Skip to main content

sHsp-Phosphorylation: Enzymes, Signaling Pathways and Functional Implications

  • Chapter
Small Stress Proteins

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 28))

Abstract

Several posttranslational modifications of sHsps have been detected, including phosphorylation (Kim et al. 1983; Voorter et al. 1986), deamidation, acylation as well as mixed intermolecular disulfide formation, oxidation and glycation (for a review of the latter modifications, see Groenen et al. 1994). In this chapter, one of the most prominent modifications, the sHsp phosphorylation, the enzymes responsible for this modification as well as the possible functional implications will be reviewed in detail. However, it might well be that phosphorylation regulates sHsp structure and function in a complex interplay with some of the other modifications mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrigo AP (1990) Tumor necrosis factor induces the rapid phosphorylation of the mammalian heat shock protein hsp28. Mol Cell Biol 10:1276–1280

    PubMed  CAS  Google Scholar 

  • Arrigo AP, Welch WJ (1987) Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem 262:15359–15369

    PubMed  CAS  Google Scholar 

  • Beall A, Bagwell D, Woodrum D, Stoming TA, Kato K, Suzuki A, Rasmussen H, Brophy CM (1999) The small heat shock-related protein, HSP20, is phosphorylated on serine 16 during cyclic nucleotide-dependent relaxation. J Biol Chem 274:11344–11351

    PubMed  CAS  Google Scholar 

  • Beall AC, Kato K, Goldenring JR, Rasmussen H, Brophy CM (1997) Cyclic nucleotide-dependent vasorelaxation is associated with the phosphorylation of a small heat shock-related protein. J Biol Chem 272:11283–11287

    PubMed  CAS  Google Scholar 

  • Ben-Levy R, Leighton I A, Doza YN, Attwood P, Morrice N, Marshall CJ, Cohen P (1995) Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBO J 14:5920–5930

    PubMed  CAS  Google Scholar 

  • Benndorf R, Kraft R, Otto A, Stahl J, Bohm H, Bielka H (1988) Purification of the growth-related protein p25 of the Ehrlich ascites tumor and analysis of its isoforms. Biochem Int 17:225–234

    PubMed  CAS  Google Scholar 

  • Benndorf R, Hayess K, Stahl J, Bielka H (1992) Cell-free phosphorylation of the murine small heat-shock protein hsp25 by an endogenous kinase from Ehrlich ascites tumor cells. Biochim Biophys Acta 1136:203–207

    PubMed  CAS  Google Scholar 

  • Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269:20780–20784

    PubMed  CAS  Google Scholar 

  • Benndorf R, Engel K, Gaestel M (2000) Analysis of small Hsp phosphorylation. Methods Mol Biol 99:431–445

    PubMed  CAS  Google Scholar 

  • Boelens WC, Van Boekel MA, De Jong WW (1998) HspB3, the most deviating of the six known human small heat shock proteins. Biochim Biophys Acta 1388:513–516

    PubMed  CAS  Google Scholar 

  • Borsch-Haubold AG, Pasquet S, Watson SP (1998) Direct inhibition of cyclooxygenase-1 and-2 by the kinase inhibitors SB 203580 and PD 98059. SB203580 also inhibits thromboxane synthase. J Biol Chem 273:28766–28772

    PubMed  CAS  Google Scholar 

  • Brophy CM, Dickinson M, Woodrum D (1999) Phosphorylation of the small heat shock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. J Biol Chem 274:6324–6329

    PubMed  CAS  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    PubMed  CAS  Google Scholar 

  • Cairns J, Qin S, Philp R, Tan YH, Guy GR (1994) Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem 269:9176–9183

    PubMed  CAS  Google Scholar 

  • Cano E, Doza YN, Ben-Levy R, Cohen P, Mahadevan LC (1996) Identification of anisomycinactivated kinases p45 and p55 in murine cells as MAPKAP kinase-2. Oncogene 12:805–812

    PubMed  CAS  Google Scholar 

  • Chevalier D, Allen BG (2000) Two distinct forms of MAPKAP kinase-2 in adult cardiac ventricular myocytes. Biochemistry 39:6145–6156

    PubMed  CAS  Google Scholar 

  • Chiesa R, Spector A (1989) The dephosphorylation of lens alpha-crystallin A chain. Biochem Biophys Res Commun 162:1494–1501

    PubMed  CAS  Google Scholar 

  • Chiesa R, Gawinowicz-Kolks MA, Kleiman NJ, Spector A (1987) The phosphorylation sites of the B2 chain of bovine alpha-crystallin. Biochem Biophys Res Commun 144:1340–1347

    PubMed  CAS  Google Scholar 

  • Chiesa R, McDermott MJ, Spector A (1989) Differential synthesis and phosphorylation of the alpha-crystallin A and B chains during bovine lens fiber cell differentiation. Curr Eye Res 8:151–158

    PubMed  CAS  Google Scholar 

  • Chretien P, Landry J (1988) Enhanced constitutive expression of the 27-kDa heat shock proteins in heat-resistant variants from Chinese hamster cells. J Cell Physiol 137:157–166

    PubMed  CAS  Google Scholar 

  • Clifton AD, Young PR, Cohen P (1996) A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress. FEBS Lett 392:209–214

    PubMed  CAS  Google Scholar 

  • Cohen P (1997) The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol 7:353–361

    PubMed  CAS  Google Scholar 

  • Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364:229–233

    PubMed  CAS  Google Scholar 

  • Cuesta R, Laroia G, Schneider RJ (2000) Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 14: 1460–1470

    PubMed  CAS  Google Scholar 

  • Davidson SM, Morange M (2000) Hsp25 and the p38 MAPK pathway are involved in differentiation of cardiomyocytes. Dev Biol 218:146–160

    PubMed  CAS  Google Scholar 

  • Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen-and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441

    PubMed  CAS  Google Scholar 

  • Eaton P, Awad WI, Miller JI, Hearse DJ, Shattock MJ (2000) Ischemic preconditioning: a potential role for constitutive low molecular weight stress protein translocation and phosphorylationoc J Mol Cell Cardiol 32:961–971

    PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Buchner J, Gaestel M (1998) Structure and function of small heat shock proteins. In: Fink AL, Goto Y (eds) Molecular chaperones in the life cycle of proteins. Marcel Dekker, New York, pp 533-56.

    Google Scholar 

  • Engel K, Ahlers A, Brach MA, Herrmann F, Gaestel M (1995a) MAPKAP kinase 2 is activated by heat shock and TNF-alpha: in vivo phosphorylation of small heat shock protein results from stimulation of the MAP kinase cascade. J Cell Biochem 57:321–330

    PubMed  CAS  Google Scholar 

  • Engel K, Schultz H, Martin F, Kotlyarov A, Plath K, Hahn M, Heinemann U, Gaestel M, Sanjay TW (1995b) Constitutive activation of mitogen-activated protein kinase-activated protein kinase 2 by mutation of phosphorylation sites and an A-helix motif. J Biol Chem 270:27213–27221

    PubMed  CAS  Google Scholar 

  • Engel K, Kotlyarov A, Gaestel M (1998) Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. EMBO J 17:3363–3371

    PubMed  CAS  Google Scholar 

  • Eyers PA, van den Ijssel P, Quinlan RA, Goedert M, Cohen P (1999) Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580. FEBS Lett 451:191–196

    PubMed  CAS  Google Scholar 

  • Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78:1039–1049

    PubMed  CAS  Google Scholar 

  • Fuchs LC, Giulumian AD, Knoepp L, Pipkin W, Dickinson M, Hayles C, Brophy C (2000) Stress causes decrease in vascular relaxation linked with altered phosphorylation of heat shock proteins. Am J Physiol Regul Integr Comp Physiol 279:R492–R498

    PubMed  CAS  Google Scholar 

  • Fukunaga R, Hunter T (1997) MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16:1921–1933

    PubMed  CAS  Google Scholar 

  • Gaestel M, Schroder W, Benndorf R, Lippmann C, Buchner K, Hucho F, Erdmann VA, Bielka H, Sanjay TW (1991) Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem 266:14721–14724

    PubMed  CAS  Google Scholar 

  • Gaestel M, Benndorf R, Hayess K, Priemer E, Engel K (1992) Dephosphorylation of the small heat shock protein hsp25 by calcium/calmodulin-dependent (type 2B) protein phosphatase. J Biol Chem 267:21607–21611

    PubMed  CAS  Google Scholar 

  • Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13:2061–2070

    PubMed  CAS  Google Scholar 

  • Groblewski GE, Grady T, Mehta N, Lambert H, Logsdon CD, Landry J, Williams JA (1997) Cholecystokinin stimulates heat shock protein 27 phosphorylation in rat pancreas both in vivo and in vitro. Gastroenterology 112:1354–1361

    PubMed  CAS  Google Scholar 

  • Groenen PJ, Merck KB, de Jong WW, Bloemendal H (1994) Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem 225:1–19

    PubMed  CAS  Google Scholar 

  • Guesdon F, Freshney N, Waller RJ, Rawlinson L, Saklatvala J (1993) Interleukin 1 and tumor necrosis factor stimulate two novel protein kinases that phosphorylate the heat shock protein hsp27 and beta-casein. J Biol Chem 268:4236–4243

    PubMed  CAS  Google Scholar 

  • Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ (1997) Activation of the transcription factor MEF2 C by the MAP kinase p38 in inflammation. Nature 386:296–299

    PubMed  CAS  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    PubMed  CAS  Google Scholar 

  • Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E, Weber LA, Gerthoffer WT (1999) A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 274: 24211–24219

    PubMed  CAS  Google Scholar 

  • Heidenreich O, Neininger A, Schratt G, Zinck R, Cahill MA, Engel K, Kotlyarov A, Kraft R, Kostka S, Gaestel M, Nordheim A (1999) MAPKAP kinase 2 phosphorylates serum response factor in vitro and in vivo. J Biol Chem 274:14434–14443

    PubMed  CAS  Google Scholar 

  • Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC (2000) Alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. J Biol Chem 275:23825–23833

    PubMed  CAS  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    PubMed  CAS  Google Scholar 

  • Huang CK, Zhan L, Ai Y, Jongstra J (1997) LSP1 is the major substrate for mitogenactivated protein kinase-activated protein kinase 2 in human neutrophils. J Biol Chem 272:17–19

    PubMed  CAS  Google Scholar 

  • Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J (1995) Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylationdependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur-J-Biochem 227:416–427

    PubMed  CAS  Google Scholar 

  • Van den Ijssel PR, Overkamp P, Bloemendal H, de Jong WW (1998) Phosphorylation of alphαB-crystallin and HSP27 is induced by similar stressors in HeLa cells. Biochem Biophys Res Commun 247:518–523

    PubMed  Google Scholar 

  • Issels RD, Meier TH, Muller E, Multhoff G, Wilmanns W (1993) Ifosfamide induced stress response in human lymphocytes. Mol Aspects Med 14:281–286

    PubMed  CAS  Google Scholar 

  • Ito H, Okamoto K, Nakayama H, Isobe T, Kato K (1997) Phosphorylation of alphαB-crystallin in response to various types of stress. J Biol Chem 272:29934–29941

    PubMed  CAS  Google Scholar 

  • Ito H, Iida K, Kamei K, Iwamoto I, Inaguma Y, Kato K (1999) AlphαB-crystallin in the rat lens is phosphorylated at an early post-natal age. FEBS Lett 446:269–272

    PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Kantorow M, Piatigorsky J (1994) Alpha-crystallin/small heat shock protein has autokinase activity. Proc Natl Acad Sci USA 91:3112–3116

    PubMed  CAS  Google Scholar 

  • Kantorow M, Horwitz J, van Boekel MA, de Jong WW, Piatigorsky J (1995) Conversion from oligomers to tetramers enhances autophosphorylation by lens alpha A-crystallin. Specificity between alpha A-and alpha B-crystallin subunits. J Biol Chem 270:17215–17220

    PubMed  CAS  Google Scholar 

  • Kasahara K, Ikuta T, Chida K, Asakura R, Kuroki T (1993) Rapid phosphorylation of 28-kDa heatshock protein by treatment with okadaic acid and phorbol ester of BALB/MK-2 mouse keratinocytes. Eur J Biochem 213:1101–1107

    PubMed  CAS  Google Scholar 

  • Kato K, Hasegawa K, Goto S, Inaguma Y (1994) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269:11274–11278

    PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Kamei K, Inaguma Y, Iwamoto I, Saga S (1998) Phosphorylation of alphαB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J Biol Chem 273:28346–28354

    PubMed  CAS  Google Scholar 

  • Kaur P, Welch WJ, Saklatvala J (1989) Interleukin 1 and tumour necrosis factor increase phosphorylation of the small heat shock protein. Effects in fibroblasts, Hep G2 and U937 cells. FEBS Lett 258:269–273

    PubMed  CAS  Google Scholar 

  • Kim YJ, Shuman J, Sette M, Przybyla A (1983) Phosphorylation pattern of a 25 Kdalton stress protein from rat myoblasts. Biochem Biophys Res Commun 117:682–687

    PubMed  CAS  Google Scholar 

  • Komatsu S, Murai N, Totsukawa G, Abe M, Akasaka K, Shimada H, Hosoya H (1997) Identification of MAPKAPK homolog (MAPKAPK-4) as a myosin II regulatory light-chain kinase in sea urchin egg extracts. Arch Biochem Biophys 343:55–62

    PubMed  CAS  Google Scholar 

  • Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, Gaestel M (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1:94–97

    PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (1996) Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays 18:567–577

    PubMed  CAS  Google Scholar 

  • Lali FV, Hunt AE, Turner SJ, Foxwell BM (2000) The pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J Biol Chem 275:7395–7402

    PubMed  CAS  Google Scholar 

  • Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385

    PubMed  CAS  Google Scholar 

  • Landry J, Huot J (1999) Regulation of actin dynamics by stress-activated protein kinase 2 (SAPK2)-dependent phosphorylation of heat-shock protein of 27kDa (Hsp27). Biochem Soc Symp 64:79–89

    PubMed  CAS  Google Scholar 

  • Landry J, Lambert H, Zhou M, Lavoie JN, Hickey E, Weber LA, Anderson CW (1992) Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267:794–803

    PubMed  CAS  Google Scholar 

  • Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR (2000) Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol 20:4265–4274

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J (1993) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. J Biol Chem 268:3420–3429

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15:505–516

    PubMed  CAS  Google Scholar 

  • Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746

    PubMed  CAS  Google Scholar 

  • Leroux MR, Melki R, Gordon B, Batelier G, Candido EP (1997) Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J Biol Chem 272:24646–24656

    PubMed  CAS  Google Scholar 

  • Ludwig S, Engel K, Hoffmeyer A, Sithanandam G, Neufeld B, Palm D, Gaestel M, Rapp UR (1996) 3pK, a novel mitogen-activated protein (MAP) kinase-activated protein kinase, is targeted by three MAP kinase pathways. Mol Cell Biol 16:6687–6697

    PubMed  CAS  Google Scholar 

  • Maizels ET, Peters CA, Kline M, Cutler RE Jr, Shanmugam M, Hunzicker-Dunn M (1998) Heatshock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 332:703–712

    PubMed  CAS  Google Scholar 

  • Mann E, McDermott MJ, Goldman J, Chiesa R, Spector A (1991) Phosphorylation of alphacrystallin B in Alexander’s disease brain. FEBS Lett 294:133–136

    PubMed  CAS  Google Scholar 

  • Marin R, Landry J, Tanguay RM (1996) Tissue-specific posttranslational modification of the small heat shock protein HSP27 in Drosophila. Exp Cell Res 223:1–8

    PubMed  CAS  Google Scholar 

  • Martin JL, Hickey E, Weber LA, Dillmann WH, Mestril R (1999) Influence of phosphorylation and oligomerization on the protective role of the small heat shock protein 27 in rat adult cardiomyocytes. Gene Expr 7:349–355

    PubMed  CAS  Google Scholar 

  • McLaughlin MM, Kumar S, McDonnell PC, Van-Horn S, Lee JC, Livi GP, Young-PR (1996) Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 271:8488–8492

    PubMed  CAS  Google Scholar 

  • Mehlen P, Arrigo AP (1994) The serum-induced phosphorylation of mammalian hsp27 correlates with changes in its intracellular localization and levels of oligomerization. Eur J Biochem 221:327–334

    PubMed  CAS  Google Scholar 

  • Mehlen P, Mehlen A, Guillet D, Preville X, Arrigo AP (1995) Tumor necrosis factor-alpha induces changes in the phosphorylation, cellular localization, and oligomerization of human hsp27, a stress protein that confers cellular resistance to this cytokine. J Cell Biochem 58:248–259

    PubMed  CAS  Google Scholar 

  • Mehlen P, Kretz-Remy C, Preville X, Arrigo AP (1996a) Human hsp27, Drosophila hsp27 and human alphαB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO-J 15:2695–2706

    PubMed  CAS  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo AP (1996b) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    PubMed  CAS  Google Scholar 

  • Mehlen P, Hickey E, Weber LA, Arrigo AP (1997) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFalpha in NIH-3T3-ras cells. Biochem Biophys Res Commun 241:187–192

    PubMed  CAS  Google Scholar 

  • Meloche S, Landry J, Huot J, Houle F, Marceau F, Giasson E (2000) p38 MAP kinase pathway regulates angiotensin Il-induced contraction of rat vascular smooth muscle. Am J Physiol Heart Circ Physiol 279:H741–H751

    PubMed  CAS  Google Scholar 

  • Mendelsohn ME, Zhu Y, O’Neill S (1991) The 29-kDa proteins phosphorylated in thrombinactivated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein. Proc Natl Acad Sci USA 88:11212–11216

    PubMed  CAS  Google Scholar 

  • Merck KB, Groenen PJ, Voorter CE, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268:1046–1052

    PubMed  CAS  Google Scholar 

  • Michishita M, Satoh M, Yamaguchi M, Hirayoshi K, Okuma M, Nagata K (1991) Phosphorylation of the stress protein hsp27 is an early event in murine myelomonocytic leukemic cell differentiation induced by leukemia inhibitory factor/D-factor. Biochem Biophys Res Commun 176:979–984

    PubMed  CAS  Google Scholar 

  • Minowada G, Welch W (1995) Variation in the expression and/or phosphorylation of the human low molecular weight stress protein during in vitro cell differentiation. J Biol Chem 270: 7047–7054

    PubMed  CAS  Google Scholar 

  • Miron T, Vancompernolle K, Vandekerckhove J, Wilchek M, Geiger B (1991) A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J Cell Biol 114:255–261.

    PubMed  CAS  Google Scholar 

  • Müller E, Burger-Kentischer A, Neuhofer W, Fraek ML, Marz J, Thurau K, Beck FX (1999) Possible involvement of heat shock protein 25 in the angiotensin Il-induced glomerular mesangial cell contraction via p38 MAP kinase. J Cell Physiol 181:462–469

    PubMed  Google Scholar 

  • Nakatsue T, Katoh I, Nakamura S, Takahashi Y, Ikawa Y, Yoshinaka Y (1998) Acute infection of Sindbis virus induces phosphorylation and intracellular translocation of small heat shock protein HSP27 and activation of p38 MAP kinase signaling pathway. Biochem Biophys Res Commun 253:59–64

    PubMed  CAS  Google Scholar 

  • Neufeld B, Grosse-Wilde A, Hoffmeyer A, Jordan BW, Chen P, Dinev D, Ludwig S, Rapp UR (2000) Serine/Threonine kinases 3pK and MAPK-activated protein kinase 2 interact with the basic helix-loop-helix transcription factor E47 and repress its transcriptional activity. J Biol Chem 275:20239–20242

    PubMed  CAS  Google Scholar 

  • New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood LJ, Kato Y, Parry GC, Han J (1998) PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J 17:3372–3384

    PubMed  CAS  Google Scholar 

  • Ni H, Wang XS, Diener K, Yao Z (1998) MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem Biophys Res Commun 243:492–496

    PubMed  CAS  Google Scholar 

  • Nicholl ID, Quinlan RA (1994) Chaperone activity of alpha-crystallins modulates intermediate filament assembly. EMBO J 13:945–953

    PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    PubMed  CAS  Google Scholar 

  • Nover L, Scharf KD, Neumann D (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9:1298–1308

    PubMed  CAS  Google Scholar 

  • Nozaki J, Takehana M, Kobayashi S (1997) UVB irradiation induces changes in cellular localization and phosphorylation of mouse HSP27. Photochem Photobiol 65:843–848

    PubMed  CAS  Google Scholar 

  • Oesterreich S, Benndorf R, Bielka H (1990) The expression of the growth-related 25kDa protein (p25) of Ehrlich ascites tumor cells is increased by hyperthermic treatment (heat shock). Biomed Biochim Acta 49:219–226

    PubMed  CAS  Google Scholar 

  • Pages G, Berra E, Milanini J, Levy AP, Pouyssegur J (2000) Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem 275:26484–26491

    PubMed  CAS  Google Scholar 

  • Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, Kharbanda S (2000) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19:1975–1981

    PubMed  CAS  Google Scholar 

  • Paslaru L, Rallu M, Manuel M, Davidson S, Morange M (2000) Cyclosporin A induces an atypical heat shock response. Biochem Biophys Res Commun 269:464–469

    PubMed  CAS  Google Scholar 

  • Perng MD, Cairns L, van den Ijssel P, Prescott A, Hutcheson AM, Quinlan RA (1999) Intermediate filament interactions can be altered by HSP27 and alphαB-crystallin. J Cell Sei 112:2099–2112

    CAS  Google Scholar 

  • Piotrowicz RS, Hickey E, Levin EG (1998) Heat shock protein 27kDa expression and phosphorylation regulates endothelial cell migration. FASEB J 12:1481–1490

    PubMed  CAS  Google Scholar 

  • Preville X, Schultz H, Knauf U, Gaestel M, Arrigo AP (1998) Analysis of the role of Hsp25 phosphorylation reveals the importance of the oligomerization state of this small heat shock protein in its protective function against TNFalpha-and hydrogen peroxide-induced cell death. J Cell Biochem 69:436–452

    PubMed  CAS  Google Scholar 

  • Regazzi R, Eppenberger U, Fabbro D (1988) The 27,000 daltons stress proteins are phosphorylated by protein kinase C during the tumor promoter-mediated growth inhibition of human mammary carcinoma cells. Biochem Biophys Res Commun 152:62–68

    PubMed  CAS  Google Scholar 

  • Rembold CM, O’Connor M (2000) Caldesmon and heat shock protein 20 phosphorylation in nitroglycerin-and magnesium-induced relaxation of swine carotid artery. Biochim Biophys Acta 1500:257–264

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    PubMed  CAS  Google Scholar 

  • Rollet E, Best-Belpomme M (1986) HSP 26 and 27 are phosphorylated in response to heat shock and ecdysterone in Drosophila melanogaster cells. Biochem Biophys Res Commun 141: 426–433

    PubMed  CAS  Google Scholar 

  • Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR, Sanjay TW (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037

    PubMed  CAS  Google Scholar 

  • Rousseau S, Houle F, Landry J, Huot J (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–2177

    PubMed  CAS  Google Scholar 

  • Saklatvala J, Kaur P, Guesdon F (1991) Phosphorylation of the small heat-shock protein is regulated by interleukin 1, tumour necrosis factor, growth factors, bradykinin and ATP. Biochem J 27:635–642

    Google Scholar 

  • Santell L, Bartfeld NS, Levin EG (1992) Identification of a protein transiently phosphorylated by activators of endothelial cell function as the heat-shock protein HSP27. A possible role for protein kinase C. Biochem J 284:705–710

    PubMed  CAS  Google Scholar 

  • Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

    PubMed  CAS  Google Scholar 

  • Schäfer C, Clapp P, Welsh MJ, Benndorf R, Williams JA (1999) HSP27 expression regulates CCK-induced changes of the actin cytoskeleton in CHO-CCK-A cells. Am J Physiol 277:C1032–C1043

    PubMed  Google Scholar 

  • Schneider GB, Hamano H, Cooper LF (1998) In vivo evaluation of hsp27 as an inhibitor of actin polymerization: hsp27 limits actin stress fiber and focal adhesion formation after heat shock. J Cell Physiol 177:575–584

    PubMed  CAS  Google Scholar 

  • Schultz H, Engel K, Gaestel M (1997) PMA-induced activation of the p42/44ERK-and p38RK-MAP kinase cascades in HL-60 cells is PKC dependent but not essential for differentiation to the macrophage-like phenotype. J Cell Physiol 173:310–318

    PubMed  CAS  Google Scholar 

  • Schultz H, Rogalla T, Engel K, Lee JC, Gaestel M (1997) The protein kinase inhibitor SB203580 uncouples PMA-induced differentiationof HL-60 cells from phosphorylation of Hsp27. Cell Stress Chaperones 2:41–49

    PubMed  CAS  Google Scholar 

  • Sithanandam G, Latif F, Duh FM, Bernai R, Smola U, Li H, Kuzmin I, Wixler V, Geil L, Shrestha S, Sanjay TW (1996) 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region. Mol Cell Biol 16:868–876

    PubMed  CAS  Google Scholar 

  • Smoyer WE, Ransom R, Harris RC, Welsh MJ, Lutsch G, Benndorf R (2000) Ischemic acute renal failure induces differential expression of small heat shock proteins. J Am Soc Nephrol 11: 211–221

    PubMed  CAS  Google Scholar 

  • Spector A, Chiesa R, Sredy J, Garner W (1985) cAMP-dependent phosphorylation of bovine lens alpha-crystallin. Proc Natl Acad Sei USA 82:4712–4716

    CAS  Google Scholar 

  • Spector NL, Ryan C, Samson W, Levine H, Nadler LM, Arrigo AP (1993) Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J Cell Physiol 156:619–625

    PubMed  CAS  Google Scholar 

  • Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992a) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313:307–313

    PubMed  CAS  Google Scholar 

  • Stokoe D, Campbell DG, Nakielny S, Hidaka H, Leevers SJ, Marshall C, Cohen P (1992b) MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J 11: 3985–3994

    PubMed  CAS  Google Scholar 

  • Stokoe D, Caudwell B, Cohen PT, Cohen P (1993) The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem J 296:843–849

    PubMed  CAS  Google Scholar 

  • Suzuki A, Sugiyama Y, Hayashi Y, Nyu-i N, Yoshida M, Nonaka I, Ishiura S, Arahata K, Ohno S, Sanjay TW (1998a) MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J Cell Biol 140:1113–1124

    PubMed  CAS  Google Scholar 

  • Suzuki TC, Krawitz DC, Vierling E (1998b) The chloroplast small heat-shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo. Plant Physiol 116: 1151–1161

    PubMed  CAS  Google Scholar 

  • Thomas G, Haavik J, Cohen P (1997) Participation of a stress-activated protein kinase cascade in the activation of tyrosine hydroxylase in chromaffin cells. Eur J Biochem 247:1180–1189

    PubMed  CAS  Google Scholar 

  • Voorter CE, Mulders JW, Bloemendal H, de Jong WW (1986) Some aspects of the phosphorylation of alpha-crystallin A. Eur J Biochem 160:203–210

    PubMed  CAS  Google Scholar 

  • Voorter CE, de Haard-Hoekman WA, Roersma ES, Meyer HE, Bloemendal H, de Jong WW (1989) The in vivo phosphorylation sites of bovine alpha B-crystallin. FEBS Lett 259:50–52

    PubMed  CAS  Google Scholar 

  • Voorter CE, de Haard-Hoekman W, Merck KB, Bloemendal H, de Jong WW (1994) Elastase inhibition by the C-terminal domains of alpha-crystallin and small heat-shock protein. Biochim Biophys Acta 1204:43–47

    PubMed  CAS  Google Scholar 

  • Wang P, Bitar KN (1998) Rho A regulates sustained smooth muscle contraction through cytoskeletal reorganization of HSP27. Am J Physiol 275:G1454–G1462

    PubMed  CAS  Google Scholar 

  • Wang XZ, Ron D (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science 272:1347–1349

    PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnkl and Mnk2. EMBO J 16:1909–1920

    PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA (1999) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4 E by protein kinase Mnkl in vivo. Mol Cell Biol 19:1871–1880

    PubMed  CAS  Google Scholar 

  • Welch WJ (1985) Phorbol ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells all result in the elevated phosphorylation of two 28,000-dalton mammalian stress proteins. J Biol Chem 260:3058–3062

    PubMed  CAS  Google Scholar 

  • Werz O, Klemm J, Samuelsson B, Radmark O (2000) 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc Natl Acad Sei USA 97:5261–5266

    CAS  Google Scholar 

  • Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch K, Holtmann H (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 18:4969–4980

    PubMed  CAS  Google Scholar 

  • Wisniewski T, Goldman JE (1998) Alpha B-crystallin is associated with intermediate filaments in astrocytoma cells. Neurochem Res 23:385–392

    PubMed  CAS  Google Scholar 

  • Woodrum DA, Brophy CM, Wingard CJ, Beall A, Rasmussen H (1999) Phosphorylation events associated with cyclic nucleotide-dependent inhibition of smooth muscle contraction. Am J Physiol 277:H931–H939

    PubMed  CAS  Google Scholar 

  • Yamboliev IA, Hedges JC, Mutnick JL, Adam LP, Gerthoffer WT (2000) Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol 278:H1899–H1907

    PubMed  CAS  Google Scholar 

  • Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM (1995) Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pakl. J Biol Chem 270:23934–23936

    PubMed  CAS  Google Scholar 

  • Zhou M, Lambert H, Landry J (1993) Transient activation of a distinct serine protein kinase is responsible for 27-kDa heat shock protein phosphorylation in mitogen-stimulated and heatshock ed cells. J Biol Chem 268:35–43

    PubMed  CAS  Google Scholar 

  • Zhu Y, O’Neill S, Saklatvala J, Tassi L, Mendelsohn ME (1994) Phosphorylated HSP27 associates with the activation-dependent cytoskeleton in human platelets. Blood 84:3715–3723

    PubMed  CAS  Google Scholar 

  • Zu YL, Wu F, Gilchrist A, Ai Y, Labadia ME, Huang CK (1994) The primary structure of a human MAP kinase activated protein kinase 2. Biochem Biophys Res Commun 200:1118–1124

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaestel, M. (2002). sHsp-Phosphorylation: Enzymes, Signaling Pathways and Functional Implications. In: Arrigo, AP., Müller, W.E.G. (eds) Small Stress Proteins. Progress in Molecular and Subcellular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56348-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56348-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62708-8

  • Online ISBN: 978-3-642-56348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics