Skip to main content

Expression and Phosphorylation of Mammalian Small Heat Shock Proteins

  • Chapter
Small Stress Proteins

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 28))

Abstract

Mammalian small Hsps (sHsps) comprise 7 members found so far, αA- and αB-crystallin, Hsp25/27, Hsp20 (Kato et al. 1994a), MKBP (Suzuki et al. 1998), HspL27 (Lam et al. 1996), and cvHSP (Krief et al. 1999), all of which contain the α-crystallin domain in the carboxy-terminal half of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270:27489–27494

    Article  PubMed  CAS  Google Scholar 

  • Amici C, Sistonen L, Santoro MG, Morimoto RI (1992) Antiproliferative prostaglandins activate heat shock transcription factor. Proc Natl Acad Sci USA 89:6227–6231

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP (1990) Tumor necrosis factor induces the rapid phosphorylation of the mammalian heat shock protein hsp28 [published erratum appears in Mol Cell Biol 1990 July;10 (7):3857]. Mol Cell Biol 10:1276–1280

    PubMed  CAS  Google Scholar 

  • Arrigo AP, Welch WJ (1987) Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem 262:15359–15369

    PubMed  CAS  Google Scholar 

  • Beall A, Bagwell D, Woodrum D, Stoming TA, Kato K, Suzuki A, Rasmussen H, Brophy CM (1999) The small heat shock-related protein, HSP20, is phosphorylated on serine 16 during cyclic nucleotide-dependent relaxation [published erratum appears in J Biol Chem 1999 Sept 24;274 (39):28058]. J Biol Chem 274:11344–11351

    Article  PubMed  CAS  Google Scholar 

  • Beall AC, Kato K, Goldenring JR, Rasmussen H, Brophy CM (1997) Cyclic nucleotide-dependent vasorelaxation is associated with the phosphorylation of a small heat shock-related protein. J Biol Chem 272:11283–11287

    Article  PubMed  CAS  Google Scholar 

  • Beckmann RP, Lovett M, Welch WJ (1992) Examining the function and regulation of hsp 70 in cells subjected to metabolic stress. J Cell Biol 117:1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Blake MJ, Udelsman R, Feulner GJ, Norton DD, Holbrook NJ (1991) Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, agedependent response. Proc Natl Acad Sci USA 88:9873–9977

    Article  PubMed  CAS  Google Scholar 

  • Brophy CM, Dickinson M, Woodrum D (1999a) Phosphorylation of the small heat shock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. J Biol Chem 274:6324–6329

    Article  PubMed  CAS  Google Scholar 

  • Brophy CM, Lamb S, Graham A (1999b) The small heat shock-related protein-20 is an actinassociated protein. J Vasc Surg 29:326–333

    Article  PubMed  CAS  Google Scholar 

  • Bruce JL, Price BD, Coleman CN, Calderwood SK (1993) Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res 53:12–15

    PubMed  CAS  Google Scholar 

  • Cairns J, Qin S, Tan YH, Guy GR (1994) Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem 269:9176–9183

    PubMed  CAS  Google Scholar 

  • Caltabiano MM, Koestler TP, Poste G, Greig RG (1986) Induction of 32-and 34-kDa stress proteins by sodium arsenite, heavy metals, and thiol-reactive agents. J Biol Chem 261:13381–13386

    PubMed  CAS  Google Scholar 

  • Caspers GJ, Leunissen JA, de Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “N-crystallin domain”. J Mol Evol 40:238–248

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Yu K, Stevens JL (1992) Regulation of the cellular stress response by reactive electrophiles. The role of covalent binding and cellular thiols in transcriptional activation of the 70-kilodalton heat shock protein gene by nephrotoxic cysteine conjugates. J Biol Chem 267: 24322–24327

    PubMed  CAS  Google Scholar 

  • Chiesa R, Gawinowicz-Kolks MA, Kleiman NJ, Spector A (1987) The phosphorylation sites of the B2 chain of bovine alpha-crystallin. Biochem Biophys Res Commun 144:1340–1347

    Article  PubMed  CAS  Google Scholar 

  • Choi HS, Li B, Lin Z, Huang E, Liu AY (1991) cAMP and cAMP-dependent protein kinase regulate the human heat shock protein 70 gene promoter activity. J Biol Chem 266:11858–11865

    PubMed  CAS  Google Scholar 

  • Cotto JJ, Kline M, Morimoto RI (1996) Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem 271:3355–3358

    Article  PubMed  CAS  Google Scholar 

  • De Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the N-crystallin-small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • Domin J, Higgins T, Rozengurt E (1994) Preferential inhibition of platelet-derived growth factorstimulated DNA synthesis and protein tyrosine phosphorylation by nordihydroguaiaretic acid. J Biol Chem 269:8260–8267

    PubMed  CAS  Google Scholar 

  • Eaton P, Awad WI, Miller JI, Hearse DJ, Shattock MJ (2000) Ischemic preconditioning: a potential role for constitutive low molecular weight stress protein translocation and phosphorylationoc. J Mol Cell Cardiol 32:961–971

    Article  PubMed  CAS  Google Scholar 

  • Edington BV, Hightower LE (1990) Induction of a chicken small heat shock (stress) protein: evidence of multilevel posttranscriptional regulation. Mol Cell Biol 10:4886–4898

    PubMed  CAS  Google Scholar 

  • Edington BV, Whelan SA, Hightower LE (1989) Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. J Cell Physiol 139:219–228

    Article  PubMed  CAS  Google Scholar 

  • Edwards DP, Adams DJ, Savage N, McGuire WL (1980) Estrogen induced synthesis of specific proteins in human breast cancer cells. Biochem Biophys Res Commun 93:804–812

    Article  PubMed  CAS  Google Scholar 

  • Favata MF, Horiuchi KY, Manos EJ et al. (1998) Identification of a novel inhibitor of mitogenactivated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  PubMed  CAS  Google Scholar 

  • Freeman ML, Borrelli MJ, Syed K, Senisterra G, Stafford DM, Lepock JR (1995) Characterization of a signal generated by oxidation of protein thiols that activates the heat shock transcription factor. J Cell Physiol 164:356–366

    Article  PubMed  CAS  Google Scholar 

  • Fukushima M (1992) Biological activities and mechanisms of action of PGJ2 and related compounds: an update. Prostaglandins Leukot Essent Fatty Acids 47:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gaestel M, Schroder W, Benndorf R, Lippmann C, Buchner K, Hucho F, Erdmann VA, Bielka H, Sanjay TW (1991) Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem 266:14721–14724

    PubMed  CAS  Google Scholar 

  • Gaestel M, Benndorf R, Hayess K, Priemer E, Engel K (1992) Dephosphorylation of the small heat shock protein hsp25 by calcium/calmodulin-dependent (type 2B) protein phosphatase. J Biol Chem 267:21607–21611

    PubMed  CAS  Google Scholar 

  • Gaestel M, Gotthardt R, Muller T (1993) Structure and organisation of a murine gene encoding small heat-shock protein Hsp25. Gene 128:279–283

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1982) Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 257:13704–13712

    PubMed  CAS  Google Scholar 

  • Gschwendt M, Dieterich S, Rennecke J, Kittstein W, Mueller HJ, Johannes FJ (1996) Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett 392:77–80

    Article  PubMed  CAS  Google Scholar 

  • Guy GR, Cao X, Chua SP, Tan YH (1992) Okadaic acid mimics multiple changes in early protein phosphorylation and gene expression induced by tumor necrosis factor or interleukin-1. J Biol Chem 267:1846–18452

    PubMed  CAS  Google Scholar 

  • Hamazaki S, Okada S, Toyokuni S, Midorikawa O (1989) Thiobarbituric acid-reactive substance formation of rat kidney brush border membrane vesicles induced by ferric nitrilotriacetate. Arch Biochem Biophys 274:348–354

    Article  PubMed  CAS  Google Scholar 

  • Head MW, Hurwitz L, Goldman JE (1996) Transcription regulation of αB-crystallin in astrocytes: analysis of HSF and API activation by different types of physiological stress. J Cell Sci 109: 1029–1039

    PubMed  CAS  Google Scholar 

  • Hickey E, Brandon SE, Potter R, Stein G, Stein J, Weber LA (1986) Sequence and organization of genes encoding the human 27 kDa heat shock protein [published erratum appears in Nucleic Acids Res 1986 Oct 24;14(20):8230]. Nucleic Acids Res 14:4127–4145

    Article  PubMed  CAS  Google Scholar 

  • Holbrook NJ, Udelsman R (1994) Heat shock protein gene expression in response to physiologic stress and aging, In: Morimoto RI, Tisseieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, New York, pp 577-59.

    Google Scholar 

  • Holbrook NJ, Carlson SG, Choi AM, Fargnoli J (1992) Induction of HSP70 gene expression by the antiproliferative prostaglandin PGA2: a growth-dependent response mediated by activation of heat shock transcription factor. Mol Cell Biol 12:1528–1534

    PubMed  CAS  Google Scholar 

  • Hoover HE, Thuerauf DJ, Martindale JJ, Glembotski CC (2000) Alpha B-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for alpha B-crystallin as a target of the p38 branch of the cardiac stress response. J Biol Chem 275:23825–23833

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Zhang H, Bae SW, Liu AY (1994) Thiol reducing reagents inhibit the heat shock response. Involvement of a redox mechanism in the heat shock signal transduction pathway. J Biol Chem 269:30718–30725

    PubMed  CAS  Google Scholar 

  • Huang MT, Lysz T, Ferraro T, Abidi TF, Laskin JD, Conney AH (1991) Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51:813–819

    PubMed  CAS  Google Scholar 

  • Inaguma Y, Hasegawa K, Goto S, Ito H, Kato K (1995) Induction of the synthesis of hsp27 and ocB crystallin in tissues of heat-stressed rats and its suppression by ethanol or an ocl-adrenergic antagonist. J Biochem (Tokyo) 117:1238–1243

    CAS  Google Scholar 

  • Ireland RC, Berger EM (1982) Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc Natl Acad Sci USA 79:855–859

    Article  PubMed  CAS  Google Scholar 

  • Ireland RC, Berger E, Sirotkin K, Yund MA, Osterbur D, Fristrom J (1982) Ecdysterone induces the transcription of four heat-shock genes in Drosophila S3 cells and imaginai discs. Dev Biol 93:498–507

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Hasegawa K, Inaguma Y, Kozawa 0, Asano T, Kato K (1995) Modulation of the stress-induced synthesis of stress proteins by a phorbol ester and okadaic acid. J Biochem (Tokyo) 118: 629–634

    CAS  Google Scholar 

  • Ito H, Hasegawa K, Inaguma Y, Kozawa 0, Kato K (1996) Enhancement of stress-induced synthesis of hsp27 and ocB crystallin by modulators of the arachidonic acid cascade. J Cell Physiol 166:332–339

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Okamoto K, Kato K (1997a) Prostaglandins stimulate the stress-induced synthesis of hsp27 and ocB crystallin. J Cell Physiol 170:255–262

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Okamoto K, Nakayama H, Isobe T, Kato K (1997b) Phosphorylation of αB-crystallin in response to various types of stress. J Biol Chem 272:29934–29941

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Okamoto K, Kato K (1998) Enhancement of expression of stress proteins by agents that lower the levels of glutathione in cells. Biochim Biophys Acta 1397:223–230

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Iida K, Kamei K, Iwamoto I, Inaguma Y, Kato K (1999) αB-crystallin in the rat lens is phosphorylated at an early post-natal age. FEBS Lett 446:269–272

    Article  PubMed  CAS  Google Scholar 

  • Jacquier-Sarlin MR, Jornot L, Polla BS (1995) Differential expression and regulation of hsp70 and hsp90 by phorbol esters and heat shock. J Biol Chem 270:14094–14099

    Article  PubMed  CAS  Google Scholar 

  • Jurivich DA, Sistonen L, Kroes RA, Morimoto RI (1992) Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245

    Article  PubMed  CAS  Google Scholar 

  • Jurivich DA, Sistonen L, Sarge KD, Morimoto RI (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proc Natl Acad Sci USA 91:2280–2284

    Article  PubMed  CAS  Google Scholar 

  • Kaida T, Kozawa O, Ito T et al. (1999) Vasopressin stimulates the induction of heat shock protein 27 and αB-crystallin via protein kinase C activation in vascular smooth muscle cells. Exp Cell Res 246:327–337

    Article  PubMed  CAS  Google Scholar 

  • Kantorow M, Horwitz J, van Boekel MA, de Jong WW, Piatigorsky J (1995) Conversion from oligomers to tetramers enhances autophosphorylation by lens αA-crystallin. Specificity between αA-and αB-crystallin subunits. J Biol Chem 270:17215–17220

    Article  PubMed  CAS  Google Scholar 

  • Kantorow M, Piatigorsky J (1994) α-crystallin/small heat shock protein has autokinase activity. Proc Natl Acad Sci USA 91:3112–3116

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Goto S, Hasegawa K, Inaguma Y (1993) Coinduction of two low-molecular-weight stress proteins, aB crystallin and HSP28, by heat or arsenite stress in human glioma cells. J Biochem (Tokyo) 114:640–647

    CAS  Google Scholar 

  • Kato K, Goto S, Inaguma Y, Hasegawa K, Morishita R, Asano T (1994a) Purification and characterization of a 20-kDa protein that is highly homologous to aB crystallin. J Biol Chem 269: 15302–15309

    PubMed  CAS  Google Scholar 

  • Kato K, Hasegawa K, Goto S, Inaguma Y (1994b) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269:11274–11278

    PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Hasegawa K, Inaguma Y, Suzuki A, Kozawa O, Asano T (1995) Enhancement of stress-induced synthesis of stress proteins by mastoparan in C6 rat glioma cells. J Biochem (Tokyo) 118:149–153

    CAS  Google Scholar 

  • Kato K, Ito H, Hasegawa K, Inaguma Y, Kozawa O, Asano T (1996a) Modulation of the stressinduced synthesis of hsp27 and αB-crystallin by cyclic AMP in C6 rat glioma cells. J Neurochem 66:946–950

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Inaguma Y, Okamoto K, Saga S (1996b) Synthesis and accumulation of aB crystallin in C6 glioma cells is induced by agents that promote the disassembly of microtubules. J Biol Chem 271:26989–26994

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Okamoto K (1997) Modulation of the arsenite-induced expression of stress proteins by reducing agents. Cell Stress Chaperones 2:199–209

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Kamei K, Inaguma Y, Iwamoto I, Saga S (1998a) Phosphorylation of αB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J Biol Chem 273:28346–28354

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Kamei K, Iwamoto I (1998b) Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. Cell Stress Chaperones 3:152–160

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Kamei K, Iwamoto I (1999) Selective stimulation of Hsp27 and αB-crystallin but not Hsp70 expression by p38 MAP kinase activation. Cell Stress Chaperones 4:94–101

    PubMed  CAS  Google Scholar 

  • Kato K, Inaguma Y, Ito H, Iida K, Iwamoto I, Kamei K, Ochi N, Ohta H, Kishikawa M (2001a) Ser-59 is the major phosphorylation site in αB-crystallin accumulated in the brain of patients with Alexander’s disease. J Neurochem 76:730–736

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Ito H, Iwamoto I, Iida K, Inaguma Y (2001b) Protein kinase inhibitors can suppress stressinduced dissociation of Hsp27 Cell Stress Chaperones 6:16–20

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Rhee SG, Stadtman ER (1985) Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J Biol Chem 260:15394–15397

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim JH, Erdos G, Lee YJ (1993) Effect of staurosporine on suppression of heat shock gene expression and thermotolerance development in HT-29 cells. Biochem Biophys Res Commun 193:759–763

    Article  PubMed  CAS  Google Scholar 

  • Klemenz R, Frohli E, Aoyama A, Hoffmann S, Simpson RJ, Moritz RL, Schafer R (1991) ocB crystallin accumulation is a specific response to Ha-ras and v-mos oncogene expression in mouse NIH 3T3 fibroblasts. Mol Cell Biol 11:803–812

    PubMed  CAS  Google Scholar 

  • Klemperer NS, Pickart CM (1989) Arsenite inhibits two steps in the ubiquitin-dependent proteolytic pathway. J Biol Chem 264:19245–19252

    PubMed  CAS  Google Scholar 

  • Kozawa O, Niwa M, Matsuno H, Tokuda H, Miwa M, Ito H, Kato K, Uematsu T (1999a) Sphingosine 1-phosphate induces heat shock protein 27 via p38 mitogen-activated protein kinase activation in osteoblasts. J Bone Miner Res 14:1761–1767

    Article  PubMed  CAS  Google Scholar 

  • Kozawa O, Tanabe K, Ito H, Matsuno H, Niwa M, Kato K, Uematsu T (1999b) Sphingosine 1-phosphate regulates heat shock protein 27 induction by a p38 MAP kinase-dependent mechanism in aortic smooth muscle cells. Exp Cell Res 250:376–380

    Article  PubMed  CAS  Google Scholar 

  • Kozawa O, Tokuda H, Miwa M, Ito H, Matsuno H, Niwa M, Kato K, Uematsu T (1999c) Involvement of p42/p44 mitogen-activated protein kinase in prostaglandin F2a-stimulated induction of heat shock protein 27 in osteoblasts. J Cell Biochem 75:610–619

    Article  PubMed  CAS  Google Scholar 

  • Krief S, Faivre JF, Robert P et al. (1999) Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J Biol Chem 274:36592–36600

    Article  PubMed  CAS  Google Scholar 

  • Ku RH, Billings RE (1986) The role of mitochondrial glutathione and cellular protein sulfhydryls in formaldehyde toxicity in glutathione-depleted rat hepatocytes. Arch Biochem Biophys 247:183–189

    Article  PubMed  CAS  Google Scholar 

  • Kummer JL, Rao PK, Heidenreich KA (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem 272:20490–20494

    Article  PubMed  CAS  Google Scholar 

  • Lam WY, Wing Tsui SK, Law PT, Luk SC, Fung KP, Lee CY, Waye MM (1996) Isolation and characterization of a human heart cDNA encoding a new member of the small heat shock protein family-HSPL27. Biochim Biophys Acta 1314:120–124

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Chretien P, Laszlo A, Lambert H (1991) Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol 147:93–101

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Lambert H, Zhou M, Lavoie JN, Hickey E, Weber LA, Anderson CW (1992) Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267:794–803

    PubMed  CAS  Google Scholar 

  • Lee JC, Laydon JT, McDonnell PC et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Lightfoot R, Stevens JL (1996) Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols. J Biol Chem 271:4805–4812

    Article  PubMed  CAS  Google Scholar 

  • Ludwig S, Engel K, Hoffmeyer A, Sithanandam G, Neufeld B, Palm D, Gaestel M, Rapp UR (1996) 3pK, a novel mitogen-activated protein (MAP) kinase-activated protein kinase, is targeted by three MAP kinase pathways. Mol Cell Biol 16:6687–6697

    PubMed  CAS  Google Scholar 

  • Maizels ET, Peters CA, Kline M, Cutler JRE, Shanmugam M, Hunzicker-Dunn M (1998) Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C. Biochem J 332: 703–712

    PubMed  CAS  Google Scholar 

  • McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP, Young PR (1996) Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 271:8488–8492

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Kretz-Remy C, Preville X, Arrigo AP (1996) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNF.N-induced cell death. EMBO J 15:2695–2706

    PubMed  CAS  Google Scholar 

  • Mehlen P, Hickey E, Weber LA, Arrigo AP (1997) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFalpha in NIH-3T3-ras cells. Biochem Biophys Res Commun 241:187–192

    Article  PubMed  CAS  Google Scholar 

  • Meier R, Rouse J, Cuenda A, Nebreda AR, Cohen P (1996) Cellular stresses and cytokines activate multiple mitogen-activated-protein kinase kinase homologues in PC 12 and KB cells. Eur J Biochem 236:796–805

    Article  PubMed  CAS  Google Scholar 

  • Milarski KL, Morimoto RI (1986) Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci USA 83:9517–9521

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (1990) The stress response, function of the proteins, and perspectives. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 1–3.

    Google Scholar 

  • Narumiya S, Fukushima M (1986) Site and mechanism of growth inhibition by prostaglandins. I. Active transport and intracellular accumulation of cyclopentenone prostaglandins, a reaction leading to growth inhibition. J Pharmacol Exp Ther 239:500–505

    PubMed  CAS  Google Scholar 

  • Narumiya S, Ohno K, Fujiwara M, Fukushima M (1986) Site and mechanism of growth inhibition by prostaglandins. II. Temperature-dependent transfer of a cyclopentenone prostaglandin to nuclei. J Pharmacol Exp Ther 239:506–511

    PubMed  CAS  Google Scholar 

  • Ohno K, Fukushima M, Fujiwara M, Narumiya S (1988) Induction of 68,000-dalton heat shock proteins by cyclopentenone prostaglandins. Its association with prostaglandin-induced Gl block in cell cycle progression. J Biol Chem 263:19764–19770

    PubMed  CAS  Google Scholar 

  • Petronini PG, Alfieri R, Campanini C, Borghetti AF (1995) Effect of an alkaline shift on induction of the heat shock response in human fibroblasts. J Cell Physiol 162:322–329

    Article  PubMed  CAS  Google Scholar 

  • Pizurki L, Polla BS (1994) cAMP modulates stress protein synthesis in human monocytesmacrophages. J Cell Physiol 161:169–177

    Article  PubMed  CAS  Google Scholar 

  • Preville X, Schultz H, Knauf U, Gaestel M, Arrigo AP (1998) Analysis of the role of Hsp25 phosphorylation reveals the importance of the oligomerization state of this small heat shock protein in its protective function against TNF.N-and hydrogen peroxide-induced cell death. J Cell Biochem 69:436–452

    Article  PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X et al. (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  PubMed  CAS  Google Scholar 

  • Saklatvala J, Kaur P, Guesdon F (1991) Phosphorylation of the small heat-shock protein is regulated by interleukin 1, tumour necrosis factor, growth factors, bradykinin and ATP. Biochem J 277:635–642

    PubMed  CAS  Google Scholar 

  • Santoro MG, Garaci E, Amici C (1989) Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells. Proc Natl Acad Sci USA 86:8407–8411

    Article  PubMed  CAS  Google Scholar 

  • Sheikh-Hamad D, Di Mari J, Suki WN, Safirstein R, Watts BA, Rouse D (1998) p38 kinase activity is essential for osmotic induction of mRNAs for HSP70 and transporter for organic solute betaine in Madin-Darby canine kidney cells. J Biol Chem 273:1832–1837

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Wolfe LS (1990) Arachidonic acid cascade and signal transduction. J Neurochem 55:1–15

    Article  PubMed  CAS  Google Scholar 

  • Smith WL (1989) The eicosanoids and their biochemical mechanisms of action. Biochem J 259: 315–324

    PubMed  CAS  Google Scholar 

  • Spector A, Chiesa R, Sredy J, Garner W (1985) cAMP-dependent phosphorylation of bovine lens α-crystallin. Proc Natl Acad Sci USA 82:4712–4716

    Article  PubMed  CAS  Google Scholar 

  • Srivastava KC, Bordia A, Verma SK (1995) Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids 52:223–227

    Article  PubMed  CAS  Google Scholar 

  • Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313:307–313

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Sugiyama Y, Hayashi Y, Nyu-i N, Yoshida M, Nonaka I, Ishiura S, Arahata K, Ohno S, Sanjay TW (1998) MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J Cell Biol 140:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Tokuda H, Oiso Y, Kozawa O (1992) Protein kinase C activation amplifies prostaglandin F2 alphainduced prostaglandin E2 synthesis in osteoblast-like cells. J Cell Biochem 48:262–268

    Article  PubMed  CAS  Google Scholar 

  • Toullec D, Pianetti P, Coste H et al. (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:15771–15781

    PubMed  CAS  Google Scholar 

  • Udelsman R, Blake MJ, Stagg CA, Li DG, Putney DJ, Holbrook NJ (1993) Vascular heat shock protein expression in response to stress. Endocrine and autonomic regulation of this agedependent response. J Clin Invest 91:465–473

    Article  PubMed  CAS  Google Scholar 

  • Voorter CE, Mulders JW, Bloemendal H, de Jong WW (1986) Some aspects of the phosphorylation of N-crystallin A. Eur J Biochem 160:203–210

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ (1985) Phorbol ester, calcium ionophore, or serum added to quiescent rat embryo fibroblast cells all result in the elevated phosphorylation of two 28,000-dalton mammalian stress proteins. J Biol Chem 260:3058–3062

    PubMed  CAS  Google Scholar 

  • Yim MB, Chae HZ, Rhee SG, Chock PB, Stadtman ER (1994) On the protective mechanism of the thiol-specific antioxidant enzyme against the oxidative damage of biomacromolecules. J Biol Chem 269:1621–1626

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kato, K., Ito, H., Inaguma, Y. (2002). Expression and Phosphorylation of Mammalian Small Heat Shock Proteins. In: Arrigo, AP., Müller, W.E.G. (eds) Small Stress Proteins. Progress in Molecular and Subcellular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56348-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56348-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62708-8

  • Online ISBN: 978-3-642-56348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics