Skip to main content

Spatially Explicit Vegetation Models: What Have We Learned?

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 63))

Abstract

Although ecology is a relatively young science, it has produced numerous insights into the natural world through a variety of approaches, ranging from direct observation to pure theory. Interestingly enough, most modern ecological research has been conducted without an explicit consideration of spatial relationships. In fact, in many cases space has been willfully excluded from ecological studies. Why is this so? “Space complicates” or “space confounds” would be the common, but generally unstated, reason. What this really means is that most ecological studies are designed to eliminate environmental or ecological variability in space, so that “pure and uncontaminated” ecological processes and relationships can be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bascompte J, Solé RV (1995) Rethinking complexity: modelling spatiotemporal dynamics in ecology. Tree 10:361–366

    PubMed  CAS  Google Scholar 

  • Berger U, Hildenbrandt H (2000) A new approach to spatially explicit modelling of forest dynamics: spacing aging and neighborhood competition of mangrove trees. Ecol Model 132:287–302

    Article  Google Scholar 

  • Bradstock RA, Bedward M, Kenny BJ, Scott J (1998) Spatially-explicit simulation of the effect of prescribed burning on fire regimes and plant extinctions in shrubland typical of south-eastern Australia. Biol Conserv 86:83–95

    Article  Google Scholar 

  • Burrough PA (1983) Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. J Soil Sci 34:577–597

    Article  Google Scholar 

  • Chiarello E, Barrat-Segretain M-H (1997) Recolonization of cleared patches by macro-phytes: modelling with point processes and random mosaics. Ecol Model 96:61–73

    Article  Google Scholar 

  • Clements FE (1916) Plant succession. An analysis of the development of vegetation. Carnegie Institution, Washington

    Chapter  Google Scholar 

  • Coffin DP, Lauenroth WK (1989) Disturbances and gap dynamics in a semiarid grassland: a landscape-level approach. Landscape Ecol 3:19–27

    Article  Google Scholar 

  • Colasanti RL, Grime JP (1993) Resource dynamics and vegetation processes: a deterministic model using two-dimensional cellular automata. Funct Ecol 7:169–176

    Article  Google Scholar 

  • Connell JH, Slayter OR (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Crawly MJ, May RM 1987 Population dynamics and plant community structure: competition between annuals and perennials. J Theor Biol 125:475–489

    Article  Google Scholar 

  • Czârân T (1989) Coexistence of competing populations along an environmental gradient: a simulation study. Coenoses 4:113–120

    Google Scholar 

  • Czärän T (1998) Spatiotemporal models of population and community dynamics. Chapman and Hall, London

    Google Scholar 

  • Dale MRT (1999) Spatial pattern analysis in plant ecology. Cambridge studies in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Durrett R, Levin SA (1994) Stochastic spatial models: a user’s guide to ecological applications. Phil Trans R Soc Lond B 343:329–350

    Article  Google Scholar 

  • Egler FE (1954) Vegetation science concepts. I Initial floristic composition, a factor in old-field vegetation development. Vegetatio 4: 412–417

    Article  Google Scholar 

  • Filipe JAN, Gibson GJ (1998) Studying and approximating spatio-temporal models for epidemic spread and control. Philos Trans R Soc Lond B 353:2153–2162

    Article  Google Scholar 

  • Gao Q, Li JD, Zheng HY (1996) A dynamic landscape simulation model for the alkaline Grasslands on Songnen Plain in northeast China. Landscape Ecol 11:339–349

    Article  Google Scholar 

  • Gassmann F, Klötzli F, Walther G-R (2000) Simulation of observed types of dynamics of plants and plant communities. J Veg Sci 11:397–408

    Article  Google Scholar 

  • Gleason HA (1920) Some applications of the quadrat method. Bull Torrey Bot Club 47:21–33

    Article  Google Scholar 

  • Green DG (1989) Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Vegetatio 82:139–153

    Article  Google Scholar 

  • Greig-Smith P, Chadwick MJ (1965) Data on pattern within plant communities. III. Acacia — Capparis semi desert shrub in Sudan. J Ecol 53:465–474

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grimm V, Frank K, Jeltsch F, Brandi R, Uchmanski J, Wissel C (1996) Pattern oriented modelling in population ecology. Sci Total Environ 183:151–166

    Article  CAS  Google Scholar 

  • Grist EPM (1999) The significance of spatio-temporal neighbourhood on plant competition for light and space. Ecol Model 121:63–78

    Article  Google Scholar 

  • Gustafson EJ, Shifley SR, Mladenoff DJ, Nimerfro KK, He HS (2000) Spatial simulation of forest succession and timber harvesting using Landis. Can J For Res 30:32–43

    Article  Google Scholar 

  • Haase P (1995) Spatial pattern analysis in ecology based on Ripley’s K-function: introduction and methods of edge correction. J Veg Sci 6:575–582

    Article  Google Scholar 

  • Halley JM, Comins HN, Lawton JH, Hassel MP (1994) Competition, succession and pattern in fungal communities: towards a cellular automaton model. OIKOS 70:435–442

    Article  Google Scholar 

  • Hartway C, Ruckelshaus M, Kareiva P (1998) The challenge of applying spatially-explicit models to a world of sparse and messy data. In: Bascompte J, Solé RV (eds) Modelling spatio-temporal dynamics in ecology. Springer, Berlin Heidelberg New York, pp 215–223

    Google Scholar 

  • Hastings A (1993) Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74:1362–1372

    Article  Google Scholar 

  • Hiebeier D (2000) Populations on fragmented landscapes with spatially structured heterogeneities: landscape generation and local dispersal. Ecology 81:1629–1641

    Article  Google Scholar 

  • Hobbs RJ, Hobbs VJ (1987) Gophers and grassland — a model of vegetation response to patchy soil disturbance. Vegetatio 69:141–146

    Article  Google Scholar 

  • Holt RD, Pacala SW, Smith TW, Liu J (1995) Linking contemporary vegetation models with spatially explicit animal population models. Ecol Appl 5[l]:20–27

    Article  Google Scholar 

  • Hovestadt T, Poethke HJ, Messner S (2000) Variability in dispersal distances generates typical successional patterns: a simple simulation model. OIKOS 90:612–619

    Article  Google Scholar 

  • Iwasa Y, Kazunori S, Nakshima S (1991) Dynamic modelling of wave regeneration (Shimagare) in subalpine Abies forests. J Theor Biol 152:143–158

    Article  Google Scholar 

  • Jeltsch F, Wissel C (1993) Modelling factors which may cause stand-level dieback in forest. In: Huettl RF, Mueller-Dombois D (eds) Forest decline in the Atlantic and Pacific region. Springer, Berlin Heidelberg New York, pp 251–260

    Chapter  Google Scholar 

  • Jeltsch F, Wissel C (1994) Modelling dieback phenomena in natural forests. Ecol Model 75/76:111–121

    Article  Google Scholar 

  • Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N (1996) Tree spacing and coexistence in semiarid savannas. J Ecol 84:583–595

    Article  Google Scholar 

  • Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N (1997a) Simulated pattern formation around artificial waterholes in the semi-arid Kalahari. J Veg Sci 8:177–188

    Article  Google Scholar 

  • Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N (1997b) Analysing shrub encroachment in the southern Kalahari: a grid-based modelling approach. J Appl Ecol 34:1497–1509

    Article  Google Scholar 

  • Jeltsch F, Milton SJ, Dean WRJ, van Rooyen N, Moloney KA (1998) Modelling the impact of small-scale heterogeneities on tree-grass coexistence in semi-arid savannas. J Ecol 86:780–794

    Article  Google Scholar 

  • Jeltsch F, Moloney KA, Milton SJ (1999) Detecting process from snap-shot pattern: lessons from tree spacing in the southern Kalahari. Oikos 85:451–467

    Article  Google Scholar 

  • Jeltsch F, Weber GE, Grimm V (2000) Ecological buffering mechanisms in savannas: a unifying theory of long-term tree-grass coexistence. Plant Ecol 150 (1/2): 161–171

    Article  Google Scholar 

  • Jesse KJ (1999) Modelling of a diffuse Lotka-Volterra-System: the climate-induced shifting of tundra and forest realms in North-America. Ecol Model 123:53–64

    Article  Google Scholar 

  • Kareiva P, Wennergren U (1995) Connecting landscape patterns to ecosystem and population processes. Nature 373:299–302

    Article  CAS  Google Scholar 

  • Kershaw KA (1964) Quantitative and dynamic ecology. Edward Arnold, London

    Google Scholar 

  • Klaas BA, Moloney KA, Danielson BJ 2000 The tempo and mode of gopher mound production in a tallgrass prairie remnant. Ecography 23:246–256

    Article  Google Scholar 

  • Köhler P, Huth A (1998) The effects of tree species grouping in tropical rainforest modelling: simulations with the individual-based model FORMIND. Ecol Model 109: 301–321

    Article  Google Scholar 

  • Lavorel S, Chesson P (1995) How species with different regeneration niches coexist in patchy habitats with local disturbances. OIKOS 74:103–114

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology — The Robert H. MacArthur Award Lecture. Ecology 73:1943–1967

    Article  Google Scholar 

  • Liu J, Dunning JB Jr, Pulliam HR (1995) Potential effects of a forest management plan on Bachman’s Sparrows (Aimophila aestivalis):linking a spatially explicit model with GIS. Conserv Biol 9:62–75

    Article  Google Scholar 

  • Lobo A, Moloney KA, Chic O, Chiariello N (1998) Analysis of fine-scale spatial pattern of a grassland from remotely-sensed imagery and field collected data. Landscape Ecol 13:111–131

    Article  Google Scholar 

  • Molofsky J (1994) Population dynamics and pattern formation in theoretical population. Ecology 75:30–39

    Article  Google Scholar 

  • Moloney KA, Levin SA (1996) The effects of disturbance architecture on Landscape-Level Population dynamics. Ecology 77:375–394

    Article  Google Scholar 

  • Oborny B, Kun 00C1, Czárán T, Bokros S (2000) The effect of clonal integration on plant competition for mosaic habitat space. Ecology 81: 3291–3304

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Pacala SW (1986) Neighborhood models of plant population dynamics. 2. Multi- species models of annuals. Theor Popul Biol 29:262–292

    Article  Google Scholar 

  • Pacala SW, Silander JA (1990) Field tests of neighborhood population dynamic models of two annual weed species. Ecol Monogr 60:113–134

    Article  Google Scholar 

  • Palmer M (1992) The coexistence of species in fractal landscapes. Am Nat 139:375–397

    Article  Google Scholar 

  • Puigdefábregas J, Gallart F, Biaciotto O, Allogia M, del Barrio G (1999) Banded vegetation patterning in a subantarctic forest of Tierra del Fuego, as an outcome of the interaction between wind and tree growth. Acta Oecol 20:135–146

    Article  Google Scholar 

  • Ratz A (1995) Long-term spatial patterns created by fire: a model oriented towards boreal forests. Int J Wildl Fire 5:25–34

    Article  Google Scholar 

  • Renshaw E (1991) Modelling biological populations in space and time. Cambridge studies in mathematical biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Ruckelshaus M, Hartway C, Kareiva P (1996) Assessing the data requirements of spatially explicit dispersal models. Conserv Biol 11:1298–1306

    Article  Google Scholar 

  • Ruxton GD, Saravia LA (1998) The need for biological realism in the updating of cellular automata models. Ecol Model 107:105–112

    Article  Google Scholar 

  • Sato K, Iwasa Y (1993) Modeling of wave regeneration in subalpine Abies forests: population dynamics with spatial structure. Ecology 74:1538–1550

    Article  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–374

    Article  Google Scholar 

  • Schwinning S, Parsons AJ (1996) A spatially explicit population model of stoloniferous N-fixing legumes in mixed pasture with grass. J Ecol 84: 815–826

    Article  Google Scholar 

  • Shugart HH (2000) Importance of structure in the longer-term dynamics of landscape. J Geophys Res-Atmos 105:20065–20075

    Article  Google Scholar 

  • Silvertown J, Holder S, Johnson J, Dale P (1992) Cellular automata models of interspecific competition for space — the effect of pattern on process. J Ecol 80:527–534

    Article  Google Scholar 

  • Smith GC, Bull DS (1997) Spatial and temporal ordering of events in discrete time cellular automata — an overview. Ecol Model 96:305–307

    Article  Google Scholar 

  • Starfield AM (1997) A pragmatic approach to modeling for wildlife management. J Wild Manage 61:261–270

    Article  Google Scholar 

  • Tappeiner U, Tasser E, Tappeiner G (1998) Modelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS model based applied to an Alpine area. Ecol Model 113[1–3]:225–237

    Article  Google Scholar 

  • Thiéry JM, D’Herbès J-M, Valentin C (1995) A model simulating the genesis of banded vegetation patterns in Niger. J Ecol 83:497–507

    Article  Google Scholar 

  • Turner MG, Arthaud GJ, Engstrom RT, Hejl SJ, Lui J, Loeb S, McKelvey K (1995) Usefulness of spatially explicit population models in land management. Ecol Appl 5:12–16

    Article  Google Scholar 

  • Valverde T, Silvertown J (1997) An integrated model of demography, patch dynamics and seed dispersal in a woodland herb, Primula vulgaris. OIKOS 80:67–77

    Article  Google Scholar 

  • Van Oene H, van Deursen EJM, Berendse F (1999) Plant-Herbivore Interaction and Its consequences for succession in wetland ecosystems: a modeling approach. Ecosystems 2:122–138

    Article  Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22

    Article  Google Scholar 

  • Weber GE, Jeltsch F (2000) Long-term impacts of livestock herbivory on herbaceous and woody vegetation in semiarid savannas. Basic Appl Ecol 1:13–23

    Article  Google Scholar 

  • Weber GE, Jeltsch F, van Rooyen N, Milton SJ (1998) Simulated long-term vegetation response to spatial grazing heterogeneity in semiarid rangelands. J Appl Ecol 35:687–699

    Article  Google Scholar 

  • Weber G, Moloney KA, Jeltsch F (2000) Simulated long-term vegetation response to alternative stocking strategies in savanna rangelands. Plant Ecol 150 (l/2):77–96

    Article  Google Scholar 

  • Wiegand T, Milton SJ, Wissel C (1995) A simulation model for a shrub ecosystem in the semiarid Karoo, South Africa. Ecology 76:2205–2221

    Google Scholar 

  • Wiegand T, Moloney K, Milton SJ (1998) Population dynamics, disturbance, and pattern evolution identify the fundamental scales of organization in a model ecosystem. Am Nat 152:321–337

    Article  PubMed  CAS  Google Scholar 

  • Wiegand K, Jeltsch F, Ward D (1999) Analysis of the population dynamics of desert-dwelling Acacia trees with a spatially-explicit computer simulation model. Ecol Model 117:203–224

    Article  Google Scholar 

  • Wiegand K, Ward D, Thulke H, Jeltsch F (2000a) From snap-shot information to long-term population dynamics of Acacias by a simulation model. Plant Ecol 150 (l/2):97–114

    Article  Google Scholar 

  • Wiegand K, Schmidt H, Jeltsch F, Ward D (2000b) Reflections on linking a spatially-explicit model of Acacias to GIS and remotely-sensed data. Folia Geobot 35:211–230

    Article  Google Scholar 

  • Winkler E, Klotz S (1997) Long-term control species abundances in a dry grassland: a spatially explicit model. J Veg Sci 8:189–198

    Article  Google Scholar 

  • Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424

    Article  Google Scholar 

  • Wu JG, Levin SA (1994) A spatial patch dynamic modeling approach to pattern and process in an annual grassland. Ecol Monogr 64:447–464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeltsch, F., Moloney, K.A. (2002). Spatially Explicit Vegetation Models: What Have We Learned?. In: Esser, K., Lüttge, U., Beyschlag, W., Hellwig, F. (eds) Progress in Botany. Progress in Botany, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56276-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56276-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52304-5

  • Online ISBN: 978-3-642-56276-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics