prognostic significance of heat-shock protein-27 in node-positive breast carcinoma: an immunohistochemical study. Breast Cancer Res Treat 36:93–97

    Article  PubMed  Google Scholar 

  • Trautinger F, Kokesch C, Herbacek I, Knobler RM, Kindas-Mugge I (1997) Overexpression of the small heat shock protein, hsp27, confers resistance to hyperthermia, but not to oxidative stress and UV-induced cell death, in a stably transfected squamous cell carcinoma cell line. J Photochem Photobiol 39:90–95

    Article  CAS  Google Scholar 

  • Vayssier M, Banzet N, Francois D, Bellmann K, Polla BS (1998) Tobacco smoke induces both apoptosis and necrosis in mammalian cells: differential effects of HSP70. Am J Physiol 275:771–779

    Google Scholar 

  • Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci USA 95:2956–2960

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Klostergaard J, Khodadadian M, Wu J, Wu TW, Fung KP, Carper SW, Tomasovic SP, Sanjay TW (1996) Murine cells transfected with human Hsp27 cDNA resist TNF-induced cytotoxicity. J Immunother Emphasis Tumor Immunol 19:9–20

    Article  PubMed  CAS  Google Scholar 

  • Wong GHW, Elwell JE, Oberby LW, Goeddel D (1989) Manganous superoxide dismutase is essential for cellular resistance to tumor necrosis factor. Cell 58:923–931

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi N, Kuriyama YH, Watanabe N, Neda H, Maeda M, Himeno T, Tsuji Y (1990) Suppressive effects of intracellular glutathione on hydroxyl radical production induced by tumor necrosis factor. Int J Cancer 46:884–888

    Article  PubMed  CAS  Google Scholar 

  • Zavialov AV, Gaestel M, Korpela T, Zav’yalov VP (1998) Thiol/disulfide exchange between small heat shock protein 25 and glutathione. Biochim Biophys Acta 1388:123–132

    Article  PubMed  CAS  Google Scholar 

  • Zucker B, Hanusch J, Bauer G (1997) Glutathione depletion in fibroblasts is the basis for apoptosis-induction by endogenous reactive oxygen species. Cell Death Differ 4:388–395

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arrigo, AP., Paul, C., Ducasse, C., Sauvageot, O., Kretz-Remy, C. (2002). Small Stress Proteins: Modulation of Intracellular Redox State and Protection Against Oxidative Stress. In: Arrigo, AP., Müller, W.E.G. (eds) Small Stress Proteins. Progress in Molecular and Subcellular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56348-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56348-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62708-8

  • Online ISBN: 978-3-642-56348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics