Skip to main content

Universal Molecular Computation in Ciliates

  • Conference paper
Evolution as Computation

Part of the book series: Natural Computing Series ((NCS))

Abstract

How do cells and nature “compute”? They read and “rewrite” DNA all the time, by processes that modify sequences at the DNA or RNA level. In 1994, Adleman’s elegant solution to a seven-city Directed Hamiltonian Path problem using DNA [1] launched the new field of DNA computing, which in a few years has grown to international scope. However, unknown to this field, ciliated protozoans of genus Oxytricha and Stylonychia had solved a potentially harder problem using DNA several million years earlier. The solution to this “problem”, which occurs during the process of gene unscrambling, represents one of nature’s ingenious solutions to the problem of the creation of genes. Here we develop a model for the guided homologous recombinations that take place during gene rearrangement and prove that such a model has the computational power of a Turing machine, the accepted formal model of computation. This indicates that, in principle, these unicellular organisms may have the capacity to perform at least any computation carried out by an electronic computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M. 1994. Molecular computation of solutions to combinatorial problems. Science 266: 1021–1024.

    Article  Google Scholar 

  2. Bartel, D.P. and J.W. Szostak. 1993. Isolation of New Ribozymes from a Large Pool of Random Sequences. Science 261: 1411–1418.

    Article  Google Scholar 

  3. Csuhaj-Varju, E., R. Freund, L. Kari, and G. Faun. 1996. DNA computing based on splicing: universality results. In Hunter, L. and T. Klein (editors). Proceedings of 1st Pacific Symposium on Biocomputing. World Scientific Fublisher, Singapore, pp. 179–190.

    Google Scholar 

  4. DuBois, M. and D.M. Frescott. 1995. Scrambling of the actin I gene in two Oxytricha species. Proc. Natl Acad. Sci., U.S.A. 92: 3888–3892.

    Article  Google Scholar 

  5. Denninghoff, R.W and R.W. Gatterdam, 1989. On the undecidability of splicing systems. International Journal of Computer Mathematics 27: 133–145.

    Article  Google Scholar 

  6. Eilenberg, S. 1984. Automata, Languages and Machines. Academic Fress, New York.

    Google Scholar 

  7. Head, T. 1987. Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biology 49: 737–759.

    MathSciNet  MATH  Google Scholar 

  8. Head, T. (1991). Splicing schemes and DNA. In Rozenberg, G. and A. Salomaa (editors). Lindenmayer systems, Springer Verlag, Berlin, pp. 371–383.

    Google Scholar 

  9. Head, T., G. Faun, and D. Fixton. 1997. Language theory and molecular genetics. In Rozenberg, G. and A. Salomaa (editors). Handbook of Formal Languages, vol 2., Springer Verlag, Berlin, pp. 295–358.

    Google Scholar 

  10. Hoffman, D.C. and D.M. Frescott. 1997. Evolution of internal eliminated segments and scrambling in the micronuclear gene encoding DNA polymerase α in two Oxytricha species. Nucl. Acids Res. 25: 1883–1889.

    Article  Google Scholar 

  11. Klobutcher, L.A., L.R. Turner and J. LaPlante. 1993. Circular forms of developmentally excised DNA in Euplotes crassus have a heteroduplex junction. Genes Dev. 7: 84–94.

    Article  Google Scholar 

  12. Landweber, L. F., A.G. Fiks and W. Gilbert. 1993. The boundaries of partially edited cytochrome c oxidase III transcripts are not conserved in kinetoplastids: implications for the guide RNA model of editing. Proc. Natl. Acad. Sci. USA 90: 9242–9246.

    Article  Google Scholar 

  13. Landweber, L.F. and L. Kari. 1999. The evolution of cellular computing: nature’s solution to a computational problem. Biosystems 52: 3–15.

    Article  Google Scholar 

  14. Meyer, E. and S. Duharcourt. 1996. Epigenetic Programming of Developmental Genome Rearrangements in Ciliates. Cell 87: 9–12.

    Article  Google Scholar 

  15. Mitcham, J.L., A.J. Lynn and D.M. Prescott. 1992. Analysis of a scrambled gene: The gene encoding α-telomere-binding protein in Oxytricha nova. Genes Dev. 6: 788–800.

    Article  Google Scholar 

  16. Paun, G. 1995. On the power of the splicing operation. Int. J. Comp. Math 59: 27–35.

    Article  MATH  Google Scholar 

  17. Pixton, D., 1995. Linear and circular splicing systems. In Proceedings of the First International Symposium on Intelligence in Neural and Biological Systems. IEEE Computer Society Press, Los Alamos, pp. 181–188.

    Chapter  Google Scholar 

  18. Prescott, D.M. and M.L. Dubois. 1996. Internal Eliminated Segments (lESs) of Oxytrichidae. J. Euk. Microbiol. 43: 432–441.

    Article  Google Scholar 

  19. Salomaa, A. 1973. Formal Languages. Academic Press, New York.

    MATH  Google Scholar 

  20. Siromoney, R., K.G. Subramanian and V. Rajkumar Dare. 1992. Circular DNA and splicing systems. In Nakamura, A. (editor). Parallel Image Analysis. Lecture Notes in Computer Science 654, Springer Verlag, Berlin, pp. 260–273.

    Google Scholar 

  21. Tausta, S.L. and L.A. Klobutcher. 1989. Detection of circular forms of eliminated DNA during macronuclear development in E. crassus. Cell 59: 1019–1026.

    Article  Google Scholar 

  22. Wen, J., C. Maercker and H.J. Lipps. 1996. Sequential excision of internal eliminated DNA sequences in the differentiating macronucleus of the hypotrichous ciliate Stylonychia lemnae. Nucl. Acids Res. 24: 4415–4419.

    Article  Google Scholar 

  23. Yokomori, T., S. Kobayashi and C. Ferretti. 1997. Circular Splicing Systems and DNA Computability. In Proc. of IEEE International Conference on Evolutionary Computation’97. IEEE Computer Society Press, Los Alamos, pp. 219–224.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Landweber, L.F., Kari, L. (2002). Universal Molecular Computation in Ciliates. In: Landweber, L.F., Winfree, E. (eds) Evolution as Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55606-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55606-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63081-1

  • Online ISBN: 978-3-642-55606-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics