Skip to main content

Evolution and Diversity of Prokaryotic Small Heat Shock Proteins

  • Chapter
Small Stress Proteins

Abstract

To understand the evolutionary mechanisms that led to the diversification of the various types of heat shock proteins(Hsps) and their functioning in multichaperone networks is a great challenge (Feder and Hofmann 1999). Considerable information is already available on the evolution of the Hsp60 and Hsp70 families (e.g., Gupta 1995; Budin and Philippe 1998; Karlin and Brocchieri 1998; Macario et al. 1999; Archibald et al. 2000; Brocchieri and Karlin 2000). Relatively less is known about the early evolution of the small heat shock proteins (sHsps), which are considerably more divergent in structure and function than the Hsp60s and Hsp70s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archibald JM, Logsdon JM Jr, Doolittle WF (2000) Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplication in CCT genes. Mol Biol Evol 17: 1456–1466

    Article  PubMed  CAS  Google Scholar 

  • Brocchieri L, Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sei 9:476–486

    Article  CAS  Google Scholar 

  • Budin K, Philippe H (1998) New insights into the phylogeny of eukaryotes based on ciliate Hsp70 sequences. Mol Biol Evol 15:943–956

    Article  PubMed  CAS  Google Scholar 

  • Caspers G-J, Leunissen JAM, De Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J Mol Evol 40:238–248

    Article  PubMed  CAS  Google Scholar 

  • Cunningham AF, Spreadbury CL (1998) Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton a-crystallin homolog. J Bacteriol 180:801–808

    PubMed  CAS  Google Scholar 

  • De Jong WW, Caspers G-J, Leunissen JAM (1998) Genealogy of the a-crystallin—small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • Ehrnsperger M, Buchner J, Gaestel M (1997a) Structural and function of small heat-shock proteins. In: Fink AL, Goto Y (eds) Molecular chaperones in the life cycle of proteins. Marcel Dekker Inc, New York, pp 533–557.

    Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997b) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16: 221–229

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Hofmann G (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package). Distributed by the author. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • González-Márquez H, Perrin C, Bracquart P, Guimont C, Linden G (1997) A 16kDa protein family overexpressed by Streptococcus thermophilus PB18 in acid environments. Microbiol 143: 1587–1594

    Article  Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, HsplO, Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11

    Article  PubMed  CAS  Google Scholar 

  • Heidelbach M, Skladny H, Schrairer HU (1993) Heat shock and development induce synthesis of a low-molecular-weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca. J Bacteriol 175:7479–7482

    PubMed  CAS  Google Scholar 

  • Henriques AO, Beall BW, Moran CP Jr (1997) CotM of Bacillus subtilis, a member of the acrystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J Bacteriol 179:1887–1897

    PubMed  CAS  Google Scholar 

  • Horváth I, Glatz A, Varvasovszki V et al. (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sei USA 95:3513–3518

    Article  Google Scholar 

  • Jobin M-P, Delmas F, Garmyn D, Deviès C, Guzzo J (1997) Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl Environ Microbiol 63:609–614

    PubMed  CAS  Google Scholar 

  • Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol 47:565–577

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Kim R, Kim S-H (1998) Crystal structure of a small heat-shock protein. Nature 394: 595–599

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  PubMed  CAS  Google Scholar 

  • Macario AJ, Lange M, Ahring BK, De Macario EC (1999) Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923–967

    PubMed  CAS  Google Scholar 

  • Michelini ET, Flynn GC (1999) The unique chaperone Operon of Thermotoga maritima: cloning and initial characterization of a functional Hsp70 and a small heat shock protein. J Bacteriol 181:4237–4244

    PubMed  CAS  Google Scholar 

  • MĂĽnchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90

    PubMed  Google Scholar 

  • Narberhaus F, Weiglhofer W, Fischer H-M, Hennecke H (1996) The Bradyrhizobium japonicum rpoH1 gene encoding a oc32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes. J Bacteriol 178:5337–5346

    PubMed  CAS  Google Scholar 

  • Plesofsky-Vig N, Vig J, Brambl R (1992) Phylogeny of the alpha-crystallin-related heat-shock proteins. J Mol Evol 35:537–545

    Article  PubMed  CAS  Google Scholar 

  • Rost B, Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19:55–72

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994a) Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci 10:19–29

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994b) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Veigner L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    Article  Google Scholar 

  • Waters ER, Vierling E (1999) The diversion of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol Biol Evol 16:127–139

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Nakano Y, Yamashita Y, Oho T, Ohishi M, Koga T (1999) A novel dnaK operon from Porphyromonas gingivalis. FEBS Lett 12:287–291

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappé, G., Leunissen, J.A.M., de Jong, W.W. (2002). Evolution and Diversity of Prokaryotic Small Heat Shock Proteins. In: Arrigo, AP., Müller, W.E.G. (eds) Small Stress Proteins. Progress in Molecular and Subcellular Biology, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56348-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56348-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62708-8

  • Online ISBN: 978-3-642-56348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics