Skip to main content

Fine Root Biomass of Temperate Forests in Relation to Soil Acidity and Fertility, Climate, Age and Species

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 64))

Abstract

Root growth represents an important component of ecosystem carbon cycling because, in a global perspective, belowground carbon storage is more important than aboveground storage (Schlesinger 1997). Together with above-ground litter fall, root production provides the primary input of organic carbon to soils. Due to methodological problems, only slow progress in our understanding of ecosystem belowground processes has occurred and, as a consequence, carbon storage in, and carbon flow through the root system is only poorly represented in most models on plant and ecosystem carbon turnover. However, prediction of the effects of global warming, nitrogen deposition or soil acidification on plant growth and carbon sequestration remains questionable if root processes are not adequately covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J (1985) Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66:317–321

    Article  Google Scholar 

  • Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238

    Article  PubMed  Google Scholar 

  • Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:402–407

    Article  PubMed  CAS  Google Scholar 

  • Andersson F (1970) Ecological studies in a Scandinavian woodland and meadow area, southern Sweden. II. Plant biomass, primary production and turnover of organic matter. Bot Not 123:8–51

    Google Scholar 

  • Arthur MA, Fahey TJ (1992) Biomass and nutrients in an Engelmann spruce-subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. Can J For Res 22:315–325

    Article  CAS  Google Scholar 

  • Backes K, Leuschner C (2000) Leaf water relations of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees during four years differing in soil drought. For Ecol Manage 84:219–229

    Google Scholar 

  • Bakker MR (1999) The effect of lime and gypsum applications on a sessile oak (Quercus petraea (M.) Liebl.) stand at La Croix-Scaille (French Ardennes). II. Fine root dynamics. Plant Soil 206:109–121

    Article  Google Scholar 

  • Bauhus J, Bartsch N (1996) Fine-root growth in beech (Fagus sylvatica) forest gaps. Can J For Res 26:2153–2159

    Article  Google Scholar 

  • Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the south boreal forest of eastern Canada. Can J For Res 29:260–273

    Google Scholar 

  • Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371

    Article  Google Scholar 

  • Becker C (1997) Das Feinwurzelsystem von Birke, Kiefer und Drahtschmiele in Konkurrenzsituation in einem Mischbestand. Diploma thesis, University of Göttingen, Göttingen, pp 1–58

    Google Scholar 

  • Berendse F, Bobbink R, Rouwenhorst G (1989) A comparative study on nutrient mineralization. Oecologia 78:338–348

    Article  Google Scholar 

  • Bloomfield J, Vogt K, Wargo PM (1996) Tree root turnover and senescence. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 2nd edn. Marcel Dekker, New York, pp 363–381

    Google Scholar 

  • Böhm W (1979) Methods for studying root systems. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Büttner V, Leuschner C (1994) Spatial and temporal patterns of fine root abundance in a mixed oak-beech forest. For Ecol Manage 70:11–21

    Article  Google Scholar 

  • Burke MK, Raynal DJ (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135–146

    Article  CAS  Google Scholar 

  • Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389–399

    Article  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  Google Scholar 

  • Cassens-Sasse E (1987) Witterungsbedingte saisonale Versauerungsschübe im Boden zweier Waldökosysteme. Ber Forsch Zentr Waldökosysteme Univ Gött A 30:1–287

    Google Scholar 

  • Cole DW, Rapp M (1981) Elemental cycling in forests. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, London, pp 341–409

    Google Scholar 

  • Coleman MD, Dickson RE, Isebrands JG (2000) Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations. Plant Soil 225:129–139

    Article  CAS  Google Scholar 

  • Eichhorn J (1987) Vergleichende Untersuchungen von Feinwurzelsystemen bei unterschiedlich geschädigten Altfichten (Picea abies Karst.). Forschungsber Hessischen Forstl Versuchsanst 3:1–179

    Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P-M (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann Sci For 56:289–295

    Article  Google Scholar 

  • Fahey TJ, Hughes JW (1994) Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J Ecol 82:533–548

    Article  Google Scholar 

  • Finér L, Messier C, De Grandpré L (1997) Fine-root dynamics in mixed boreal coniferbroad-leafed forest stands at different successional stages after fire. Can J For Res 27:304–314

    Article  Google Scholar 

  • Fogel R, Hunt G (1983) Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Can J For Res 13:219–232

    Article  CAS  Google Scholar 

  • Fredericksen TS, Zedaker SM (1995) Fine root biomass, distribution, and production in young pine-hardwood stands. New For 10:99–110

    Google Scholar 

  • Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:829–834

    Article  Google Scholar 

  • Grier CC, Vogt KA, Keyes MR, Edmonds RL (1981) Biomass distribution and above-and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Can J For Res 11:155–167

    Article  Google Scholar 

  • Hellkvist J, Hillerdal-Hagströmer K, Mattson-Djos E (1980) Field studies of water relations and photosynthesis in Scots pine using manual techniques. In: Persson T (ed) Structure and function of northern coniferous forests — an ecosystem study. Ecol Bull 32:183–204

    Google Scholar 

  • Helmisaari H-S, Hallbäcken L (1999) Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. For Ecol Manage 119:99–110

    Article  Google Scholar 

  • Helmisaari H-S, Makkonen K, Olsson M, Viksna A, Mälkönen E (1999) Fine-root growth, mortality and heavy metal concentrations in limed and fertilized Pinus sylvestris (L.) stands in the vicinity of a Cu-Ni smelter in SW Finland. Plant Soil 209:193–200

    Article  CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Can J For Res 23:2507–2520

    Article  Google Scholar 

  • Hendriks CMA, Bianchi FJJA (1995) Root density and root biomass in pure and mixed forest stands of Douglas-fir and beech. Neth J Agric Sci 43:321–331

    Google Scholar 

  • Hertel D (1999) Das Feinwurzelsystem von Rein-und Mischbeständen der Rotbuche Struktur, Dynamik und interspezifische Konkurrenz. Dissertationes botanicae 317. Cramer, Berlin, pp 1–190

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jianping S, Dali T, Sidong Z, Miao W (1993) Fine root dynamics of broadleaved Korean pine forest in Changbai Montains, China. Chin J Appl Ecol 4:241–245

    Google Scholar 

  • Joslin JD, Henderson GS (1987) Organic matter and nutrients associated with fine root turnover in a white oak stand. For Sci 33:330–346

    Google Scholar 

  • Kaihoff M (2000) Das Feinwurzelsystem in einem Kiefern-Eichen-Mischbestand. Dissertationes botanicae 332. Cramer, Berlin, pp 1–199

    Google Scholar 

  • Keyes MR, Grier CC (1981) Above-and belowground net production in 40-year-old Douglas fir stand on low and high productivity sites. Can J For Res 11:599–605

    Article  Google Scholar 

  • Koch O (2002) Wasserumsatz eines Buchenbestandes im Hainich. Diploma thesis, University of Göttingen, Göttingen

    Google Scholar 

  • Kochian L (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001a) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. Trees in dry and wet years. For Ecol Manage 149:33–46

    Article  Google Scholar 

  • Leuschner C, Hertel D, Coners H, Büttner V (2001b) Root competition between beech and oak: a hypothesis. Oecologia 126:276–284

    Article  Google Scholar 

  • Liu X, Tyree MT (1997) Root carbohydrate reserves, mineral nutrient concentrations and biomass in a healthy and a declining sugar maple (Acer saccharum) stand. Tree Physiol 17:179–185

    Article  PubMed  CAS  Google Scholar 

  • Marshall JD (1986) Drought and shade interact to cause fine-root mortality in Douglas-fir seedlings. Plant Soil 91:51–60

    Article  Google Scholar 

  • McClaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490

    Article  Google Scholar 

  • Murach D (1984) Die Reaktion der Feinwurzeln von Fichte (Picea abies Karst.) auf zunehmende Bodenversauerung. Gött Bodenkundl Ber 7:1–128

    Google Scholar 

  • Murach D (1991) Feinwurzelumsätze auf bodensauren Fichtenstandorten. Forstarchiv 62:12–17

    Google Scholar 

  • Murach D, Ulrich B (1988) Destabilization of forest ecosystems by acid deposition. Geo J 172:253–260

    Google Scholar 

  • Murach D, Wiedemann H (1988) Dynamik und chemische Zusammensetzung der Feinwurzeln von Waldbäumen als Maß für die Gefährdung von Waldökosystemen durch toxische Luftverunreinigungen. Ber Forsch Zentr Waldökosysteme Univ Gött B10:1–287

    Google Scholar 

  • Nadelhoffer KH, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390

    Article  Google Scholar 

  • Oleksyn J, Reich PB, Chalupka W, Tjoelker MG (1999) Differential above-and belowground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scand J For Res 14:7–17

    Google Scholar 

  • Olsthoorn AFM (1991) Fine root density and root biomass of two Douglas-fir stands on sandy soils in the Netherlands. I. Root biomass in early summer. Neth J Agric Sci 39:49–60

    Google Scholar 

  • O’Neill RV, DeAngelis DL (1981) Comparative productivity and biomass relations of forest ecosystems. In: Reichle DE (ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 411–450

    Google Scholar 

  • Paar U (1994) Untersuchungen zum Einfluß von Ammonium und Nitrat auf wurzelphysiologische Reaktionsmuster der Buche. Ber Forsch Zentr Waldökosysteme Univ Gött A115:1–124

    Google Scholar 

  • Persson H, Von Fircks Y, Majdi H, Nilsson LO (1995) Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium sulphate application. Plant Soil 168/169:161–165

    Article  Google Scholar 

  • Polomski J, Kuhn N (1998) Wurzelsysteme. P Haupt Verlag, Bern

    Google Scholar 

  • Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580

    Article  Google Scholar 

  • Raben GH (1988) Untersuchungen zur raumzeitlichen Entwicklung boden-und wurzelchemischer Stressparameter und dessen Einfluß auf die Feinwurzelentwicklung in bodensauren Waldgesellschaften des Hils. Ber Forsch Zentr Waldökosysteme Univ Gött A38:1–253

    Google Scholar 

  • Rapp C (1991) Untersuchungen zum Einfluß von Kalkung und Ammoniumsulfat-Düngung auf Feinwurzeln und Ektomykorrhizen eines Buchenaltbestandes im Solling. Ber Forsch Zentr Waldökosysteme Univ Gött A72:1–293

    Google Scholar 

  • Raspe S, Feger KH, Zöttl HW (1989) Erfassung der Elementvorräte in der Wurzelbiomasse eines 100jährigen Fichtenbestandes (Picea abies Karst.) im Schwarzwald. J Appl Bot 63:145–163

    Google Scholar 

  • Ruark GA, Bockheim JG (1987) Below-ground biomass of 10-, 20-, and 32-year-old Populus tremuloides in Wisconsin. Pedobiologia 30:207–217

    Google Scholar 

  • Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol 16:333–343

    Article  PubMed  Google Scholar 

  • Sandhage A (1991) Dynamik und Elementgehalte von Fichtenfeinwurzeln. Untersuchungen von Beständen in verschiedener Höhenlage auf Böden aus Kalkstein. Mitt Dtsch Bodenkundl Ges 66:709–712

    Google Scholar 

  • Sandhage-Hofmann A, Zech W (1993) Dynamik und Elementgehalte von Fichtenwurzeln in Kalkgesteinböden am Wank (Bayerische Kalkalpen). J Plant Nutr Soil Sci 156:181–190

    Article  CAS  Google Scholar 

  • Santantonio D, Grace JC (1987) Estimation of fine-root production and turnover from biomass and decomposition data: a compartment-flow model. Can J For Res 17:900–908

    Article  Google Scholar 

  • Santantonio D, Hermann RK (1985) Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas fir in western Oregon. Ann For Sci 42:113–142

    Article  Google Scholar 

  • Santantonio D, Santantonio E (1987) Effects of thinning on production and mortality of fine roots in a Pinus radiata plantation on a fertile site in New Zealand. Can J For Res 17:919–928

    Article  Google Scholar 

  • Santantonio D, Hermann RK, Overton WS (1977) Root biomass studies in forest ecosystems. Pedobiologia 17:1–31

    CAS  Google Scholar 

  • Saurina NE, Kameneckaja IV (1969) Bull Mosk Obsc Ispyt Prir 74:96 (cit. in Santantonio et al. 1977)

    Google Scholar 

  • Scherfose V (1990) Feinwurzelverteilung und Mykorrhizatypen von Pinus sylvestris in verschiedenen Bodentypen. Ber Forsch Zentr Waldökosysteme Univ Gött A 62:1–204

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An analysis of global change, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Schneider BU (1990) Wachstum und Ernährung von Feinwurzeln unterschiedlich immissionsbelasteter Fichtenbestände des Fichtelgebirges. PhD thesis, University of Bayreuth, Bayreuth, pp 1–154

    Google Scholar 

  • Simonovic V (1988) Biomass of roots in a natural oak-hornbeam ecosystem. IInd Int ISSR-Symp: plant roots and their environment. Abstracts, vol 2, p 32

    Google Scholar 

  • Thomas FM, Hartmann G (1998) Tree rooting patterns and soil water relations of healthy and damaged stand of mature oak (Quercus robur L. and Quercus petraea (Matt.) Liebl.). Plant Soil 203:145–158

    Article  CAS  Google Scholar 

  • Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830

    Article  PubMed  Google Scholar 

  • Van Praag HJ, Sougnez-Remy S, Weissen F, Carletti G (1988) Root turnover in a beech stand of the Belgian Ardennes. Plant Soil 105:87–103

    Article  Google Scholar 

  • Vinš B, Šika A (1977) Biomass of the above-ground and underground parts of sample trees of Norway spruce (in Czech). Pr Vyzk Ustavu Lesn Hospod Myslivosti 51:125–150

    Google Scholar 

  • Vitousek P, Sanford RL (1986) Nutrient cycling in moist tropical forests. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63:370–380

    Article  Google Scholar 

  • Vogt KA, Moore EE, Vogt DJ, Redlin MJ, Edmonds RL (1983) Conifer fine root and mycorrhizal root biomass within the forest floors of Douglas-fir stands of different ages and site productivities. Can J For Res 13:429–437

    Article  Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Adv Ecol Res 15:303–377

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Moore EE, Fatuga BA, Redlin MR, Edmonds RL (1987) Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir forests. J Ecol 75:857–870

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Gower ST, Grier CC (1990) Carbon and nitrogen interactions of forest ecosystems. In: Persson H (ed) Above-and belowground interactions in forest trees in acidified soils. Air pollution report 32. Commission of the European Communities. Directorate-General for Science, Research and Development. Environment Research Programme, Brussels, Belgium

    Google Scholar 

  • Vogt KA, Vogt DJ, Asbjornsen H, Dahlgren RA (1995) Roots, nutrients and their relationship to spatial patterns. Plant Soil 168/169:113–123

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    Article  CAS  Google Scholar 

  • Wiedemann H (1991) Feinwurzeluntersuchungen in Buchenwaldökosystemen in Abhängigkeit vom Bodenchemismus. Ber Forsch Zentr Waldökosysteme Univ Gött A76:1–289

    Google Scholar 

  • Wiedey G-A (1991) Ökosystemare Untersuchungen in zwei unterschiedlich exponierten Fichtenaltbeständen und in einem Kalkungs-und Düngungsversuch im Hils. Ber Forsch Zentr Waldökosysteme Univ Gött A 63:1–204

    Google Scholar 

  • Wilczynski CJ, Pickett STA (1993) Fine root biomass within experimental canopy gaps: evidence for a below-ground gap. J Veg Sci 4:571–574

    Article  Google Scholar 

  • Xu Y, Röhrig E, Fölster H (1997) Reaction of root systems of grand fir (Abies grandis Lindl.) and Norway spruce (Picea abies Karst.) to seasonal waterlogging. For Ecol Manage 93:9–19

    Article  Google Scholar 

  • Yin XW, Perry JA, Dixon RK (1989) Fine-root dynamics and biomass distribution in a Quercus ecosystem following harvesting. For Ecol Manage 27:159–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leuschner, C., Hertel, D. (2003). Fine Root Biomass of Temperate Forests in Relation to Soil Acidity and Fertility, Climate, Age and Species. In: Esser, K., Lüttge, U., Beyschlag, W., Hellwig, F. (eds) Progress in Botany. Progress in Botany, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55819-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55819-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62838-2

  • Online ISBN: 978-3-642-55819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics