Skip to main content

HIV-1-Derived Lentiviral Vectors

  • Chapter
Lentiviral Vectors

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 261))

Abstract

The primary vectors of choice for gene therapy applications have been oncoretroviruses due to their simple genetic organization and their ability to integrate into the host cell genome without incurring cellular toxicity (ANDERSON 1998). However, these vectors require cell division for integration to occur (MILLER et al. 1990) due to a requirement for nuclear envelope breakdown to allow entry of the viral integration complex into the nucleus (ROE et al. 1993). This presents a major obstacle for in vivo or ex vivo transduction of non-dividing cells such as neurons, hepatocytes, muscle fibres, quiescent lymphocytes, and haematopoietic stem cells, as these cells are either inaccessible by such vectors, or must be manipulated in potentially detrimental ways to facilitate cell division and vector integration. For this reason, interest in recent years has turned to lentiviruses, due to their ability to infect and integrate in certain types of non-dividing cells (WEINBERG et al. 1991; BUKRINSKY et al. 1993; LEWIS and EMERMAN 1994). One lentivirus on which much work has been focused to derive vectors for gene therapy has been HIV-1, as it is the best characterized of the lentiviruses. The remainder of this review will focus on the properties of HIV-1 that allow it to efficiently infect non-dividing cells, and on the development of progressively safer and more efficient HIV-1-derived vectors over the past few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken C (1997) Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol 71:5871–5877

    PubMed  CAS  Google Scholar 

  • Aiken C, Trono D (1995) Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J Virol 69:5048–5056

    PubMed  CAS  Google Scholar 

  • Anderson WF (1998) Human Gene Ther Nature 392:25–30

    CAS  Google Scholar 

  • Arya SK, Zamani M, Kundra P (1998) Human immunodeficiency virus type 2 lentivirus vectors for gene transfer: expression and potential for helper virus-free packaging. Hum Gene Ther 9:1371–1380

    PubMed  CAS  Google Scholar 

  • Bartz SR, Emerman M (1999) Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 73:1956–1963

    PubMed  CAS  Google Scholar 

  • Bartz SR, Vodicka MA (1997) Production of high-titer human immunodeficiency virus type 1 pseudo-typed with vesicular stomatitis virus glycoprotein. Methods 12:337–342

    PubMed  CAS  Google Scholar 

  • Bensadoun JC, Deglon N, Tseng JL, Ridet JL, Zum AD, Aebischer P (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164:15–24

    PubMed  CAS  Google Scholar 

  • Binley J, Moore JP (1997) HIV-cell fusion. The viral mousetrap. Nature 387:346–348

    PubMed  CAS  Google Scholar 

  • Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649

    PubMed  CAS  Google Scholar 

  • Bosch A, Perret E, Desmaris N, Trono D, Heard JM (2000) Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum Gene Ther 11:1139–1150

    PubMed  CAS  Google Scholar 

  • Bukovsky AA, Song JP, Naldini L (1999) Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 73:7087–7092

    PubMed  CAS  Google Scholar 

  • Bukovsky A, Dull T, Follenzi A, Nguyen M, Kelly M, McGuinness R, Malech H, Naldini L (2000) Novel design of HIV-based vector system with no viral sequences overlap between packaging and transfer vector constructs. Mol Ther 1:S139

    Google Scholar 

  • Bukrinsky MI, Haffar OK (1999) HIV-1 nuclear import: in search of a leader. Front Biosci 4:772–781

    Google Scholar 

  • Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365:666–669

    PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S, Stevenson M (1992) Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA 89:6580–6584

    PubMed  CAS  Google Scholar 

  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titre and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037

    PubMed  CAS  Google Scholar 

  • Cassan M, Delaunay N, Vaquero C, Rousset JP (1994) Translational frameshifting at the gag-pol junction of human immunodeficiency virus type 1 is not increased in infected T-lymphoid cells. J Virol 68:1501–1508

    PubMed  CAS  Google Scholar 

  • Chameau P, Mirambeau G, Roux P, Paulous S, Buc H, Clavel F (1994) HIV-1 reverse transcription. A termination step at the center of the genome. J Mol Biol 241:651–662

    Google Scholar 

  • Chinnasamy D, Chinnasamy N, Enriquez MJ, Otsu M, Morgan RA, Candotti F (2000) Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 96:1309–1316

    PubMed  CAS  Google Scholar 

  • Clapham PR, Weiss RA (1997) Immunodeficiency viruses. Spoilt for choice of co-receptors. Nature 388:230–231

    PubMed  CAS  Google Scholar 

  • Clever JL, Parslow TG (1997) Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J Virol 71:3407–3414

    PubMed  CAS  Google Scholar 

  • Coffin J, Hughes SH, Varmus HE (2000) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Consiglio A, Quattrini A, Martino S, Bensadoun JC, Dolcetta D, Trojani A, Benaglia G, Marchesini S, Cestari V, Oliverio A, Bordignon C, Naldini L (2001) In vivo gene therapy of metachromatic leukodystrophy in lentiviral vectors: correlation of neuropathology and protection against learning impairments in affected mice. Nat Med 7:310–316

    PubMed  CAS  Google Scholar 

  • Corbeau P, Kraus G, Wong-Staal F (1998) Transduction of human macrophages using a stable HIV-1/HIV-2-derived gene delivery system. Gene Ther 5:99–104

    PubMed  CAS  Google Scholar 

  • Costello E, Munoz M, Buetti E, Meylan PR, Diggelmann H, Thali M (2000) Gene transfer into stimulated and unstimulated T lymphocytes by HIV-1-derived lentiviral vectors. Gene Ther 7:596–604

    PubMed  CAS  Google Scholar 

  • Cullen BR (1998) HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692

    PubMed  CAS  Google Scholar 

  • Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767

    PubMed  CAS  Google Scholar 

  • Deglon N, Tseng JL, Bensadoun JC, Zum AD, Arsenijevic Y, Pereira DA, Zufferey R, Trono D, Aebischer P (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther 11:179–190

    PubMed  CAS  Google Scholar 

  • Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    PubMed  CAS  Google Scholar 

  • Deng HK, Unutmaz D, KewalRamani VN, Littman DR (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388:296–300

    PubMed  CAS  Google Scholar 

  • Dettenhofer M, Cen S, Carlson BA, Kleiman L, Yu XF (2000) Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. J Virol 74:8938–8945

    PubMed  CAS  Google Scholar 

  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  • Emerman M (2000) Learning from lentiviruses. Nat Genet 24:8–9

    PubMed  CAS  Google Scholar 

  • Emerman M, Malim MH (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280:1880–1884

    PubMed  CAS  Google Scholar 

  • Federico M (1999) Lentiviruses as gene delivery vectors. Curr Opin Biotechnol 10:448–453

    PubMed  CAS  Google Scholar 

  • Feng Y, Broder CC, Kennedy PE, Berger EA (1996a) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877

    PubMed  CAS  Google Scholar 

  • Feng YX, Copeland TD, Henderson LE, Gorelick RJ, Bosche WJ, Levin JG, Rein A (1996b) HIV-1 nucleocapsid protein induces “maturation” of dimeric retroviral RNA in vitro. Proc Natl Acad Sci USA 93:7577–7581

    PubMed  CAS  Google Scholar 

  • Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    PubMed  CAS  Google Scholar 

  • Fouchier RA, Meyer BE, Simon JH, Fischer U, Albright AV, Gonzalez-Scarano F, Malim MH (1998) Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J Virol 72:6004–6013

    PubMed  CAS  Google Scholar 

  • Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Ann Rev Biochem 67:1–25

    PubMed  CAS  Google Scholar 

  • Freed EO, Martin MA (1994)HIV-1 infection of non-dividing cells. Nature 369:107–108

    PubMed  CAS  Google Scholar 

  • Gallay P, Hope T, Chin D, Trono D (1997) HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci USA 94:9825–9830

    PubMed  CAS  Google Scholar 

  • Gallay P, Stitt V, Mundy C, Oettinger M, Trono D (1996) Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol 70:1027–1032

    PubMed  CAS  Google Scholar 

  • Gallichan WS, Kafri T, Krahl T, Verma IM, Sarvetnick N (1998) Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 9:2717–2726

    PubMed  CAS  Google Scholar 

  • Gasmi M, Glynn J, Jin MJ, Jolly DJ, Yee JK, Chen ST (1999) Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J Virol 73:1828–1834

    PubMed  CAS  Google Scholar 

  • Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, Hahn BH, Emerman M (1998) HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 4:65–71

    PubMed  CAS  Google Scholar 

  • Grande A, Piovani B, Aiuti A, Ottolenghi S, Mavilio F, Ferrari G (1999) Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells. Blood 93:3276–3285

    PubMed  CAS  Google Scholar 

  • Guenechea G, Gan OI, Inamitsu T, Dorrell C, Pereira DS, Kelly M, Naldini L, Dick JE (2000) Transduction of human CD34+ CD38-bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther 1:566–573

    PubMed  CAS  Google Scholar 

  • He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69:6705–6711

    PubMed  CAS  Google Scholar 

  • Hill CM, Deng H, Unutmaz D, KewalRamani VN, Bastiani L, Gorny MK, Zolla-Pazner S, Littman DR (1997) Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J Virol 71:6296–6304

    PubMed  CAS  Google Scholar 

  • Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA 93:3099–3104

    PubMed  CAS  Google Scholar 

  • Kafri T, Blomer U, Peterson DA, Gage FH, Verma IM (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17:314–317

    PubMed  CAS  Google Scholar 

  • Kanki PJ, Travers KU, MBoup S, Hsieh CC, Marlink RG, Gueye-NDiaye A, Siby T, Thior I, Hernandez-Avila M, Sankale JL (1994) Slower heterosexual spread of HIV-2 than HIV-1. Lancet 343:943–946

    PubMed  CAS  Google Scholar 

  • Katz RA, Skalka AM (1994) The retroviral enzymes. Ann Rev Biochem 63:133–173

    PubMed  CAS  Google Scholar 

  • Kerkau T, Bacik I, Bennink JR, Yewdell JW, Hunig T, Schimpl A, Schubert U (1997) The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 185:1295–1305

    PubMed  CAS  Google Scholar 

  • Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72:811–816

    PubMed  CAS  Google Scholar 

  • Kinoshita S, Chen BK, Kaneshima H, Nolan GP (1998) Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell 95:595–604

    PubMed  CAS  Google Scholar 

  • Kondo E, Gottlinger HG (1996) A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J Virol 70:159–164

    PubMed  CAS  Google Scholar 

  • Kordower JH, Bloch J, Ma SY, Chu Y, Palfi S, Roitberg BZ, Emborg M, Hantraye P, Deglon N, Aebischer P (1999) Lentiviral gene transfer to the nonhuman primate brain.Exp Neurol 160:1–16

    PubMed  CAS  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen E-Y, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    PubMed  CAS  Google Scholar 

  • Korin YD, Zack JA (1998) Progression to the Gib phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol 72:3161–3168

    PubMed  CAS  Google Scholar 

  • Korin YD, Zack JA (1999) Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 73:6526–6532

    PubMed  CAS  Google Scholar 

  • Lamb RA, Pinto LH (1997) Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology 229:1–11

    PubMed  CAS  Google Scholar 

  • Landau NR, Page KA, Littman DR (1991) Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol 65:162–169

    PubMed  CAS  Google Scholar 

  • Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516

    PubMed  CAS  Google Scholar 

  • Madani N, Kabat D (1998) An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol 72:10251–10255

    PubMed  CAS  Google Scholar 

  • Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254–257

    PubMed  CAS  Google Scholar 

  • Mangasarian A, Foti M, Aiken C, Chin D, Carpentier JL, Trono D (1997a) The HIV-1 Nef protein acts as a connector with sorting pathways in the Golgi and at the plasma membrane. Immunity 6:67–77

    PubMed  CAS  Google Scholar 

  • Mangasarian A, Trono D (1997b) The multifaceted role of HIV Nef. Res Virol pp 30–33

    Google Scholar 

  • Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, Traore I, Hsieh CC, Dia MC, Gueye EH (1994) Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265:1587–1590

    PubMed  CAS  Google Scholar 

  • May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M (2000) Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406:82–86

    PubMed  CAS  Google Scholar 

  • Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE (1999) Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 283:682–686

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Takahashi M, Gage FH, Verma IM (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 94:10319–10323

    PubMed  CAS  Google Scholar 

  • Naldini L (1998) Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 9:457–463

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263–267

    PubMed  CAS  Google Scholar 

  • Neville M, Stutz F, Lee L, Davis LI, Rosbash M (1997) The importin-beta family member Crmlp bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 7:767–775

    PubMed  CAS  Google Scholar 

  • Page KA, Landau NR, Littman DR (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64:5270–5276

    PubMed  CAS  Google Scholar 

  • Park F, Ohashi K, Kay MA (2000) Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver. Blood 96:1173–1176

    PubMed  CAS  Google Scholar 

  • Parolin C, Dorfman T, Palu G, Gottlinger H, Sodroski J (1994) Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J Virol 68:3888–3895

    PubMed  CAS  Google Scholar 

  • Poeschla E, Corbeau P, Wong-Staal F (1996) Development of HIV vectors for anti-HIV gene therapy. Proc Natl Acad Sci USA 93:11395–11399

    PubMed  CAS  Google Scholar 

  • Poeschla E, Gilbert J, Li X, Huang S, Ho A, Wong-Staal F (1998) Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J Virol 72:6527–6536

    PubMed  CAS  Google Scholar 

  • Popov S, Rexach M, Zybarth G, Reiling N, Lee MA, Ratner L, Lane CM, Moore MS, Blobel G, Bukrinsky M (1998) Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. EMBO J 17:909–917

    PubMed  CAS  Google Scholar 

  • Roe T, Reynolds TC, Yu G, Brown PO (1993) Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12:2099–2108

    PubMed  CAS  Google Scholar 

  • Schneider R, Campbell M, Nasioulas G, Felber BK, Pavlakis GN (1997) Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation. J Virol 71:4892–4903

    PubMed  CAS  Google Scholar 

  • Schubert U, Anton LC, Bacik I, Cox JH, Bour S, Bennink JR, Orlowski M, Strebel K, Yewdell JW (1998) CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J Virol 72:2280–2288

    PubMed  CAS  Google Scholar 

  • Schwartz O, Marechal V, Danos O, Heard JM (1995) Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell. J Virol 69:4053–4059

    PubMed  CAS  Google Scholar 

  • Simon JH, Malim MH (1996) The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J Virol 70:5297–5305

    PubMed  CAS  Google Scholar 

  • Stevenson M (2000) HIV nuclear import: What’s the flap? Nat Med 6:626–628

    PubMed  CAS  Google Scholar 

  • Takahashi M, Miyoshi H, Verma IM, Gage FH (1999) Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73:7812–7816

    PubMed  CAS  Google Scholar 

  • Tiganos E, Yao XJ, Friborg J, Daniel N, Cohen EA (1997) Putative alpha-helical structures in the human immunodeficiency virus type 1 Vpu protein and CD4 are involved in binding and degradation of the CD4 molecule. J Virol 71:4452–4460

    PubMed  CAS  Google Scholar 

  • Unutmaz D, KewalRamani VN, Marmon S, Littman DR (1999) Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 189:1735–1746

    PubMed  CAS  Google Scholar 

  • Valentin A, Aldrovandi G, Zolotukhin AS, Cole SW, Zack JA, Pavlakis GN, Felber BK (1997) Reduced viral load and lack of CD4 depletion in SCID-hu mice infected with Rev-independent clones of human immunodeficiency virus type 1. J Virol 71:9817–9822

    PubMed  CAS  Google Scholar 

  • Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2:308–316

    PubMed  CAS  Google Scholar 

  • Vodicka MA, Koepp DM, Silver PA, Emerman M (1998) HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev 12:175–185

    PubMed  CAS  Google Scholar 

  • von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, Sundquist WI (1998) Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17:1555–1568

    Google Scholar 

  • Weinberg JB, Matthews TJ, Cullen BR, Malim MH (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 174:1477–1482

    PubMed  CAS  Google Scholar 

  • Wilcox DA, Olsen JC, Ishizawa L, Griffith M, White GC (1999) Integrin alphallb promoter-targeted expression of gene products in megakaryocytes derived from retrovirus-transduced human hematopoietic cells. Proc Natl Acad Sci USA 96:9654–9659

    PubMed  CAS  Google Scholar 

  • Willey RL, Maldarelli F, Martin MA, Strebel K (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66:7193–7200

    PubMed  CAS  Google Scholar 

  • Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888

    PubMed  CAS  Google Scholar 

  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61:213–222

    PubMed  CAS  Google Scholar 

  • Zack JA, Haislip AM, Krogstad P, Chen IS (1992) Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol 66:1717–1725

    PubMed  CAS  Google Scholar 

  • Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Chameau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185

    PubMed  CAS  Google Scholar 

  • Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73: 2886–2892

    PubMed  CAS  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    PubMed  CAS  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    PubMed  CAS  Google Scholar 

  • zur Megede J, Chen MC, Doe B, Schaefer M, Greer CE, Selby M, Otten GR, Barnett SW (2000) Increased expression and immunogenicity of sequence-modified human immunodeficiency virus type 1 gag gene. J Virol 74:2628–2635

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ailles, L.E., Naldini, L. (2002). HIV-1-Derived Lentiviral Vectors. In: Trono, D. (eds) Lentiviral Vectors. Current Topics in Microbiology and Immunology, vol 261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56114-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56114-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62667-8

  • Online ISBN: 978-3-642-56114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics