Skip to main content

Chaperone Function of sHsps

  • Chapter
Small Stress Proteins

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 28))

Abstract

Small heat shock proteins (sHsps) are a widespread but diverse class of proteins. In contrast to other families of Hsps, they contain certain conserved sequence motifs only in the C-terminal part of the protein, the so called occrystallin domain. These are low molecular mass proteins (15—42kDa) which form oligomeric structures ranging from 9 to 50 subunits. sHsps display a chaperone function in vitro. In addition, it has been suggested that they are involved in the inhibition of apoptosis, organization of the cytoskeleton and contribute to the optical properties of the eye lens in the case of α-crystallin. How these different functions can be explained by a common mechanism is unclear at the present state of investigations. However, as most of the observed phenomena involve non-native protein, the repeatedly reported chaperone properties of sHsps seem to be of key importance for understanding their function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen SP, Polazzi JO, Gierse GK, Easton AM (1992) Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol 174:6938–6947

    PubMed  CAS  Google Scholar 

  • Almoguera C, Jordano J (1992) Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol 19:781–792

    PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    PubMed  CAS  Google Scholar 

  • Aoyama A, Fröhli E, Schäfer R, Klemenz R (1993) B-crystallin expression in mouse NIH 3T3 fibroblasts: glucocorticoid responsiveness and involvement in thermal protection. Mol Cell Biol 13:1824–1835

    PubMed  CAS  Google Scholar 

  • Arrigo AP (2000) sHsp as novel regulators of programmed cell death and tumorigenicity. Pathol Biol (Paris) 48:280–288

    CAS  Google Scholar 

  • Arrigo AP, Landry J (1994) Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto RI (ed) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Plainview, NY, 335 pp

    Google Scholar 

  • Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379:245–259

    PubMed  CAS  Google Scholar 

  • Benndorf R, Hayess K, Ryazantsev S, Wieske M, Behlke J, Lutsch G (1994) Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J Biol Chem 269:20780–20784

    PubMed  CAS  Google Scholar 

  • Ben-Zvi AP, Chatellier J, Fersht AR, Goloubinoff P (1998) Minimal and optimal mechanisms for GroE-mediated protein folding. Proc Natl Acad Sei USA 95:15275–15280

    CAS  Google Scholar 

  • Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728

    PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1987) Heat-shock proteins and development. Adv Genet 24:1–29

    PubMed  CAS  Google Scholar 

  • Bohen SP, Kralli A, Yamamoto KR (1995) Hold’ em and fold’ em: chaperones and signal transduction. Science 268:1303–1304

    PubMed  CAS  Google Scholar 

  • Boyle D, Gopalakrishnan S, Takemoto L (1993) Localization of the chaperone binding site. Biochem Biophys Res Commun 192:1147–1154

    PubMed  CAS  Google Scholar 

  • Brophy CM, Dickinson M, Woodrum D (1999) Phosphorylation of the small heat shock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. J Biol Chem 274:6324–6329

    PubMed  CAS  Google Scholar 

  • Buchner J (1996) Supervising the fold: functional principles of molecular chaperones. FASEB J 10:10–19

    PubMed  CAS  Google Scholar 

  • Buchner J (1999) Hsp90&Co.—a holding for folding. Trends Biochem Sci 24:136–141

    PubMed  CAS  Google Scholar 

  • Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX, Kiefhaber T (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30:1586–1591

    PubMed  CAS  Google Scholar 

  • Buchner J, Ehrnsperger M, Gaestel M, Walke S (1998a) Purification and characterization of small heat shock proteins. Methods Enzymol 290:339–349

    PubMed  CAS  Google Scholar 

  • Buchner J, Grallert H, Jakob U (1998b) Analysis of chaperone function using citrate synthase as non-native substrate protein. Methods Enzymol 290:323–338

    PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell. 92:351–366

    PubMed  CAS  Google Scholar 

  • Carter JM, Hutcheson AM, Quinlan RA (1995) In vitro studies on the assembly properties of the lens proteins CP49, CP115: coassembly with alpha-crystallin but not with vimentin. Exp Eye Res 60:181–192

    PubMed  CAS  Google Scholar 

  • Carver JA, Lindner RA (1998) NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Int J Biol Macromol 22: 197–209

    PubMed  CAS  Google Scholar 

  • Carver JA, Aquilina JA, Truscott RJW, Ralston GB (1992) Identification by 1H NMR spectroscopy of flexible C-terminal extensions in bovine lens a-crystallin. FEBS Lett 311:143–149

    PubMed  CAS  Google Scholar 

  • Carver JA, Esposito G, Schwedersky G, Gaestel M (1995a) 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids. FEBS Lett 369:305–310

    PubMed  CAS  Google Scholar 

  • Carver JA, Guerreiro N, Nicholls KA, Truscott RJW (1995b) On the interaction of N-crystallin with unfolded protein. Biochim Biophys Acta 1252:251–260

    PubMed  Google Scholar 

  • Chang Z, Primm TP, Jakana J, Lee IH, Serysheva I, Chiu W, Gilbert HF, Quiocho FA (1996) Mycobacterium tuberculosis 16-kDa antigen (Hspl6.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J Biol Chem 271:7218–7223

    PubMed  CAS  Google Scholar 

  • Cheetham ME (1995) Cell stress genes and chronic neurodegenerative disorders. Neuropathol Appl Neurobiol 21:486-468

    Google Scholar 

  • Chen S, Roseman AM, Hunter AS, Wood SP, Burston SG, Ranson NA, Clarke AR, Saibil HR (1994) Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 371:261–264

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SA (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85:1558–1570

    PubMed  CAS  Google Scholar 

  • Clark JI, Muchowski PJ (2000) Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol 10:52–59

    PubMed  CAS  Google Scholar 

  • Collada C, Gomez L, Casado R, Aragoncillo C (1997) Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds. Plant Physiol 115:71–77

    PubMed  CAS  Google Scholar 

  • Cooper PN, Jackson M, Lennox G, Lowe J, Mann DM (1995) Tau, ubiquitin and oc B-crystallin immunohistochemistry define the principal causes of degenerative frontotemporal dementia. Arch Neurol 52:1011–1015

    PubMed  CAS  Google Scholar 

  • Crête P, Landry J (1990) Induction of HSP27 phosphorylation and thermoresistance in Chinese hamster cells by arsenite, cycloheximide, A23187, and EGTA. Radiat Res 121:320–327

    PubMed  Google Scholar 

  • Das KP, Surewicz WK (1995a) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of N-crystallin. FEBS Lett 369:321–325

    PubMed  CAS  Google Scholar 

  • Das KP, Surewicz WK (1995b) On the substrate specificity of a-crystallin as a molecular chaperone. Biochem J 311:367–370

    PubMed  CAS  Google Scholar 

  • Das KP, Petrash JM, Surewicz WK (1996) Conformational properties of substrate proteins bound to a molecular chaperone a-crystallin. J Biol Chem 271:10449–10452

    PubMed  CAS  Google Scholar 

  • De Jong WW, Leunissen JA, Voorter CE (1993) Evolution of the a-crystallin/small heat shock protein family. Mol Biol Evol 10:103–126

    PubMed  Google Scholar 

  • DeRocher AE, Vierling E (1994) Developmental control of small heat shock protein expression during pea seed maturation. Plant J 5:93–104

    CAS  Google Scholar 

  • Djabali K, de Nechaud B, Landon F, Portier MM (1997) AlphαB-crystallin interacts with intermediate filaments in response to stress. J Cell Sei 110:2759–2769

    Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16: 221–229

    PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Hergersberg C, Wienhues U, Nichtl A, Buchner J (1998) Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal Biochem 259:218–225

    PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem 274:14867–14874

    PubMed  CAS  Google Scholar 

  • Ehrnsperger M, Gaestel M, Buchner J (2000) Analysis of chaperone properties of small Hsp’s. Methods Mol Biol 99:421–429

    PubMed  CAS  Google Scholar 

  • Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell. 90:491–500

    PubMed  CAS  Google Scholar 

  • Farahbakhsh ZT, Huang QL, Ding LL, Altenbach C, Steinhoff HJ, Horwitz J, Hubbell WL (1995) Interaction of a-crystallin with spin-labeled peptides. Biochemistry 34:509–516

    PubMed  CAS  Google Scholar 

  • Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiR Nature 353:726–730

    CAS  Google Scholar 

  • Gaestel M, Gross B, Benndorf R, Strauss M, Schunk WH, Kraft R, Otto A, Böhm H, Stahl J, Drabsch H et al. (1989) Molecular cloning, sequencing and expression in Escherichia coli of the 25-kDa growth-related protein of Ehrlich ascites tumor and its homology to mammalian stress proteins. Eur J Biochem 179:209–213

    PubMed  CAS  Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase (RuBisCo) from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342:884–889

    PubMed  CAS  Google Scholar 

  • Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96:13732–13737

    PubMed  CAS  Google Scholar 

  • Grallert H, Rutkat K, Buchner J (1998) GroEL traps dimeric and monomeric unfolding intermediates of citrate synthase. J Biol Chem 273:33305–33310

    PubMed  CAS  Google Scholar 

  • Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J (1997) Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110:357–368

    PubMed  CAS  Google Scholar 

  • Haley DA, Horwitz J, Stewart PL (1998) The small heat-shock protein, αB-crystallin, has a variable quarternary structure. J Mol Biol 277:27–35

    PubMed  CAS  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    PubMed  CAS  Google Scholar 

  • Head MW, Corbin E, Goldman JE (1993) Overexpression and abnormal modifications of the stress proteins a B-crystallin and HSP27 in Alexander disease. Am J Pathol 143:1743–1753

    PubMed  CAS  Google Scholar 

  • Head MW, Corbin E, Goldman JE (1994) Coordinate and independent regulation of αB-crystallin and HSP27 expression in response to physiological stress. J Cell Physiol 159:41–50

    PubMed  CAS  Google Scholar 

  • Horwitz J (1992) α-crystallin can function as a molecular chaperone. Proc Natl Acad Sei USA 89:10449–10453

    CAS  Google Scholar 

  • Horwitz J (2000) The function of alpha-crystallin in vision. Semin Cell Dev Biol 11:53–60

    PubMed  CAS  Google Scholar 

  • Horwitz J, Bova MP, Ding LL, Haley DA, Stewart PL (1999) Lens alpha-crystallin: function and structure. Eye 13:403–408

    PubMed  Google Scholar 

  • Huot J, Lambert H, Lavoie JN, Guimond A, Houle F, Landry J (1995) Characterization of 45-kDa / 54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylationdependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem 227:416–427

    PubMed  CAS  Google Scholar 

  • Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56: 273–279

    PubMed  CAS  Google Scholar 

  • Inaguma Y, Shinohara H, Goto S, Kato K (1992) Translocation and induction of a B crystallin by heat shock in rat glioma (GA-1) cells. Biochem Biophys Res Commun 182:844–850

    PubMed  CAS  Google Scholar 

  • Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE (1993) αB-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143:487–495

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1993) What does protein refolding in vitro tell us about protein folding in the celloc Philos Trans R Soc Lond B Biol Sci 339:287–294

    PubMed  CAS  Google Scholar 

  • Jaenicke R, Creighton TE (1993) Junior chaperones. Curr Biol 3:234–235

    PubMed  CAS  Google Scholar 

  • Jakob U, Buchner J (1994) Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci 19:205–211

    PubMed  CAS  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    PubMed  CAS  Google Scholar 

  • Jakob U, Meyer I, Bugl H, Andre S, Bardwell JC, Buchner J (1995) Structural organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations on structure and function. J Biol Chem 270:14412–14419

    PubMed  CAS  Google Scholar 

  • Jinn TL, Yeh YC, Chen YM, Lin CY (1989) Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol 30:463–467

    CAS  Google Scholar 

  • Kampinga HH, Brunsting GF, Stege GJJ, Konings AWT, Landry J (1994) Cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 204:1170–1177

    PubMed  CAS  Google Scholar 

  • Kampinga HH, Brunsting JF, Stege GJJ, Burgman PWJJ, Konings AWT (1995) Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins. Exp Cell Res 219:536–546

    PubMed  CAS  Google Scholar 

  • Kato K, Hasegawa K, Goto S, Inaguma Y (1994) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269:11274–11278

    PubMed  CAS  Google Scholar 

  • Kato S, Hiranov A, Umahara T, Llena JF, Herz F, Ohama E (1992) Ultrastructural and immunohistochemical studies on ballooned cortical neurons in Creutzfeldt-Jakob disease: expression of N B-crystallin, ubiquitin and stress-response protein 27. Acta Neuropathol Berl 84:443–448

    PubMed  CAS  Google Scholar 

  • Kim GY, Lee HB, Lee SO, Rhee HJ, Na DS (1997) Chaperone-like function of lipocortin 1. Biochem Mol Biol Int 43:521–528

    PubMed  CAS  Google Scholar 

  • Kim KK, Yokota H, Santoso S, Lerner D, Kim R, Kim SH (1998) Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein homolog from Methanococcus jannaschii a hyperthermophile. J Struct Biol 121:76–80

    PubMed  CAS  Google Scholar 

  • Kim R, Kim KK, Yokota H, Kim SH (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci USA 95:9129–9133

    PubMed  CAS  Google Scholar 

  • Klemenz R, Frohli E, Steiger RH, Schafer R, Aoyama A (1991) a B-crystallin is a small heat shock protein. Proc Natl Acad Sci USA 88:3652–3656

    PubMed  CAS  Google Scholar 

  • Klemenz R, Andres AC, Frohli E, Schafer R, Aoyama A (1993) Expression of the murine small heat shock protein hsp25 and a B crystallin in the absence of stress. J Cell Biol 120:639–645

    PubMed  CAS  Google Scholar 

  • Knauf U, Bielka H, Gaestel M (1992) Over-expression of the small heat shock protein hsp25 inhibits growth of Ehrlich ascites tumor cells. FEBS Lett 309:297–302

    PubMed  CAS  Google Scholar 

  • Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385

    PubMed  CAS  Google Scholar 

  • Landry J, Chrétien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15

    PubMed  CAS  Google Scholar 

  • Laskowska E, Wawrzynow A, Taylor A (1996) IbpA and IbpB, the new heat-shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie 78:117–122

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Hickey E, Weber LA, Landry J (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 268:24210–24214

    PubMed  CAS  Google Scholar 

  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15:505–516

    PubMed  CAS  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    PubMed  CAS  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    PubMed  CAS  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    PubMed  CAS  Google Scholar 

  • Lindner RA, Carver JA, Ehrnsperger M, Buchner J, Esposito G, Behlke J, Lutsch G, Kotlyarov A, Gaestel M (2000) Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. Eur J Biochem 267:1923–1932

    PubMed  CAS  Google Scholar 

  • Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7:471–474

    PubMed  CAS  Google Scholar 

  • Lowe, Mayer RJ, Landon M (1993) Ubiquitin in neurodegenerative diseases. Brain Pathol 3:55–65

    PubMed  CAS  Google Scholar 

  • Martin JL, Hickey E, Weber LA, Dillmann WH, Mestril R (1999) Influence of phosphorylation and oligomerization on the protective role of the small heat shock protein 27 in rat adult cardiomyocytes. Gene Expr 7:349–355

    PubMed  CAS  Google Scholar 

  • Mehlen P, Arrigo AP (1994) The serum-induced phosphorylation of mammalian hsp27 correlates with changes in its intracellular localization and levels of oligomerization. Eur Biochem 221:327–334

    CAS  Google Scholar 

  • Mehlen P, Briolay J, Smith L, Diaz-latoud C, Fabre N, Pauli D, Arrigo AP (1993) Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild type or deletion mutants of the Drosophila 27-kDa heat-shock protein. Eur J Biochem 215:277–284

    PubMed  CAS  Google Scholar 

  • Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human αB-crystallin confers resistance to TNF-and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–374

    PubMed  CAS  Google Scholar 

  • Mendoza JA, Rogers E, Lorimer GH, Horowitz PM (1991) Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J Biol Chem 266:13044–13049

    PubMed  CAS  Google Scholar 

  • Merck KB, de Haard-Hoekman WA, Oude-Essink BB, Bloemendal H, de Jong WW (1992) Expression and aggregation of recombinant ocA-crystallin and its two domains. Biochim Biophys Acta 1130:267–276

    PubMed  CAS  Google Scholar 

  • Merck KB, Groenen PJ, Voorter CE, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993) Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268:1046–1052

    PubMed  CAS  Google Scholar 

  • Michelini ET, Flynn GC (1999) The unique chaperone Operon of Thermotoga maritima: cloning and initial characterization of a functional Hsp70 and small heat shock protein. J Baeteriol 181:4237–4244

    CAS  Google Scholar 

  • Muchowski PJ, Clark JI (1998) ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin. Proc Natl Acad Sci USA 95:1004–1009

    PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wu GJ, Liang JJ, Adman ET, Clark JI (1999) Site-directed mutations within the core “alpha-crystallin” domain of the small heat-shock protein, human alphαB-crystallin, decrease molecular chaperone functions. J Mol Biol 289:397–411

    PubMed  CAS  Google Scholar 

  • Nakamoto H, Suzuki N, Roy SK (2000) Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett 483:169–174

    PubMed  CAS  Google Scholar 

  • Nicholl ID, Quinlan RA (1994) Chaperone activity of alpha-crystallins modulates intermediate filament assembly. EMBO J 13:945–953

    PubMed  CAS  Google Scholar 

  • Niwa M, Kozawa O, Matsuno H, Kato K, Uematsu T (2000) Small molecular weight heat shockrelated protein, HSP20, exhibits an anti-platelet activity by inhibiting receptor-mediated calcium influx. Life Sci 66:PL7–PL12

    PubMed  CAS  Google Scholar 

  • Oesterreich S, Hilsenbeck SG, Ciocca DR, Allred DC, Clark GM, Chamness GC, Osborne CK, Fuqua SA (1993) The small heat shock protein HSP27 is not an independent prognostic marker in axillary lymph node-negative breast cancer patients. Clin Cancer Res 2:1199–1206

    Google Scholar 

  • Palmisano DV, Groth-Vasselli B, Farnsworth PN, Reddy MC (1995) Interaction of ATP and lens alpha crystallin characterized by equilibrium binding studies and intrinsic tryptophan fluorescence spectroscopy. Biochim Biophys Acta 1246:91–97

    PubMed  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heatshock protein Hsp l04. Nature 372:475–478

    PubMed  CAS  Google Scholar 

  • Pauli D, Tonka CH, Tissierès A, Arrigo AP (1990) Tissue-specific expression of the heat shock protein HSP27 during Drosophila melanogaster development. J Cell Biol 111:817–820

    PubMed  CAS  Google Scholar 

  • Petko L, Lindquist S (1986) Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45:885–894

    PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Vig J, Brambl R (1992) Phylogeny of the N-crystallin-related heat-shock proteins. J Mol Evol 35:537–545

    PubMed  CAS  Google Scholar 

  • Preville X, Schultz H, Knauf U, Gaestel M, Arrigo AP (1998) Analysis of the role of Hsp25 phosphorylation reveals the importance of the oligomerization state of this small heat shock protein in its protective function against TNFalpha-and hydrogen peroxide-induced cell death. J Cell Biochem 69:436–452

    PubMed  CAS  Google Scholar 

  • Raman B, Ramakrishna T, Rao CM (1995a) Rapid refolding studies on the chaperone-like a-crystallin. Effect of N-crystallin on refolding of ß-and N-crystallins. J Biol Chem 270:19888–19892

    PubMed  CAS  Google Scholar 

  • Raman B, Ramakrishna T, Rao CM (1995b) Temperature dependent chaperone activity of a-crystallin. FEBS Lett 365:133–136

    PubMed  CAS  Google Scholar 

  • Ranson NA, Burston SG, Clarke AR (1997) Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. J Mol Biol 266:656–664

    PubMed  CAS  Google Scholar 

  • Rao PV, Horwitz J, Zigler JS (1993).N-Crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem Biophys Res Commun 190:786–793

    PubMed  CAS  Google Scholar 

  • Rao PV, Horwitz J, Zigler JS (1994) Chaperone-like activity of a-crystallin. The effect of NADPH on its interaction with zeta-crystallin. J Biol Chem 269:13266–13272

    PubMed  CAS  Google Scholar 

  • Rao PV, Huang QL, Horwitz J, Zigler JS (1995) Evidence that a-Crystallin prevents non-specific protein aggregation in the intact eye lens. Biochim Biophys Acta 1245:439–447

    PubMed  Google Scholar 

  • Rawat U, Rao M (1998) Interactions of chaperone alpha-crystallin with the molten globule state of xylose reductase. Implications for reconstitution of the active enzyme. J Biol Chem 273: 9415–9423

    PubMed  CAS  Google Scholar 

  • Reddy MC, Palmisano DV, Groth-Vasselli B, Farnsworth PN (1992) 31P NMR studies of the ATP/alpha-crystallin complex: functional implications. Biochem Biophys Res Commun 189: 1578–1584

    PubMed  CAS  Google Scholar 

  • Renkawek K, de Jong WW, Merck KB, Frenken CW, van Workum FP, Bosman GJ (1992) a B-crystallin is present in reactive glia in Creutzfeldt-Jakob disease. Acta Neuropathol Berl 83:324–327

    PubMed  CAS  Google Scholar 

  • Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Expression of a B-crystallin in Alzheimer’s disease. Acta Neuropathol Berl 87:155–160

    PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    PubMed  CAS  Google Scholar 

  • Rollet E, Lavoie JN, Landry J, Tanguay RM (1992) Expression of Drosophila’s 27kDa heat shock protein into rodent cells confers thermal resistance. Biochem Biophys Res Commun 185: 116–120

    PubMed  CAS  Google Scholar 

  • Rüdiger S, Buchberger A, Bukau B (1997) Interaction of Hsp70 chaperones with substrates. Nat Struct Biol 4:342–349

    PubMed  Google Scholar 

  • Schirmer EC, Lindquist S (1998) Purification and properties of Hspl04 from yeast. Methods Enzymol 290:430–444

    PubMed  CAS  Google Scholar 

  • Schirmer EC, Lindquist S, Vierling E (1994) An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell 6:1899–1909

    PubMed  CAS  Google Scholar 

  • Sharma KK, Kaur H, Kester K (1997) Functional elements in molecular chaperone alphacrystallin: identification of binding sites in alpha B-crystallin. Biochem Biophys Res Commun 239:217–222

    PubMed  CAS  Google Scholar 

  • Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) a B-crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci 119:203–209

    PubMed  CAS  Google Scholar 

  • Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608

    PubMed  CAS  Google Scholar 

  • Singh K, Groth-Vasselli B, Kumosinski TF, Farnsworth PN (1995) a-Crystallin quaternary structure: molecular basis for its chaperone activity. FEBS Lett 372:283–287

    PubMed  CAS  Google Scholar 

  • Smulders RHPH, Merck KB, Aendekerk J, Horwitz J, Takemoto L, Slingsby C, Bloemendal H, de Jong WW (1995) The mutation Asp69öSer affects the chaperone-like activity of αB-crystallin. Eur J Biochem 232:834–838

    PubMed  CAS  Google Scholar 

  • Srere PA (1966) Citrate-condensing enzyme-oxalacetate binary complex. Studies on its physical and chemical properties. J Biol Chem 241:2157–2165

    PubMed  CAS  Google Scholar 

  • Stege GJJ, Li GC, Li L, Kampinga HH, Konings AWT (1994) On the role of hsp72 in heat-induced intranuclease protein aggregation. Int J Hyperthermia 10:659–674

    PubMed  CAS  Google Scholar 

  • Stege GJJ, Brunsting JF, Kampinga HH, Konings AWT (1995) Thermotolerance and nuclear protein aggregation: protection against initial damage or better recovery.? J Cell Physiol 164:579–586

    PubMed  CAS  Google Scholar 

  • Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, Tsui SK, Yoshida S, Ohno S, Sanjay TW (2000) Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem 275:1095–1104

    PubMed  CAS  Google Scholar 

  • Sullivan W, Stensgard B, Caucutt G, Bartha B, McMahon N, Alnemri ES, Litwack G, Toft D (1997) Nucleotides and two functional states of hsp90. J Biol Chem 272:8007–8012

    PubMed  CAS  Google Scholar 

  • Susek RE, Lindquist SL (1989) hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is without a demonstrable function. Mol Cell Biol 9:5265–5271

    PubMed  CAS  Google Scholar 

  • Takemoto L, Emmons T, Horwitz J (1993) The C-terminal region of N-crystallin: involvement in protection against heat induced denaturation. Biochem J 294:435–438

    PubMed  CAS  Google Scholar 

  • Tatzeit J, Zuo J, Voellmy R, Scott M, Hartl U, Prusiner SB, Welch WJ (1995) Scrapie prions selectively modify the stress response in neuroblastoma cells. Pr.O Natl Acad Sci USA 92:2944–2948

    Google Scholar 

  • Thomas JG, Baneyx F (1998) Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J Bacteriol 180:5165–5172

    PubMed  CAS  Google Scholar 

  • Thomas PJ, Qu BH, Pedersen PL (1995) Defective protein folding as a basis of human disease. Trends Bi.Them Sci 20:456–459

    CAS  Google Scholar 

  • Todd MJ, Lorimer GH, Thirumalai D (1996) Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proc Natl Acad Sci USA 93:4030–4035

    PubMed  CAS  Google Scholar 

  • Treweek TM, Lindner RA, Mariani M, Carver JA (2000) The small heat-shock chaperone protein, alpha-crystallin, does not recognise stable molten globule states of cytosolic proteins. Biochim Biophys Acta 1481:175–188

    PubMed  CAS  Google Scholar 

  • Van den Ijssel PR, Overkamp P, Knauf U, Gaestel M, de Jong WW (1994) αA-crystallin confers cellular thermoresistance. FEBS Lett 355:54–56

    PubMed  Google Scholar 

  • Van den Ijssel PR, Norman DG, Quinlan RA (1999) Molecular chaperones: small heat shock proteins in the limelight. Curr Biol 9:R103–R105

    PubMed  Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    PubMed  CAS  Google Scholar 

  • Vierling E, Sun A (1989) Developmental expression of heat shock protein in higher plants. In Cherry J (ed) Environmental stress in plants. Springer, Berlin Heidelberg New York, pp 343-35.

    Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prévost MC, Faure A, Chateau D, Chapon F, Tome F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphαB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    PubMed  CAS  Google Scholar 

  • Wagstaff MJ, Collaco-Moraes Y, Smith J, de Belleroche JS, Coffin RS, Latchman DS (1999) Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virusbased vector. J Biol Chem 274:5061–5069

    PubMed  CAS  Google Scholar 

  • Wang K, Spector A (1994) The chaperone activity of bovine N-crystallin. Interaction with other lens crystallins in native and denatured states. J Biol Chem 269:13601–13608

    PubMed  CAS  Google Scholar 

  • Wang K, Spector A (1995) α-crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci 36:311–321

    PubMed  CAS  Google Scholar 

  • Waters ER (1995) The molecular evolution of the small heat-shock proteins in plants. Genetics 141:785–795

    PubMed  CAS  Google Scholar 

  • Waters ER, Lee JL, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    PubMed  CAS  Google Scholar 

  • Wistow G (1993) Identification of lens crystallins: a model system for gene recruitment. Methods Enzymol 224:563–575

    PubMed  CAS  Google Scholar 

  • Yang H, Huang S, Dai H, Gong Y, Zheng C, Chang Z (1999) The Mycobacterium tuberculosis small heat shock protein Hspl6.3 exposes hydrophobic surfaces at mild conditions: Conformational flexibility and molecular chaperone activity. Protein Sci 8:174–179

    PubMed  CAS  Google Scholar 

  • Zhi W, Srere PA, Evans CT (1991) Conformational stability of pig citrate synthase and some activesite mutants. Biochemistry 30:9281–9286

    PubMed  CAS  Google Scholar 

  • Zhu Y, O’Neill S, Saklatvala J, Tassi L, Mendelsohn ME (1994a) Phosphorylated HSP27 associates with the activation-dependent cytoskeleton in human platelets. Blood 84:3715–3723

    PubMed  CAS  Google Scholar 

  • Zhu Y, Tassi L, Lane W, Mendelsohn ME (1994b) Specific binding of the transglutaminase, platelet factor XIII, to Hsp27. J Biol Chem 269:22379–22384

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haslbeck, M., Buchner, J. (2002). Chaperone Function of sHsps. In: Arrigo, AP., Müller, W.E.G. (eds) Small Stress Proteins. Progress in Molecular and Subcellular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56348-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56348-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62708-8

  • Online ISBN: 978-3-642-56348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics