Skip to main content

Small Stress Proteins: Novel Negative Modulators of Apoptosis Induced Independently of Reactive Oxygen Species

  • Chapter
Small Stress Proteins

Abstract

The execution phase of the apoptotic cell death process occurs throughout the proteolytic activation of proteolytic enzymes called caspases (Nicholson and Thornberry 1997; Thornberry and Lazebnik 1998). Several different pathways can lead to the activation of caspases, among them, one can cite the death receptors (i.e. Fas) (Scaffidi et al. 1998) and mitochondria pathways (Reed 1997; Green and Reed 1998). When activated by ligand binding, death receptors (i.e. Fas) recruit adapter polypeptides (i.e. FADD) that interact with and subsequently activate pro-caspases (i.e. pro-caspase 8) or trigger a signal transduction pathway that activates specific genes (i.e. the DAXX/ASK1/JNK pathway). In contrast, in the mitochondria pathway, different inducers have the ability to induce the release in the cytoplasm of different proteins present in mitochondria, such as cytochrome c, apoptosis-inducing factor (AIP), Hsp60, HsplO, adenylate kinase, Smac/Diablo as well as the fraction of pro-caspase 2,3,8, and 9 present in mitochondria (Kluck et al. 1997; Reed 1997; Yang et al. 1997; Kohler et al. 1999; Samali et al. 1999a; Susin et al. 1999a,1999b; Xanthoudakis et al. 1999; Du et al. 2000; Verhagen et al. 2000). Once it has been released from the mitochondria, cytochrome c interacts with Apaf-1 in the presence of ATP/dATP. This results in the formation of the apoptosome complex which recruits and activates pro-caspase 9 which subsequently activates pro-caspase 3 (Li et al. 1997; Saleh et al. 1999). The release of cytochrome c from the mitochondria is a caspase-independent early phenomenon that precedes mitochondrial membrane potential loss (Bossy-Wetzel et al. 1998). This phenomenon may be induced by conformational changes of Bax (Desagher et al. 1999) or by BAK oligomerization induced by tBID, a membrane-targeted death ligand (Wei et al. 2000). Stress-induced apoptosis usually occurs through the activation of the mitochondria pathway. This is particularly the case when mild oxidative or heat stresses are considered (Samali et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agius MA, Kirvan CA, Schafer AL, Gudipati E, Zhu S (1999) High prevalence of anti-alphacrystallin antibodies in multiple sclerosis: correlation with severity and activity of disease. Acta Neurol Scand 100:139–147

    Article  PubMed  CAS  Google Scholar 

  • Andley UP, Song Z, Wawrousek EF, Fleming TP, Bassnett S (2000) Differential protective activity of alpha A-and alpha B-crystallin in lens epithelial cells. J Biol Chem 275:36823–36831

    Article  PubMed  CAS  Google Scholar 

  • Arrigo A-P (1995) Expression of stress genes during development. Neuropathol Appl Neurobiol 21:488–491

    Article  PubMed  CAS  Google Scholar 

  • Arrigo A-P, Landry J (1994) Expression and function of the low-molecular-weight heat shock proteins. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 335–373

    Google Scholar 

  • Arrigo A-P, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    PubMed  CAS  Google Scholar 

  • Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379:19–26

    PubMed  CAS  Google Scholar 

  • Arrigo AP (2000) sHsp as novel regulators of programmed cell death and tumorigenicity Pathol Biol (Paris) 48:280–288

    CAS  Google Scholar 

  • Beaver JP, Waring P (1995) A decrease in intracellular glutathione concentration precedes the onset of apoptosis in murine thymocytes. Eur J Cell Biol 68:47–54

    PubMed  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  PubMed  CAS  Google Scholar 

  • Benjamin IJ, Shelton J, Garry DJ, Richardson JA (1997) Temporospatial expression of the small HSP/alpha B-crystallin in cardiac and skeletal muscle during mouse development. Dev Dynam 208:75–84

    Article  CAS  Google Scholar 

  • Beresford PJ, Jaju M, Friedman RS, Yoon MJ, Lieberman J (1998) A role for heat shock protein 27 in CTL-mediated cell death. J Immunol 161:161–167

    PubMed  CAS  Google Scholar 

  • Blackburn RV, Galoforo SS, Berns CM, Armour EP, McEachern D, Corry PM, Lee YJ (1997) comparison of tumor growth between Hsp25-and Hsp27-transfected murine L929 cells in nude mice. Int J Cancer 72:871–877

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49

    Article  PubMed  CAS  Google Scholar 

  • Boyle DL, Takemoto L (2000) A possible role for alpha-crystallins in lens epithelial cell differentiation. Mol Vis 6:63–71

    PubMed  CAS  Google Scholar 

  • Brar BK, Stephanou A, Wagstaff MJ, Coffin RS, Marber MS, Engelmann G, Latchman DS (1999) Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J Mol Cell Cardiol 31:135–146

    Article  PubMed  CAS  Google Scholar 

  • Bruey J-M, Ducasse C, Bonniaud P, Ravagnan L, Susin CA, Diaz-Latoud C, Gurbuxani S, Arrigo A-P, Kroemer G, Solary E, Garrido C (2000a) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2:645–652

    Article  PubMed  CAS  Google Scholar 

  • Bruey JM, Paul C, Fromentin A, Hilpert S, Arrigo AP, Solary E, Garrido C (2000b) Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19:4855–4863

    Article  PubMed  CAS  Google Scholar 

  • Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602–7612

    Article  PubMed  CAS  Google Scholar 

  • Chaufour S, Mehlen P, Arrigo AP (1996) Transient accumulation, phosphorylation and changes In the oligomerization of Hsp27 during retinoic acid-induced differentiation of HL-60 cells: possible role in the control of cellular growth and differentiation. Cell Stress Chaperones 1:225–235

    Article  PubMed  CAS  Google Scholar 

  • Chun-Ying Li J-SLY-GK, Jong-Il Kim and Jeong-Sun Seo (2000) Hsp70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase 3 activation. J Biol Chem (in press)

    Google Scholar 

  • Ciocca DR, Oesterreich S, Chamnes GC, McGuire WL, Fuqua SAW (1993) Biological and clinical implications of heat shock proteins 27000 (Hsp27): a Review. J Natl Cancer Inst 85:1558–1570

    Article  PubMed  CAS  Google Scholar 

  • Conroy SE, Sasieni PD, Amin V, Wang DY, Smith P, Fentiman IS, Latchman DS (1998) Antibodies to heat-shock protein 27 are associated with improved survival in patients with breast cancer. Br J Cancer 77:1875–1879

    Article  PubMed  CAS  Google Scholar 

  • Coppola S, Ghibelli L (2000) GSH extrusion and the mitochondrial pathway of apoptotic signalling. Biochem Soc Trans 28:56–61

    PubMed  CAS  Google Scholar 

  • Davidson SM, Morange M (2000) Hsp25 and the p38 MAPK pathway are involved in differentiation of cardiomyocytes. Dev Biol 218:146–160

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901

    Article  PubMed  CAS  Google Scholar 

  • Devaja O, King RJ, Papadopoulos A, Raju KS (1997) Heat-shock protein 27 (HSP27) and its role in female reproductive organs. Eur J Gynaecol Oncol 18:16–22

    PubMed  CAS  Google Scholar 

  • Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223

    Article  PubMed  CAS  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  PubMed  CAS  Google Scholar 

  • Gaestel M, Gross B, Benndorf R, Strauss M, Schunk W-H, Kraft R, Otto A, Bohm H, Stahl J, Drabsch H, Bielka H (1989) Molecular cloning, sequencing and expression in Escherichia coli of the 25-kDa growth-related protein of Ehrlich ascites tumor and its homology to mammalian stress proteins. Eur J Biochem 179:209–213

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, Mehlen P (1997) HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 57:2661–2667

    PubMed  CAS  Google Scholar 

  • Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo AP, Mehlen P, Solary E (1998) Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58:5495–5499

    PubMed  CAS  Google Scholar 

  • Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13:2061–2070

    PubMed  CAS  Google Scholar 

  • Ghibelli L, Fanelli C, Rotilio G, Lafavia E, Coppola S, Colussi C, Civitareale P, Ciriolo MR (1998) Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J 12:479–486

    PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Guenal I, Sidoti-de Fraisse C, Gaumer S, Mignotte B (1997) Bcl-2 and Hsp27 act at different levels to suppress programmed cell death. Oncogene 15:347–360

    Article  PubMed  CAS  Google Scholar 

  • Hanash S, Strahler J, Chan Y, Kuick R, Teichroew D, Neel J, Hailat N, Keim D, Gratiot-Deans J, Ungar D et al. (1993) Data base analysis of protein expression patterns during T-cell ontogeny and activation. Proc Natl Acad Sci USA 90:3314–3318

    Article  PubMed  CAS  Google Scholar 

  • Hansen RK, Parra I, Lemieux P, Oesterreich S, Hilsenbeck SG, Fuqua SA (1999) Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56:187–196

    Article  PubMed  CAS  Google Scholar 

  • Jäättelä M (1995) Over-expression of Hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60:689–693

    Article  PubMed  Google Scholar 

  • Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    Article  PubMed  Google Scholar 

  • Kindas-Mugge I, Trautinger F (1994) Increased expression of the M(r) 27,000 heat shock protein (hsp27) in vitro differentiated normal human keratinocytes. Cell Growth Differ 5:777–781

    PubMed  CAS  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis [see comments]. Science 275: 1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Kohler C, Gahm A, Noma T, Nakazawa A, Orrenius S, Zhivotovsky B (1999) Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett 447:10–12

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  • Loones MT, Chang Y, Morange M (2000) The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation. Cell Stress Chaperones 5:291–305

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo A-P (1996) Small stress proteins as novel regulators of apoptosis—heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. Biol Chem 271:16510–16514

    Article  CAS  Google Scholar 

  • Mehlen P, Hickey E, Weber L, Arrigo A-P (1997a) Large unphosphorylated aggregates as the active form of hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFκ in NIH-3T3-ras cells. Biochem Biophys Res Commun 241:187–192

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Mehlen A, Godet J, Arrigo A-P (1997b) hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 272:31657–31665

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Coronas V, Ljubic-Thibal V, Ducasse C, Granger L, Jourdan F, Arrigo AP (1999) Small stress protein Hsp27 accumulation during dopamine-mediated differentiation of rat olfactory neurons counteracts apoptosis. Cell Death Differ 6:227–233

    Article  PubMed  CAS  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159

    Article  PubMed  CAS  Google Scholar 

  • Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  PubMed  CAS  Google Scholar 

  • Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula M, Kumar V, Weichselbaum R, Nalin C, Alnemri ES, Kufe D, Kharbanda S (2000a) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19:4310–4322

    Article  PubMed  CAS  Google Scholar 

  • Pandey P, Färber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, Kharbanda S (2000b) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19:1975–1981

    Article  PubMed  CAS  Google Scholar 

  • Pauli D, Tonka C-H, Tissieres A, Arrigo A-P (1990) Tissue-specific expression of the heat shock protein HSP 27 during Drosophila melanogaster development. J Cell Biol 111:817–828

    Article  PubMed  CAS  Google Scholar 

  • Préville X, Schultz H, Knauf U, Gaestel M, Arrigo AP (1998) Analysis of the role of Hsp25 phosphorylation reveals the importance of the oligomerization state of this small heat shock protein in its protective function against TNFalpha-and hydrogen peroxide-induced cell death. J Cell Biochem 69:436–452

    Article  PubMed  Google Scholar 

  • Reed JC (1997) Cytochrome c: can’t live with it-can’t live without it. Cell 91:559–562

    Article  PubMed  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  PubMed  CAS  Google Scholar 

  • Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391:496–499

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Acharya S, Fishel R, Alnemri ES (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274:17941–17945

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the apaf-1 apoptosome by hsp70. Nat Cell Biol 2:476–483

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (1999a) Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and HsplO in the mitochondrial fraction of Jurkat cells. Embo J 18:2040–2048

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Holmberg CI, Sistonen L, Orrenius S (1999b) Thermotolerance and cell death are distinct cellular responses to stress: dependence on heat shock proteins. FEBS Lett 461:306–310

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3:228–236

    Article  PubMed  CAS  Google Scholar 

  • Samali A, Robertson J, Peterson E, Manero F, van Zeijl L, Paul C, Cotgreave IA, Arrigo A-P, Orrenius S (2000) Small heat shock proteins protect mitochondria of thermotolerant cells. Cell Stress Chaperones 6:49–58

    Article  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  • Shakoori AR, Oberdorf AM, Owen TA, Weber LA, Hickey E, Stein JL, Lian JB, Stein GS (1992) Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells. J Cell Biochem 48:277–287

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487

    Article  PubMed  CAS  Google Scholar 

  • Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82-83:149–153

    Article  PubMed  CAS  Google Scholar 

  • Spector NL, Samson W, Ryan C, Gribben J, Urba W, Welch WJ, Nadler LM (1992) Growth arrest of human B lymphocytes is accompanied by induction of the low molecular weight mammalian heat shock protein. J Immunol 148:1668–1673

    PubMed  CAS  Google Scholar 

  • Spector NL, Ryan C, Samson W, Levine H, Nadler LM, Arrigo A-P (1993) Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J Cell Physiol 156:619–625

    Article  PubMed  CAS  Google Scholar 

  • Spector NL, Mehlen P, Ryan C, Hardy L, Samson W, Levine H, Nadler LM, Fabre N, Arrigo A-P, Sanjay TW (1994) Regulation of the 28kDa heat shock protein by retinoic acid during differentiation of human leukemic HL-60 cells. FEBS Lett 337:184–188

    Article  PubMed  CAS  Google Scholar 

  • Stahl J, Wobus AM, Ihrig S, Lutsch G, Bielka H (1992) The small heat shock protein hsp25 is accumulated in P19 embryonal carcinoma cells and embryonic stem cells of line BLC6 during differentiation. Differentiation 51:33–37

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, Tsui SK, Yoshida S, Ohno S (2000) Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem 275:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G (1999a) Mitochondrial release of caspase-2 and-9 during the apoptotic process. J Exp Med 189:381–394.

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999b) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, Morimoto RI, Reed JC (1997) BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16:4887–4896

    Article  PubMed  CAS  Google Scholar 

  • Têtu B, Lacasse B, Bouchard H-L, Lagacé R, Huot J, Landry J (1992) Prognostic influence of HSP-27 expression in malignant fibrous histiocytoma: a clinicopathological and immunohistochemical study. Cancer Res 52:2325–2328

    PubMed  Google Scholar 

  • Tezel G, Wax MB (2000) The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J Neurosci 20:3552–3562

    PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Van den Dobbelsteen DJ, Nobel CSI, Schlegel J, Cotgreave IA, Orrenius S, Slater AFG (1996) Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. J Biol Chem 271:15420–15427

    Article  PubMed  Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff MJ, Collaco-Moraes Y, Smith J, de Belleroche JS, Coffin RS, Latchman DS (1999) Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virusbased vector. J Biol Chem 274:5061–5069

    Article  PubMed  CAS  Google Scholar 

  • Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071

    PubMed  CAS  Google Scholar 

  • Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW (1999) Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 18:2049–2056

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129–1132

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arrigo, AP. et al. (2002). Small Stress Proteins: Novel Negative Modulators of Apoptosis Induced Independently of Reactive Oxygen Species. In: Arrigo, AP., Müller, W.E.G. (eds) Small Stress Proteins. Progress in Molecular and Subcellular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56348-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56348-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62708-8

  • Online ISBN: 978-3-642-56348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics