Skip to main content

Carbon Dioxide Fluxes in the Global Ocean

  • Chapter
Ocean Biogeochemistry

Part of the book series: Global Change — The IGBP Series (closed) ((GLOBALCHANGE))

Abstract

Atmospheric carbon dioxide concentration is one of the key variables of the ‘Earth system’ — the web of interactions between the atmosphere, oceans, soils and living things that determines conditions at the Earth surface. Atmospheric CO2 plays several roles in this system. For example, it is the carbon source for nearly all terrestrial green plants, and the source of carbonic acid to weather rocks. It is also an important greenhouse gas, with a central role to play in modulating the climate of the planet. During the five thousand years prior to the industrial revolution, we know (from measurements of air trapped in firn ice and ice cores) that atmospheric CO2 varied globally by less than 10 ppm from a concentration of 280 ppm (Indermuhle et al. 1999). During the late Quaternary glaciations, the regular advance and retreat of the ice was accompanied by, and to some extent at least driven by (Li et al. 1998; Shackleton 2000), an oscillation in atmospheric CO2 of about 80 ppm. Evidence from the geologically recent past indicates, therefore, that quite small changes in atmospheric carbon dioxide have big effects on planetary climate. Conversely, a stable concentration of CO2 is necessary for a stable climate. By this reasoning, we can be fairly certain that human activities will have a major effect on the climate of the planet in the near future, given that we have raised CO2 by 90 ppm in the last 150 years and it is projected to double from the pre-industrial concentration during the coming century. This gives our investigations into sources and sinks of carbon dioxide a special urgency.

Ocean carbon model intercomparison results were contributed by the following authors: O. Aumont, K. G. Caldeira, J.-M. Campin, S. C. Doney, H. Drange, M. J. Follows, Y. Gao, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, F. Louanchi, E. Maier-Reimer, R. J. Matear, R Monfray, A. Mouchet, R. G. Najjar, G.-K. Plattner, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. Totterdell, M.-F. Weirig, M. E. Wickett, Y. Yamanaka and A. Yool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aumont O, Orr JC, Monfray P, Ludwig W, Amiotte-Suchet P, Probst J-L (2001) Riverine-driven interhemispheric transport of carbon. Global Biogeochem Cy 15:393–405

    Article  Google Scholar 

  • Bates NR, Michaels AF, Knap AH (1996) Seasonal and interannual variability of oceanic carbon dioxide species at the US JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Res Pt II 43:347–383

    Article  Google Scholar 

  • Bates NR, Knap AH, Michaels AF (1998) Contribution of hurricanes to local and global estimates of air-sea exchange of CO2. Nature 395:58–61

    Article  Google Scholar 

  • Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Conway T, et al. (2000) Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287:2467–2470

    Article  Google Scholar 

  • Bousquet P, Peylin P, Ciais P, Le Queré C, Friedlingstein P, Tans PP (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346

    Article  Google Scholar 

  • Brewer PG (1978) Direct measurement of the oceanic CO2 increase. Geophys Res Lett 5:997–1000

    Article  Google Scholar 

  • Broecker WS, Peng TH (1992) Interhemispheric transport of carbon-dioxide by ocean circulation. Nature 356:587–589

    Article  Google Scholar 

  • Broecker WS, Peng TH, Ostlund G, Stuiver M (1985) The distribution of bomb radiocarbon in the ocean. J Geophys Res 90:6953–6970

    Article  Google Scholar 

  • Chen C-T, Millero FJ (1979) Gradual increase of oceanic CO2. Nature 277:205–206

    Article  Google Scholar 

  • Ciais P, Peylin P, Bousquet P (2000) Regional biospheric carbon fluxes as inferred from atmospheric CO2 measurements. Ecol Appl 10:1574–1589

    Google Scholar 

  • Conway TJ, Tans PP (1999) Development of the CO2 latitude gradient in recent decades. Global Biogeochem Cy 13:821–826

    Article  Google Scholar 

  • Cooper DJ, Watson AJ, Nightingale PD (1996) Large decrease in ocean-surface CO2 fugacity in response to in-situ iron fertilization. Nature 383:511–513

    Article  Google Scholar 

  • Cooper DJ, Watson AJ, Ling RD (1998) Variation of pCO2 along a North Atlantic shipping route (UK to Caribbean): a year of automated observations. Mar Chem 60:147–164

    Article  Google Scholar 

  • DeGrandpré MD, Baehr MM, Hammar TR (1999) Calibration-free opitcal chemical sensors. Anal Chem 71:1152-1159

    Article  Google Scholar 

  • Erickson DJ (1993) A stability dependent theory for air-sea gas-exchange. J Geophys Res 98:8471–8488

    Article  Google Scholar 

  • Feely RA, Wanninkhof R, Goyet C, Archer DE, Takahashi T (1997) Variability of CO2 distributions and sea-air fluxes in the central and eastern equatorial Pacific during the 1991–1994 El Niño. Deep-Sea Res Pt II 44:1851–1867

    Article  Google Scholar 

  • Feely RA, Sabine CL, Keys RM, Peng T-H (1999) CO2 synthesis results: estimating the anthropgenic carbon dioxide sink in the Pacific Ocean. US JGOFS News 9:1–5

    Google Scholar 

  • Fitzwater SE, Coale KH, Gordon RM, Johnson KS, Ondrusek ME (1996) Iron-deficiency and phytoplankton growth in the Equatorial Pacific. Deep-Sea Res Pt II 43:995–1015

    Article  Google Scholar 

  • Frew NM (1997) The role of organic films in air-sea gas exchange. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 121–171

    Chapter  Google Scholar 

  • Gruber N (1998) Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem Cy 12:165–191

    Article  Google Scholar 

  • Gruber N, Sarmiento JL, Stocker TF (1996) An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem Cy 10:809–837

    Article  Google Scholar 

  • Ho DT, Bliven LF, Wanninkhof R, Schlosser P (1997) The effect of rain on air-water gas exchange. Tellus B 49:149–158

    Article  Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (eds) (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge, 364 pp

    Google Scholar 

  • Houghton JT, Meira Filho LG, Callendar BA, Harris N, Kattenberg A, Maskell K (eds) (1995) The science of climate change: contribution of Working Group I to the second assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 572 pp

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 944 pp

    Google Scholar 

  • Indermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, et al. (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  • Kaminski T, Heimann M, Giering R (1999) A coarse grid three-dimensional global inverse model of the atmospheric transport — 2. Inversion of the transport of CO2 in the 1980s. J Geophys Res 104:18555–18581

    Article  Google Scholar 

  • Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TP, Heimann M, et al. (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds. 1. Analysis of observational data. In: Peterson DH (ed) Aspects of climate variability in the Pacific and the Western Americas Geophysical Monograph. American Geophysical Union, 55, 165–235

    Chapter  Google Scholar 

  • Keeling RF, Peng TH (1995) Transport of heat, CO2 and O2 by the Atlantic’s thermohaline circulation. Philos T Roy Soc B 348:133–142

    Article  Google Scholar 

  • Keeling RF, Shertz SR (1992) Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon-cycle. Nature 358:723–727

    Article  Google Scholar 

  • Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221

    Article  Google Scholar 

  • Kheshgi HS, Jain AK, Wuebbles DJ (1999) Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records. J Geophys Res 104:31127–31143

    Article  Google Scholar 

  • Langenfelds RL, Francey RJ, Steele LP, Battle M, Keeling RF, Budd WF (1999) Partitioning of the global fossil CO2 sink using a 19-year trend in atmospheric O2. Geophys Res Lett 26:1897–1900

    Article  Google Scholar 

  • Le Quere C, Orr JC, Monfray P, Aumont O, Madec G (2000) Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochem Cy 14:1247–1265

    Article  Google Scholar 

  • Lee K, Wanninkhof R, Takahashi T, Doney SC, Feely RA (1998) Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature 396:155–159

    Article  Google Scholar 

  • Lefevre N, Watson AJ, Cooper DJ, Weiss RF, Takahashi T, Sutherland SC (1999) Assessing the seasonality of the oceanic sink for CO2 in the northern hemisphere. Global Biogeochem Cy 13:273–286

    Article  Google Scholar 

  • Lerperger M, McNichol AP, Peden J, Gagnon AR, Elder KL, Kutschera W, et al. (2000) Oceanic uptake of CO2 re-estimated through δ13C in WOCE samples. Nucl Instrum Meth B 172:501–512

    Article  Google Scholar 

  • Li XS, Berger A, Loutre MF (1998) CO2 and northern hemisphere ice volume variations over the middle and late quaternary. Clim Dynam 14:537–544

    Article  Google Scholar 

  • Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. D. Reidel, Dordrecht, pp 113–127

    Chapter  Google Scholar 

  • Ludwig W, Amiotte-Suchet P, Munhoven G, Probst JL (1998) Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum. Global Planet Change 17:107–120

    Article  Google Scholar 

  • Matear RJ, Hirst AC (1999) Climate change feeback on the future oceanic CO2 uptake. Tellus B 51:722–733

    Article  Google Scholar 

  • McGillis WR, Edson JE, Hare JE, Fairall CW (2001a) Direct covariance air-sea CO2 fluxes. J Geophys Res 106:16729–16745

    Article  Google Scholar 

  • McGillis WR, Edson JB, Ware JD, Dacey JWH, Hare JE, Fairall CW, Wanninkhof R (2001b) Carbon dioxide flux techniques performed during GasEx 98. Mar Chem 75:267–280

    Article  Google Scholar 

  • McKinley GA, Follows MJ, Marshall J (2000) Interannual variability in the air-sea flux of oxygen in the North Atlantic. Geophys Res Lett 27:2933–2936

    Article  Google Scholar 

  • Merlivat L, Brault P (1995) CARIOCA buoy, carbon dioxide monitor. Sea Technol 10:23–30

    Google Scholar 

  • Metzl N, Tilbrook B, Poisson A (1999) The annual fCO2 cycle and the air-sea CO2 flux in the sub-Antarctic Ocean. Tellus B 51:849–861

    Article  Google Scholar 

  • Monahan EC, Spillane MC (1984) The role of oceanic whitecaps in air-sea gas exchange. In: Brutaert W, Jirka GH (eds) Gas transfer at water surfaces. D. Reidel, Dordrecht, pp 495–504

    Google Scholar 

  • Murray JW, Barber RT, Roman MR, Bacon MP, Feely RA (1994) Physical and biological-controls on carbon cycling in the Equatorial Pacific. Science 266:58–65

    Article  Google Scholar 

  • Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, et al. (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cy 14:373–387

    Article  Google Scholar 

  • Orr JC (1993) Accord between ocean models predicting uptake of anthropogenic CO2. Water Air Soil Poll 70:465–481

    Article  Google Scholar 

  • Orr JC, Maier-Reimer E, Mikolajewicz U, Monfray P, Sarmiento JL, Toggweiler JR, et al. (2001) Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem Cy 15:43–60

    Article  Google Scholar 

  • Ostlund HG, Possnert G, Swift JH (1987) Ventilation rate of the deep Arctic Ocean from 14C-data. J Geophys Res 92:3769–3777

    Article  Google Scholar 

  • Pearman GI, Hyson P (1986) Global transport and inter-reservoir exchange of carbon dioxide with particular reference to stable isotope distributions. J Atmos Chem 4:81–124

    Article  Google Scholar 

  • Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossilfuel CO213C evidence. Science 256:74–79

    Article  Google Scholar 

  • Rayner PJ, Law RM, Dargaville R (1999) The relationship between tropical CO2 fluxes and the El Niño-Southern Oscillation. Geophys Res Lett 26:493–496

    Article  Google Scholar 

  • Sabine CL, Mackenzie FT, Winn C, Karl DM (1995) Geochemistry of carbon dioxide in seawater at the Hawaii Ocean Time-Series Station, Aloha. Global Biogeochem Cy 9:637–651

    Article  Google Scholar 

  • Sabine CL, Key RM, Johnson KM, Millero FJ, Poisson A, Sarmiento JL, et al. (1999) Anthropogenic CO2 inventory in the Indian Ocean. Global Biogeochem Cy 13:179–198

    Article  Google Scholar 

  • Sabine CL, Wanninkhof R, Key RM, Goyet C, Millero FJ (2000) Seasonal CO2 fluxes in the tropical and subtropical Indian Ocean. Mar Chem 72:33–53

    Article  Google Scholar 

  • Sarmiento JL, Le Quere C (1996) Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274:1346–1350

    Article  Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon-dioxide. Nature 356:589–593

    Article  Google Scholar 

  • Sarmiento JL, Toggweiler JR (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308:621–624

    Article  Google Scholar 

  • Sarmiento JL, Toggweiler JR, Najjar R (1988) Ocean carbon-cycle dynamics and atmospheric pCO2. Philos Tr R Soc S-A 325:3–21

    Article  Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249,

    Article  Google Scholar 

  • Sarmiento JL, Monfray P, Maier-Reimer E, Aumont O, Murnane RJ, Orr JC (2000) Sea-air CO2 fluxes and carbon transport: a comparison of three ocean general circulation models. Global Biogeochem Cy 14:1267–1281

    Article  Google Scholar 

  • Shackleton NJ (2000) The 100 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289:1897–1902

    Article  Google Scholar 

  • Siegenthaler U, Joos F (1992) Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus B 44:186–207

    Article  Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon-dioxide and the ocean. Nature 365:119–125

    Article  Google Scholar 

  • Skjelvan I, Johannessen T, Miller LA (1999) Interannual variability of fCO2 in the Greenland and Norwegian Seas. Tellus B 5:477–489

    Article  Google Scholar 

  • Sonnerup RE, Quay PD, McNichol AP, Bullister JL, Westby TA, Anderson HL (1999) Reconstructing the oceanic 13C Suess effect. Global Biogeochem Cy 13:857–872

    Article  Google Scholar 

  • Sundquist ET (1985) Geological perspectives on carbon dioxide and the carbon cycle. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. American Geophysical Union, Washington D.C., pp 5–69

    Chapter  Google Scholar 

  • Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC (1993) Seasonal-variation of CO2 and nutrients in the high-latitude surface oceans — a comparative study. Global Biogeochem Cy 7:843–878

    Article  Google Scholar 

  • Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, et al. (1997) Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. P Natl Acad Sci Usa 94:8292–8299

    Article  Google Scholar 

  • Takahashi T, Wanninkhof RH, Feely RA, Weiss RF, Chipman DW, Bates N, et al. (1999) Net sea-air CO2 flux over the global oceans: an improved estimate based on the sea-air pCO2 difference. In: Nojiri Y (ed) Proceedings of the 2nd Internations Symposium on CO2 in the Oceans, Tsukuba, January 1999. National Institute for Environmental studies, Tsukuba, Japan, pp 9–15

    Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res Pt II 49:1601–1622

    Article  Google Scholar 

  • Taylor JA, Orr JC (2000) The natural latitudinal distribution of atmospheric CO2. Global Planet Change 26:375–386

    Article  Google Scholar 

  • Torres R, Turner DR, Silva N, Rutllant J (1999) High short-term variability of CO2 fluxes during an upwelling event off the Chilean coast at 30° S. Deep-Sea Res Pt I 46:1161–1179

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  • Wanninkhof R, McGillis WR (1999) A cubic relationship between air-sea CO2 exchange and wind speed. Geophys Res Lett 26:1889–1892

    Article  Google Scholar 

  • Wanninkhof R, Asher W, Weppernig R, Chen H, Schlosser P, Langdon C, et al. (1993) Gas transfer experiment on Georges Bank using 2 volatile deliberate tracers. J Geophys Res 98:20237–20248

    Article  Google Scholar 

  • Watson AJ, Liss PS (1998) Marine biological controls on climate via the carbon and sulphur geochemical cycles. Philos T Roy Soc B 353:41–51

    Article  Google Scholar 

  • Watson AJ, Upstill-Goddard RC, Liss PS (1991) Air sea gas-exchange in rough and stormy seas measured by a dual-tracer technique. Nature 349:145–147

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and sea water; the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watson, A.J., Orr, J.C. (2003). Carbon Dioxide Fluxes in the Global Ocean. In: Fasham, M.J.R. (eds) Ocean Biogeochemistry. Global Change — The IGBP Series (closed). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55844-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55844-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62691-3

  • Online ISBN: 978-3-642-55844-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics