Skip to main content

N-CoR-HDAC Corepressor Complexes: Roles in Transcriptional Regulation by Nuclear Hormone Receptors

  • Chapter
Protein Complexes that Modify Chromatin

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 274))

Abstract

Many nuclear hormone receptors (NHRs) actively repress the expression of their primary response genes through the recruitment of transcriptional corepressor complexes to regulated promoters. N-CoR and the highly related SMRT were originally isolated and characterized by their ability to interact exclusively with the unliganded forms ofNHRs and confer transcriptional repression. Recently, both the N-CoR and SMRT corepressors have been found to exist in vivo in multiple, distinct macromolecular complexes. While these corepressor complexes differ in overall composition, a general theme is that they contain histone deacetylase enzymatic activity. Several of these complexes contain additional transcriptional corepressor proteins with functional ties to chromatin structure. Together, these data suggest that modulation of chromatin structure plays a central role in N-CoR mediated transcriptional repression from unliganded NHRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasland R, Stewart AF, Gibson T (1996) The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADAcomplexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem Sci 21:87–8

    PubMed  CAS  Google Scholar 

  • Alland L, Muhle R, Hou H JR, Potes J, Chin L, Schreiber-Agus N, Depinho RA (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55

    Article  PubMed  CAS  Google Scholar 

  • Almouzni G, Wolffe AP (1993) Nuclear assembly, structure, and function: the use of Xenopus in vitro systems. Exp Cell Res 205:1–15

    Article  PubMed  CAS  Google Scholar 

  • Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–304

    PubMed  CAS  Google Scholar 

  • Archer TK, Fryer CJ, Lee HL, Zaniewski E, Liang T, Mymryk JS (1995) Steroid hormone receptor status defines the MMTV promoter chromatin structure in vivo. J Steroid Biochem Mol Biol 53:421–9

    Article  PubMed  CAS  Google Scholar 

  • Asano K, Merrick WC, Hershey JW (1997) The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumor virus genome. J Biol Chem 272:23477–80

    Article  PubMed  CAS  Google Scholar 

  • Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–76

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A, Ha I, Reinberg D, Tsai S, Tsai MJ, O’malley BW (1993) Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc Natl Acad Sci USA 90:8832–6

    Article  PubMed  CAS  Google Scholar 

  • Bassi MT, Ramesar RS, Caciotti B, Winship IM, De Grandi A, Riboni M, Townes PL, Beighton P, Ballabio A, Borsani G (1999) X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am J Hum Genet 64:1604–16

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya N, Dey A, Minucci S, Zimmer A, John S, Hager G, Ozato K (1997) Retinoid-induced chromatin structure alterations in the retinoic acid receptor beta2 promoter. Mol Cell Biol 17:6481–90

    PubMed  CAS  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors [see comments]. Nature 377:454–7

    Article  PubMed  CAS  Google Scholar 

  • Cote J, Quinn J, Workman JL, Peterson CL (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265: 53–60

    Article  PubMed  CAS  Google Scholar 

  • Desbois C, Rousset R, Bantignies F, Jalinot P (1996) Exclusion of Int-6 from PML nuclear bodies by binding to the HTLV-I Tax oncoprotein. Science 273: 951–3

    Article  PubMed  CAS  Google Scholar 

  • Dressel U, Thormeyer D, Altincicek B, Paululat A, Eggert M, Schneider S

    Google Scholar 

  • Tenbaum SP, Renkawitz R, Baniahmad A (1999) Alien, a highly conserved protein with characteristics of a corepressor for members of the nuclear hormone receptor superfamily. Mol Cell Biol 19:3383–94

    PubMed  Google Scholar 

  • Edmondson DG, Zhang W, Watson A, Xu W, Bone JR, Yu Y, Stillman D, Roth SY (1998) In vivo functions of histone acetylation/deacetylation in Tuplp repression and Gcn5p activation. Cold Spring Harb Symp Quant Biol 63:459–68

    Article  PubMed  CAS  Google Scholar 

  • Eliceiri BP, Brown DD (1994) Quantitation of endogenous thyroid hormone receptors alpha and beta during embryogenesis and metamorphosis in Xenopus laevis. J Biol Chem 269:24459–65

    PubMed  CAS  Google Scholar 

  • Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002) Enzymatic Activity Associated with Class II HDACsIs Dependent on a Multiprotein Complex Containing HDAC3and SMRT/N-CoR. Mol Cell 9:45–57

    Article  PubMed  CAS  Google Scholar 

  • Fondell JD, Roy AL, Roeder RG (1993) Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev 7:1400–10

    Article  PubMed  CAS  Google Scholar 

  • Forrest D, Erway LC, Ng L, Altschuler R, Curran T (1996) Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13:354–7

    Article  PubMed  CAS  Google Scholar 

  • Friedman JR, Fredericks WI, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ, 3rd (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10:2067–78

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Lipkin SM, Devary OV, Rosenfeld MG (1989) Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer. Cell 59:697–708

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–52

    Article  PubMed  CAS  Google Scholar 

  • Guenther MG, Barak O, Lazar MA (2001) The SMRTand N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–101

    Article  PubMed  CAS  Google Scholar 

  • Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R (2000) A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 14:1048–1057

    PubMed  CAS  Google Scholar 

  • Hager GL, Archer TK, Fragoso G, Bresnick EH, Tsukagoshi Y, John S, Smith CL (1993) Influence of chromatin structure on the binding of transcription factors to DNA. Cold Spring Harb Symp Quant Biol 58:63–71

    Article  PubMed  CAS  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–7

    Article  PubMed  CAS  Google Scholar 

  • Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717–28

    Article  PubMed  CAS  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamel Y, Soderstrom M, Glass CK, Rosenfeld MG (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor [see comments]. Nature 377:397–404

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402:93–6

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Li Y, Lazar MA (2001) Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. Mol Cell Biol 21:1747–58

    Article  PubMed  CAS  Google Scholar 

  • Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA (2000) Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3independent repression pathway. Genes Dev 14:45–54

    PubMed  CAS  Google Scholar 

  • Humphrey GW, Wang Y, Russanova VR, Hirai T, Qin J, Nakatani Y, Howard BH (2001) Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-Ll. JBiol Chem 276:6817–24

    Article  CAS  Google Scholar 

  • Ito M, Roeder RG (2001) The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 12:127–34

    Article  PubMed  CAS  Google Scholar 

  • James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC (1989) Distribution patterns of HP1,a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 50:170–80

    PubMed  CAS  Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–72

    PubMed  CAS  Google Scholar 

  • Johnson CA, White DA, Lavender JS, O’neill LP, Turner BM (2002) Human class I HDACcomplexes show enhanced catalytic activity in the presence of ATPand coimmunoprecipitate with the ATP-dependent chaperone protein Hsp70. J BiolChem

    Google Scholar 

  • Jones PL, Sachs LM, Rouse N, Wade PA, Shi YB (2001) Multiple N-CoR complexes contain distinct histone deacetylases. J Biol Chem 276:8807–11

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1998) Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18:5121–7

    PubMed  CAS  Google Scholar 

  • Kao HY, Downes M, Ordentlich P, Evans RM (2000) Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14:55–66

    PubMed  CAS  Google Scholar 

  • Knezetic JA, Luse DS (1986) The presence of nucleosomes on a DNA template prevents initiation by RNApolymerase II in vitro. Cell 45:95–104

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370:477–81

    Article  PubMed  CAS  Google Scholar 

  • Laherty CD, Billin AN, Lavinsky RM, Yochum GS, Bush AC, Sun JM, Mullen TM, Davie JR, Rose DW, Glass CK, Rosenfeld MG, Ayer DE, Eisenman RN (1998) SAP30, a component of the mSin3 corepressor complex involved in N-CoR-medi ated repression by specific transcription factors. Mol Cell 2:33–42

    Article  PubMed  CAS  Google Scholar 

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–56

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, Chambon P (1996) A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J 15:6701–15

    PubMed  Google Scholar 

  • Li J, Wang J, Nawaz Z, Liu JM, Qin J, Wong J (2000) Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. Embo J 19:4342–50

    Article  PubMed  CAS  Google Scholar 

  • Marchetti A, Buttitta F, Miyazaki S, Gallahan D, Smith GH, Callahan R (1995) Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J Virol 69:1932–8

    PubMed  CAS  Google Scholar 

  • McKenna NJ, Lanz RB, O’malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–44

    Article  PubMed  CAS  Google Scholar 

  • Moosmann P, Georgiev O, Le Douarin B, Bourquin JP, Schaffner W (1996) Transcriptional repression by RING finger protein TIFI beta that interacts with the KRABrepressor domain of KOXI. Nucleic Acids Res 24:4859–67

    Article  PubMed  CAS  Google Scholar 

  • Morris-Desbois C, Bochard V, Reynaud C, Jalinot P (1999) Interaction between the Ret finger protein and the Int-6 gene product and co-localisation into nuclear bodies. J Cell Sci 112 (Pt 19):3331–42

    PubMed  CAS  Google Scholar 

  • Muscat GE, Burke LJ, Downes M (1998) The corepressor N-CoR and its variants RIP13a and RIP13Delta1 directly interact with the basal transcription factors TFIIB, TAFII32and TAFII70. Nucleic Acids Res 26:2899–907

    Article  PubMed  CAS  Google Scholar 

  • Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Krishna V, Chatterjee K, Evans RM, Schwabe JW (1999) Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13:3209–16

    Article  PubMed  CAS  Google Scholar 

  • Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P, Losson R (1999) Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIFI family. EMBOJ 18:6385–95

    Article  CAS  Google Scholar 

  • Park EJ, Schroen DJ, Yang M, Li H, Li L, Chen JD (1999) SMRTe, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. Proc Natl Acad Sci USA 96:3519–24

    Article  PubMed  CAS  Google Scholar 

  • Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG (1999) Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 13:3198–208

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–83

    Article  PubMed  CAS  Google Scholar 

  • Puzianowska-Kuznicka M, Damjanovski S, Shi YB (1997) Both thyroid hormone and 9-cis retinoic acid receptors are required to efficiently mediate the effects of thyroid hormone on embryonic development and specific gene regulation in Xenopus laevis. Mol Cell Biol 17:4738–49

    PubMed  CAS  Google Scholar 

  • Qian YW, Wang YC, Hollingsworth RE, Jr., Jones D, Ling N, Lee EY (1993) A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature 364:648–52

    Article  PubMed  CAS  Google Scholar 

  • Rachez C, Freedman LP (2000) Mechanisms of gene regulation by vitamin D(3) receptor: a network of coactivator interactions. Gene 246:9–21

    Article  PubMed  CAS  Google Scholar 

  • Ranjan M, Wong J, Shi YB (1994) Transcriptional repression of Xenopus TRbeta gene is mediated by a thyroid hormone response element located near the start site. J Biol Chem 269:24699–705

    PubMed  CAS  Google Scholar 

  • Sachs LM, Amano T, Shi YB (2001) An essential role of histone deacetylases in postembryonic organ transformations in Xenopus laevis. Int J Mol Med 8:595–601

    PubMed  CAS  Google Scholar 

  • Sachs LM, Shi YB (2000) Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc Natl Acad Sci USA 97:13138–43

    Article  PubMed  CAS  Google Scholar 

  • Sap J, Munoz A, Schmitt J, Stunnenberg H, Vennstrom B (1989) Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature 340:242–4

    Article  PubMed  CAS  Google Scholar 

  • Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi AI, Depinho RA (1995) An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80:777–86

    Article  PubMed  CAS  Google Scholar 

  • Seol W, Mahon MJ, Lee YK, Moore DD (1996) Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol Endocrinol 10: 1646–55

    Article  PubMed  CAS  Google Scholar 

  • Shi YB (1999) Amphibian metamorphosis: From morphology to molecular biology. Wiley, NewYork

    Google Scholar 

  • Shi YB, Yaoita Y, Brown DD (1992) Genomic organization and alternative promoter usage of the two thyroid hormone receptor beta genes in Xenopus laevis, J Biol Chem 267:733–8

    PubMed  CAS  Google Scholar 

  • Sternberg PW, Stern MJ, Clark I, Herskowitz I (1987) Activation of the yeast HO gene by release from multiple negative controls. Cell 48:567–77

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–5

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    Article  PubMed  CAS  Google Scholar 

  • Sudarsanam P, Iyer VR, Brown PO, Winston F (2000) Whole-genome expression analysi s of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:3364–9

    Article  PubMed  CAS  Google Scholar 

  • Sudarsanam P, Winston F (2000) The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet 16:345–51

    Article  PubMed  CAS  Google Scholar 

  • Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–21

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT (1996) The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase-associated protein. Mol Cell Biol 16:6149–59

    PubMed  CAS  Google Scholar 

  • Underhill C, Qutob MS, Yee SP, Torchia J (2000) A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWIISNF complex and the corepressor KAP-l. J Biol Chem 275:40463–70

    Article  PubMed  CAS  Google Scholar 

  • Urnov FD, Wolffe AP (2001a) An array of positioned nucleosomes potentiates thyroid hormone receptor action in vivo. J Biol Chem 276:19753–61

    Article  PubMed  CAS  Google Scholar 

  • Urnov FD, Wolffe AP (2001b) A necessary good: nuclear hormone receptors and their chromatin templates. Mol Endocrinol 15:1–16

    Article  PubMed  CAS  Google Scholar 

  • Vermaak D, Wade PA, Jones PL, Shi YB, Wolffe AP (1999) Functional analysis of the SIN3-histone deacetylase RPD3-RbAp48-histone H4 connection in the Xenopus oocyte. Mol Cell Biol 19:5847–60

    PubMed  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-l and acetylated histones H3/H4. Cell 87:95–104

    Article  PubMed  CAS  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatinremodeling complexes. Mol Cell Biol 20:1899–910

    Article  PubMed  CAS  Google Scholar 

  • Wade PA, Jones PL, Vermaak D, Wolffe AP (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8:843–6

    Article  PubMed  CAS  Google Scholar 

  • Wade PA, Jones PL, Vermaak D, Wolffe AP (1999) Purification of a histone deacetylase complex from Xenopus laevis: preparation of substrates and assay procedures. Methods EnzymoI 304:715–25

    Article  CAS  Google Scholar 

  • Wahi M, Komachi K, Johnson AD (1998) Gene regulation by the yeast Ssn6-Tupl corepressor. Cold Spring Harb Symp Quant Biol 63:447–57

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL, Crabtree GR (1996a) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15:5370–82

    PubMed  CAS  Google Scholar 

  • Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR (1996b) Diversity and specialization of mammalian SWIISNF complexes. Genes Dev 10:2117–30

    Article  PubMed  CAS  Google Scholar 

  • Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, Rosenfeld MG, Seto E (2000) The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Nat! Acad Sci USA 97:7202–7207

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1997) Transcriptional control. Sinful repression [news; comment]. Nature 387:16–7

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27:711–720

    Article  PubMed  CAS  Google Scholar 

  • Wong CW, Privalsky ML (1998) Transcriptional repression by the SMRT-mSin3 corepressor: multiple interactions, multiple mechanisms, and a potential role for TFIIB. Mol Cell Biol 18:5500–10

    PubMed  CAS  Google Scholar 

  • Wong J, Li Q, Levi BZ, Shi YB, Wolffe AP (1997a) Structural and functional features of a specific nucleosome containing a recognition element for the thyroid hormone receptor. EMBO J 16:7130–45

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Patterton D, Imhof A, Guschin D, Shi YB, Wolffe AP (1998) Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. Embo J 17:520–34

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Shi YB, Wolffe AP (1995) A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev 9:2696–711

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Shi YB, Wolffe AP (1997b) Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormoneregulated chromatin disruption is not sufficient for transcriptional activation. EMBO J 16:3158–71

    Article  PubMed  CAS  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–79

    Article  PubMed  CAS  Google Scholar 

  • Workman JL, Roeder RG (1987) Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNApolymerase II. Cell 51:613–22

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–61

    Article  PubMed  CAS  Google Scholar 

  • Yaoita Y, Brown DD (1990) A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Genes Dev 4:1917–24

    Article  PubMed  CAS  Google Scholar 

  • Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, Naar AM, Kim SY, Boutin JM, Glass CK, Rosenfeld MG (1991) RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67:1251–66

    Article  PubMed  CAS  Google Scholar 

  • Zamir I, Harding HP, Atkins GB, Horlein A, Glass CK, Rosenfeld MG, Lazar MA (1996) A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol Cell Biol 16:5458–65

    PubMed  CAS  Google Scholar 

  • Zhang J, Guenther MG, Carthew RW, Lazar MA (1998) Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev 12:1775–80

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, P.L., Shi, YB. (2003). N-CoR-HDAC Corepressor Complexes: Roles in Transcriptional Regulation by Nuclear Hormone Receptors. In: Workman, J.L. (eds) Protein Complexes that Modify Chromatin. Current Topics in Microbiology and Immunology, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55747-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55747-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62909-9

  • Online ISBN: 978-3-642-55747-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics